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Abstract 
We rely on mixture models to estimate technology-specific production functions avoiding any type 
of ex-ante assumption on the degree of technological sharing across firms and leaving the number 
of available technologies unconstrained. Internationally comparable firm-level data are used, to 
potentially capture all possible technologies available worldwide. Differently from conventional 
TFP estimates, where the terms “TFP", “productivity" and “technology" are often used 
interchangeably, our approach enables us to isolate the contribution to labour productivity 
stemming from technology (i.e. between-technology TFP) from the contribution associated to 
idiosyncratic productivity shocks not related to technology (i.e. within-technology TFP). While we 
find the former to be much larger than the latter in most sectors, the relative role of these two 
dimensions varies considerably across firms, being often reversed. We also find that the firm-level 
gaps are non-linearly correlated with the international flows of technology, as measured by the 
OECD country-sector technology payments and receipts. In particular, we show higher incoming 
(outcoming) flows of technology to be associated to higher (lower) average and dispersion of the 
between-technology TFP gaps. This stresses the growing importance of the availability of 
internationally comparable data in dealing with the technological dimension of firm-level 
productivity. 
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1  Introduction 
Measured as the Solow residual of an aggregate production function, Total Factor 

Productivity (henceforth TFP) is usually found to be as important as capital accumulation in 

explaining the cross-country disparities in income and labour productivity (Kumar and Russell, 

2002; Caselli, 2005; Hsieh and Klenow; 2009,2010; Battisti et al., 2017). Since, as known, TFP is a 

wide notion encompassing a number of hard to measure factors (i.e. “all the rest", respect to capital 

accumulation), this means that empirical analysis is able to explain no more than 50%  of the 

productivity differentials (even trying to take into account the human capital differences). This 

notwithstanding, and despite the potential impact in terms of policy implications, the literature 

dealing with different theoretical conceptions of TFP is scant, both at the aggregate and the firm 

level, and it is still true that “economists should devote more effort toward modeling and 

quantifying TFP" (Easterly and Levine, 2003). 

In this paper, we aim at giving a sense of magnitude of how much of a firm’s labour 

productivity can be attributed to its technological choices and, at the same time, providing with a 

TFP measure which is net of this “technological” component (taking into account the composite 

nature of such TFP notion). 

The way in which firm-level differences in TFP reflect on aggregate productivity is 

currently receiving increasing attention. Among others, Alfaro et. al. (2008), Banerjee and Duflo 

(2005), Bartelsman et al. (2009), Hsieh and Klenow (2009,2010), Jones (2011) and Restuccia and 

Rogerson (2008) study the relationship between aggregate TFP and differences in the within-

industry productivity dispersion across firms. A key word in this literature is “misallocation": lower 

aggregate TFP due to distortions in the allocation of inputs across units (Restuccia and Rogerson, 

2013). 

We deal with firm heterogeneity from a different point of view: instead of focusing on the 

dispersion of a wide measure of TFP (i.e. misallocation), we focus on firm-level technology 

adoption as a determinant of labour productivity differences among firms. 

Indeed, among the many factors commonly included in the standard TFP figures, a 

growing body of literature concentrates on “technology", both in terms of creation of new 

technologies and adoption/diffusion of already available technologies. From a theoretical point of 

view, the relationship between technology adoption/diffusion and diffusion of development dates 

back to Gerschenkron (1962), Nelson and Phelps (1966), Barro and Sala-i-Martin (1992) and 

Howitt (2000). Within this branch of literature, Parente and Prescott (1994) show that differences 

in barriers to technology adoption, which vary across countries and time, account for the great 

disparities in income across countries. Acemoglu and Zilibotti (2001), Gancia and Zilibotti (2009), 

Gancia et al. (2010) focus on the idea of “directed technical change". Other works stress the spatial 

dimension of the process of technology adoption and diffusion. Desmet and Parente (2010) model 

the relationship between market size and technological upgrading. Desmet and Rossi-Hansberg 

(2014) suggest a model in which technology diffusion affects economic development because 

technology diffuses spatially and firms in each location produce using the best technology they 

have access to. Comin et al. (2012) propose a theory in which technology diffuses slower to 
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locations that are farther away from adoption leaders.2 Our approach can also be of interest to the 
debate on embodied versus disembodied technological progress. Differently from the latter 
(Solow, 1960), in which capital equipments equally participate in technical change (see Hercowitz, 
1998), our multiple technology framework allows capital equipments to differ in terms of returns 
(see Zeira, 1998; Acemoglu, 2010; Battisti et al., 2017), as far as technology is embedded in the 
capital stock. 

Other papers specifically point out the importance of the firm-level dimension of 
productivity growth (i.e. changes in the productivity distribution). Gabler and Poschke (2013) and 
Da Rocha et al. (2017) introduce endogenous establishment-level productivity in the study of the 
evolution of aggregate productivity. A similar approach is adopted by a number of papers in which 
aggregate growth is fostered by the evolution of the firm-level TFP distribution, as induced by 
trade integration (see Grossman and Helpman (2015) for an early review). This literature explicitly 
focuses on the role of technological heterogeneity. Sampson (2016) stresses the role of the 
technological choice of the entrant firms. Perla and Tonetti (2014) focus on the diffusion of 
technology from the more to the less productive firms, which allows the TFP distribution to 
“evolve” endogenously even without the introduction of new technologies. In Perla et al. (2015), 
firms choose whether to adopt a better technology or not and trade integration, by increasing the 
incentives to adopt the better technologies, fosters aggregate growth. In Benhabib et al. (2017), 
firms choose whether to keep producing with their existing technology, adopt a new technology 
or innovate, but only innovation fosters growth in the long run. Luttmer (2007) focuses on 
imitation, highlighting that the small size of entrants de facto indicates that imitation is difficult. In 
Alvarez et al. (2014), the flow of new ideas is the engine of growth: firms get new technologies by 
learning from the people they do business with, so that trade, by implying more meeting 
opportunities, helps technology diffusion and aggregate growth. Bloom et al. (2015) highlight how 
import competition from low cost countries forces firms to innovate more than otherwise. 

In these frameworks, the focus is on “technology" but the terms “TFP", “productivity" 
and “technology" are used as synonymous. The reason of this ambiguity is presently explained. 

Anticipating the formal description, let us write firm i ’s production function as  

immmii kay ED ��,=  (1) 

                                                      
2 Another line of research studies more in detail the process of technology diffusion using data on specific 
technologies. In particular, it is worth citing the Cross-country Historical Adoption of Technology 
(CHAT) dataset, described in Comin and Hobijn (2009), which includes long-run information on the 
extensive (whether a specific technology is present or not in a given country at a moment in time) and 
intensive (the intensity with which producers or consumers employ a technology, at a given moment in 
time, scaled by the size of the economy) margins of technology adoption at the country-level on a number 
of technologies (e.g. tractors, fertilizer, portable cell phones). The CHAT dataset enables, among others, 
Comin and Hobijn (2010) to explain the very different speeds at which countries recovered after wars, 
Cervellati et al. (2014) to study the effect of trade liberalization and democratization on technology 
adoption, Comin and Mestieri (2013) to explore the general patterns characterizing the diffusion of 
technologies, how they changed over time, and the key drivers of technology. 
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 with )/(= iii LYlny  and )/(= iii LKlnk . Index m  is introduced to refer to a specific 
“technology", with Mm ,1,= �  and M  denoting the number of available technologies. Here, 

mD  and mE  capture the technological dimension by identifying different technologies in each 

sector-industry, with a number of firms using each technology, while mia ,  encapsulates the 
idiosyncratic productivity differences among the firms using the same technology and can be 
thought of as the firm’s ability to exploit the given technology m  (say “pure" TFP). To highlight 
the importance of disentangling between these two dimensions, and the role that technology can 
play in the evolution of output, Bernard and Jones (1996a,1996b) use the expression “total 
technological productivity”. 

Since estimating (1) with standard econometrics is not possible without an ex-ante 
assumption on the technology used by each firm, in the standard approach to production function 
estimation, the information captured by mia , , mD  and mE  entirely flows into the TFP index 

(computed as the Solow residual ii yy ˆ� ), often referred to as “technology” or “productivity” 
interchangeably. Arguably, the TFP estimated in this way conflates technological effects and 
“pure" TFP effects. Common sense tends to always attribute most of this TFP variation to 
technology, even when the analysis points to particular aspects, such as managerial ability in 
Bhattacharya et al. (2013).3 

To shed light on this aspect, we suggest a novel approach to production function 
estimation that enables us to relate the labour productivity differences among firms to their 
technological choices. This results into a quantification of the part of a firm’s labour productivity 
that can be traced back to producing at a given capital-labour ratio using a given technology, 
instead of a different one (among the technologies used by the other firms). Relying on mixture 
models, we estimate technology-specific production functions avoiding any type of ex-ante 
assumption on the degree of technological sharing across firms and leaving the number of available 
technologies (i.e. technology groups) unconstrained. In doing this, we improve on the two-
technology setting experimented in Battisti et al. (2015), where mixture models are implemented 
to measure the effects of intangible assets on firms’ technological choices. 

Recently, the importance of isolating the technological component of firms’ productivity 
has been highlighted by Collard-Wexler and De Loecker (2015) with reference to the steel industry, 
documenting important productivity increases at the industry level associated to the the adoption 
of a particular technology (the “minimill” technology).4 However, to the best of our knowledge, 
no attempts have been made in order to generalize the identification of firm-level technologies. 

                                                      
3 In this case, the most intuitive interpretation points to different managerial ability in adopting the best 
technologies. 
4 According to Collard-Wexler and De Loecker (2015), a third of the industry’s productivity increase can 
be traced back to the mere displacement of the older technology, with the rest associated to indirect 
effects occurring through increased competition. 
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We use balance sheet data on about 73.000 worldwide distributed manufacturing firms 
observed over 2013-2014, drawn from the Orbis database, provided by Bureau van Dijk, to 

estimate as many production function parameters ( ma , mE ) as the number of technologies 

suggested by our algorithm at the sectoral-level. This enables us to express a firm’s productivity 
(i.e. TFP) relative to the other firms in the same technology group (i.e. Within-technology TFP, or 
“pure" TFP: hereafter WTFP) or relative to the labour productivity that the firm could have 
reached, given its capital-labour ratio, had it chosen the frontier technology (i.e. Between-
technology TFP: hereafter BTFP). While the former can be thought of as the firm’s ability to 
exploit a given technology (compared to the other firms using the same technology), the latter is a 
quantification of the labour productivity gap associated with the technological choice. 

The large international covarage offered by the Orbis database, ranging from OECD to 
low-income and emerging countries, is key in order to allow our algorithm to potentially capture 
all the technologies available worldwide. Our estimates point to a sectoral number of technologies 
ranging from one to five, depending on the industry. 

We then focus on the labour productivity gaps associated with either being relatively less 
productive within a given technology group (WTFP gap) or not choosing the frontier technology 
(BTFP gap). This analysis reveals that the average WTFP contribution to labour productivity 
differences is much smaller than the BTFP contribution in most industries: when aggregated at 
the sectoral level, the WTFP of the top 5% firms (in terms of WTFP) is on average 90% higher 
than the other firms, while having all firms at the technological frontier (i.e. eliminating the within-
sector BTFP dispersion) would increase the aggregate labour productivity of firms by 5.3  times. 
This notwithstanding, the relative contribution to labour productivity of these two dimensions 
varies substantially across firms, even within the same industry, with WTFP gap dominating the 
BTFP gap in many cases. 

To help with the interpretation of the documented WTFP and BTFP gaps, we also 
consider their relationship with the country-sector international flows of knowledge and 
technology, as measured by the OECD country-sector technology payments and receipts, in a very 
simple cross-sectional regression analysis. Whilst not establishing causality, we show higher 
incoming (outcoming) flows of technology to be associated to higher (lower) average and 
dispersion of the BTFP gaps. These statistically significant correlations might support our 
emphasis on the opportunity to isolate the technological component of the labour productivity 
differentials by using international data in which all the available technologies in a given industry 
are potentially observed. 

The exposition proceeds as follows. In Section 2, we develop a theoretical framework 
modeling technology adoption at the firm-level. In Section 3, we present the mixture model. In 
Section 4, we describe the within and between decomposition. In Section 5, we quantify the labour 
productivity gaps associated with the within and between dimensions. Section 6 concludes. In 
appendix 8 we discuss the analogies and differences with standard TFP measures. 
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2  Modeling Technology Adoption 
  Our first step in the analysis consists of recovering, for each technology m , the 

parameters mD  and mE  from the estimation of Equation (1). 
As highlighted by the literature (see Olley and Pakes, 1996; Levinsohn and Petrin, 2003; 

Ackerberg et al., 2006; Wooldridge, 2009; and Doraszelski and Jaumandreu, 2012), productivity 
estimation at the firm level involves simultaneity issues. Our multiple technology framework 
amplifies this order of problems, which make the OLS estimation output distorted. 

A first source of simultaneity stems from the fact that the term mai ,  is to some extent 
known to the firm when it makes input levels decisions. This is usually expressed saying that 

0),( ,, ztiti AKCov  and/or 0),( ,, ztiti ALCov , with index t  used to denote time. 

Additionally, in our multiple technology case ( 1>M ), it can be the case that 0),( ,, ztiti mKCov  

and/or 0),( ,, ztiti mLCov . This introduces an additional potential source of simultaneity, 
associated with the technological choice. 

Since we want to avoid any type of ex-ante assumption on the degree of technological 
sharing across firms, and leave the number of available technologies unconstrained, we have to 
address both issues. To this aim, we present an “empirical model” of technology adoption and 
develop an estimation strategy, consistent with the model assumptions, that allows us to estimate 
the production function controlling for both sources of simultaneity. 

First of all, we introduce the quite standard (see e.g. Olley and Pakes, 1996) “one period 
time-to-build” hypothesis, according to which the new technology is productive one period after 
its acquisition. Second, we assume that idiosyncratic productivity follows the first order Markov 
process timtititi aaEa ,,1,,, ]|[= [�� , where tim ,,[  denotes innovation in either the adopted 

technology (in which case we have that 1,, �z titi mm ) or the ability to exploit it (in which case, 

1,, = �titi mm ). 

Adopting the terminology ][tX  to remember that variable X  is chosen at time ][t , 
we assume the following decision timing. At the end of period ][t , firm chooses 

])[],[( 11, tmtK tti �� . At the beginning of period 1][ �t , 1, �tia  and 1�tZ  (i.e. a vector of 
exogenous market-level state variables) are observed, so that the firm freely chooses the amount 
of labour (i.e. ][, tL ti ). Finally, firm chooses 1][2, �� tK ti  and 1][2 �� tmt , at the end of period 

1][ �t , on the basis of 1, �tia  and 1�tZ . 
In period t , firm i  maximizes the present value of its future profits conditional to the 

information set : : 
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 G  is the discount rate and firm’s investment jijijiji DKKI ,,1,, = ���  encompasses 

disinvestment costs jijiji KD ,,, = H  (with 10 , dd jiH ). While disinvestment costs are borne 

independently of changing technology or not, the technology adjustment cost in the third term on 
the LHS includes the costs associated to switching to a different technology in period [j+1]. 

Capital accumulates according to  

jijijijiji DIKKK ,,,,1, = ���� G  (3) 

 
 and the Bellman equation can be written as 
 

> @)|(max=)( ,1,,
)1,,1,(

,, tititti
timtiK

titi VEPV :�: �
��

G (4) 

 

The solution of (4) consists of the values of )( 1, �tiK  and )( 1, �tim  that satisfy the policy 

function for K:  

),,,( ,,,1,1, tititititi ZaKmK ��  (5) 

 with the firm choosing, at time [t], the technology 1, �tim  that maximizes  

� �> @ 1,1,,1,,1, =|),,(| ���� �: titititititit mmmKKCVEG  

 among all possible }{Mm� . 

This framework provides with the chance to take the simultaneity associated to both the 
choice of inputs and the choice of technology into account while estimating the production 
function. 
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Operationally, this boils down to preliminary estimating the system of equations 
consisting of the K  policy function in (5) and the static condition for L   

L
ti

L
titctiti

K
ti

K
titctiti

ueZtKtL

ueZtKtK

,,,,10,

,,,1,10,

1][ln=][ln

2][ln=1][ln

������

������ �

UU

UU
 (6) 

where tcZ ,  captures country-year effects. 

Under the assumption that K
tiu ,  and L

tiu ,  are iid error terms, K
tie ,  embodies the 

covariance terms � �1][1],[ ,, �� tmtKCov titi  and )1],[( 1,, �� titi atKCov , while L
tie ,  embodies 

)],[( ,, titi atLCov . In other words, as far as tcZ ,  effectively absorbs all the country-level 
heterogeneity in the data, the regression residuals of the two equations in (6) can be thought of to 
embody the firm-level variability in input choices correlated to both the idiosyncratic productivity 
shock and the technological choice. 

Thus, the estimated residuals K
ti

K
tii ue ,,=ˆ �)  and L

ti
L
tii ue ,,=ˆ �<  can be seen as 

correction factors to be included as additional regressors in a second step of regressions in order 
to obtain simultaneity-free production function parameters. 
 
 
3  Production Function(s) Estimation 

  Differently from the standard approach to firm-level TFP estimation (see the surveys 
by Del Gatto et al., 2011 and Van Beveren, 2012), our framework requires estimating as many sets 
of production function coefficients as the number of available technologies in each sector. 
However, we want to avoid any type of ex-ante assumption on the degree of technological sharing 
across firms, countries, or regions. In other words, we do not want to cluster the firms ex-ante. 
To this purpose, we rely on mixture models (Mc Lachlan and Peel, 2000). In this way, since the 
number of available technologies is endogenously determined by the mixture estimation algorithm, 
the distribution of technologies is indeed observed ex-post. 

To allow our algorithm to potentially capture all possible technologies available 
worldwide, it is important to use internationally comparable data with the largest possible coverage. 
To this aim, we take advantage of information provided from the Orbis database (Bureau van 
Dijk, 2015), on a large sample of around 73.000 worldwide distributed firms, over the 2013-2014 
period and across 22 2-digit sectors.5 

                                                      
5 Arguably, a larger country coverage comes with a lower representativeness in terms of the cross-country 
distribution of firms (as known, the national standards of balance sheet disclosure vary across countries). 
However, this issue is not crucial in our empirical strategy. More important is the chance to identify as 
many technologies as possible, by observing as many worldwide distributed (and potentially 
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In particular, in the production function estimation, we use information on value added (
VA ), capital inputs (K , i.e. tangible assets, including buildings, machinery and all other tangible 
assets) and labour inputs L . Value added and capital are deflated using the OECD-STAN sector-
country specific deflators. Descriptive statistics are presented in Table 1, while a detailed variables 
description is provided in the Appendix 7. 

We follow the approach described in Section 2 to estimate our technology specific 
production functions controlling for the simultaneity associated to the choice of inputs and the 
choice of technology. 

We first use three-stage least squares to estimate the system of equations in (6), then use 
the estimated regression residuals of the two equations as additional regressors in a second step of 
regressions based on mixture models, in order to obtain simultaneity-free production function 
parameters. 

In this second step of regressions, we want to estimate the technology specific mD  and 

mE  for each technology m  avoiding any ex-ante assumption on the degree of technological 
sharing across firms. To this aim, we adopt a mixture approach. The idea is that the probability 
distribution of iy  can be seen as a weighted average of the M  unknown segment (i.e., 

technology) distributions, each with proper mean ( mP ) and variance ( 2
mV ): 

),|(=),|( 2
1=

2
mmimm

M

mi YfYf VPZVP ¦ . The weights mZ  are given by the ex-ante probability 

of belonging to group m . 
The fact that these probabilities are unknown generates a problem of missing data that is 

solved by applying the EM (expectation-maximization) algorithm of Dempster et al. (1977) to the 
estimation of the following production function through weighted least squares (WLS), as 
suggested by De Sarbo and Cron (1988):  

is
mi

i
mi

i
mi

immi FEky H\MED
GGG

��<�)�� ,,, ˆˆ=  (7) 

 where sFE  are 4-digits industry fixed effects. 
The estimation is carried out sector-by-sector (at the 2-digit level) for the year 20146 and 

starts with random values of mZ  (see below) to compute the posterior probability mip ,  that firm 
i  belongs to group m , and thus the observation weights in (7) as:  

                                                      
technologically different) firms as possible in each sector. 
6 The estimation in (6) requires a minimum of two years, the reference year [t] and the previous year [t-1], 
for the lagged term 2][ln 1, �� tK ti . Here, the time index is dropped since the estimation is based on 
cross-section regressions for year [t]. 
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 This set of probabilities is then used to update the regression coefficients by changing the weights 

mZ  according to  

mi
im

mi
i

m p

p

,

,

=
¦¦
¦

Z  (9) 

 with the following constraints:  

1.=and1,=0
1=
m

M

m
m Mm ZZ ¦�t �  (10) 

 

The algorithm iteratively alternates the WLS production function estimation and the 

computation of probabilities until a log-likelihood convergence criterion is satisfied (Grun and 

Leisch, 2013).7 

To leave the routine free to set the number of available technologies M , we try different 

numbers of clusters and pick the optimal choice following a Bayesian Info Criterion based on the 

following log-likelihood function:  

MmmyfargmaxM mmimm
i

,1,=|)()],|([log2= 2 �
¿
¾
½

¯
®
­

��� ¦ ]VPZ  (11) 

Here )( sm]  is a penalty function that implements the trade-off between a higher 

number of clusters and more parameters to be estimated.8 Figure 1 shows the results of the 

Bayesian Info Criterion for the 19 sectors. In all sectors except one (i.e., “Computer, electronic 

and optical products”), results always point towards the presence of more than one technology. 

Then, in order to avoid unuseful duplications we collapse together sectors for what the capital 

returns technology coefficients are close and the number of observations is very small.9 

Estimation results are displayed in Table 2, reporting the estimated D  and E  for each 

technology group and for each sector. The estimated production functions are visualized in Figure 

2. It is noteworthy how the standard hypothesis of a single technology is a restrictive assumption 

                                                      
7
 We use Flexmix R package (Grun and Leisch, 2008) with 50 random starting points. 

8
 In the case of the Bayesian Info Criterion, this is equal to the natural log of the number of observations 

(i.e., firms) multiplied by the number of parameters. The latter grows with the number of segments: 

regressions’ coefficients, variances and weights for each segment, minus one because the weights sum up 

to one (one of them is a linear combination of the others). 

9
 The results under the alternative scenario are unchanged and available under request. 
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never supported by data. The magnitude of the D  and the E  coefficients is even substantial 
within many industries. This entails that the usually estimated sectoral parameters hide substantial 
heterogeneity, as Appendix 8 discusses more in details. 

In Table 3 we report the total probability of each technology group. This is computed as 

miim pprob ,=¦  and collapses to the number of firms in the sector when summed up across all 

technology groups in the sector (i.e., miim
p ,¦¦ ). As the Table reveals, none of the groups 

presents a negligible probability. This is due to the fact that, on average, the firm-level probability 
is distributed across the technology groups with a certain degree of variability.10 
 
 
4  Between-technology TFP and Within-technology TFP 

  The technology adopted by the firm, that is the technology that solves the problem in 
(4), may or may not coincide with the technology that would provide the maximum productivity 
level associated with the given level of ik  – i.e., frontier technology. 

To formalize this, let us refer to the frontier technology as the technology Hm  that 
maximizes labour productivity at the capital-labour ratio actually chosen by the firm: 

H
imiiHmi

mmkkykky z�=|>=| ,,
. 

Since our estimated production function parameters are technology specific, and since we 
do know how many technologies are available in each sector, we are able to identify, for each firm, 
the predicted labour productivity associated to each technology (at the actual level of k ). In 
particular, we are able to identify the predicted labour productivity associated with the actual 
technology ( miy ,ˆ ) and the frontier technology ( Hmi

y
,

ˆ ) as, respectively:  

iHmHmHmiimmmi kyandky EDED ˆ=ˆˆˆ=ˆ
,, ��  (12) 

These two values can be used to compute the Solow residual, in the two cases, as 
difference between the observed and the predicted productivity:  

HmiiHmimiimi yyaandyya
,,,, ˆ=ˆˆ=ˆ ��  (13) 

The difference between the two terms in (12) and in (13) provides us with a measure of 
how distant the predicted labour productivity of a firm (under the actual technology) is from the 

                                                      
10 We show an example of our firm clustering at a sectoral level with Figure 3, on chemicals and food 
products. To plot the clustering, we assigned each firm to the technology cluster it belongs to with the 
relatively higher (estimated) probability, i.e. “hard assignment”. Each number in the Figure, thus, shows 
the position and the “hard assigned” cluster (the clusters are numbered from 1 to 4) of each firm, in the 

iy - ik  space.  
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frontier labour productivity. This provides us with a quantification of the labour productivity gap 
with respect to the productivity that the firm could have reached, with the given k , had it chosen 
technology Hm . The weighted average of this term, across all the technologies available in the 
sector, is our measure of Between-technology Total Factor Productivity (BTFP):  

)ˆˆ(=)ˆˆ(=BTFP ,,,
1=

,,,
1=

miHmimi

Hm

m
Hmimimi

Hm

m

aapryypr ���� ¦¦  (14) 

 where the weights mipr ,  correspond to the estimated probability of firm i  belonging to the 
technology group m  defined in Equation (8). 

Similarly, we can define the firm’s Within-technology Total Factor Productivity (WTFP) as  

.ˆ=WTFP ,,
1=

mimi

Hm

m

apr �¦  (15) 

This term is the empirical analogous of the idiosyncratic productivity term mia ,  in 
Equation (1) and can be thought of as the firm’s ability to exploit the given technology, compared 
to the other firms using the same technology. 

The BTFP component is zero for firm i  if the firm uses Hm  with probability one (i.e., 
1=

, Hmi
pr ) or when one single technology is available (i.e., Hmm =1= ). In contrast, when a 

number 1>M  of technologies is available, the firm may or may not adopt the frontier 
technology. Figure 4 helps the intuition. Consider, for example (panel b ), that firm i  adopts 
technology 2m  with probability one. On the one hand, we can see that this technology is sub-
optimal in correspondence of ik , as the predicted productivity associated to technology 1m  is 
higher. This productivity gap can be completely attributed to the technological choice and is 
captured by our measure of BTFP. On the other hand, the distance between the actual and the 
predicted output under technology 2m  (WTFP) provides us with a measure of the firm’s ability 
to exploit the technology in use, expressed in relative terms with respect to the other firms in the 
same technology group. 

Note how the above TFP measures can be seen as the static counterpart of the technical 
change components in a setting à la Kumar and Russell (2002) (see also Los and Timmer, 2005), 
the difference being the focus on distance from the local technological frontier, rather than on 
technological change. A related experiment is the one reported by Bos et al. (2010), based on a 
pooled sample of firms, in which technical change and efficiency are expressed in terms of shift in 
a time trend and output per worker relative to the maximum level of output per worker, 
respectively. Compared to this approach, a feature of our analysis is the possibility to carry out 
counterfactual exercises in terms of the gains/losses associated to changing the adopted 
technology, as well as to improving the ability to exploit it (i.e. efficiency). In this, our approach 
resembles the notion of “localized technological progress” (Atkinson and Stiglitz, 1969). 
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To gain the intuition on the relationship between our approach and conventional TFP 
estimation carried out without allowing for technological heterogeneity, compare the term 

iii yya ˆ=ˆ �  in panel a  of Figure 4 with the WTFP and BTFP measures reported in panel b . 

While iâ  would coincide with our WTFP measure in the case of one single technology available 
in the sector, conventional estimates conflates our within and between productivity measures in 
the general case of 1>M . 

To see this formally, consider the estimated version of (1) under 1=M  and 1zM , to 
obtain the following decomposition of the standard TFP:  

 immmii

immmii

iii

kaa
kay

kay
)ˆˆ()ˆˆ(ˆ=ˆ

ˆˆˆ=

ˆˆˆ=

,

,

EEDD
ED

ED
����

��

��
 (16) 

This decomposition highlights that the standard estimated TFP (i.e., iâ ) is a composition 

of three terms: mia ,ˆ , that is our WTFP measure; DD ˆˆ �m , which can be seen as a bias in the 

Hicks-netural component of technology; and EE ˆ�m , which can be seen as a bias in the slope of 
the production function. 

Overall, neglecting the presence of different (within-sector) technologies results in 
overstating the TFP of the firms that adopt relatively more productive technologies (due to 
underestimation of their input coefficient - i.e. EE ˆ>m  - and/or overestimation of the intercept 

- i.e. DD >m ). The coefficients estimated on the whole sector, that is without clustering ( 1=M
), can be seen as a weighted (across technology clusters) average of the mixture regressions. These 
aspects are discussed in Appendix 8. 

Finally, two considerations are in order. First, being our production functions estimated 
without controlling for workers’ skills, one may wonder to what extent our estimated BTFP term 
effectively captures productivity effects associated to technology, intended in a strict sense (i.e. 
effects that are distinct from human capital). Although our methodology would allow us to control 
for human capital, our data do not contain information in that sense. Thus, throughout the paper 
we widely attribute BTFP difference across firms to differences in technology in a strict sense (e.g. 
different machineries, softwares etc.), as well as to the differences in human capital attached to 
adopting a given technology. This notwithstanding, to roughly control for the role played by 
human capital differences, we constructed a country-sector human capital endowment variable by 
interacting the Cohen and Soto (2007) measure of education of each country in 1970 and 2005 
with the industry schooling intensity of the US in 1980, drawn from IPUMS (in 2015). The 
regressions of our WTFP and BTFP terms on this country-sector specific human capital variable 
(plus country and sector controls) yields (results available upon request) an insignificant effect on 
the latter and a negative and significative effect on the former. Under the assumption that sectoral 
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schooling intensity is the same in all countries, and keeping in mind the limits involved in such a 
measure of human capital, this might suggest that the largest part of the technological differences 
across firms detected in the analysis does not stem from the omission of human capital. 

Second, as difference between predicted values, the BTFP term should not be affected by 
firms’ markups. Eventually, only (average) systematic differences across prices applied by the firms 
in different technology clusters (i.e. using different technologies) flow into the BTFP. Conversely, 
cross-firm differences in markups entirely reflect onto WTFP differences, together with 
differences in management practices. 
 
 
 
5  Productivity gaps 

  
5.1  Quantification of WTFP and BTFP gaps 

 We now focus on the labour productivity gaps associated with either being relatively less 
productive within a given technology group (that is, displaying a relatively low ability in exploiting 
the given technology, as measured by the idiosyncratic component mia , ) or not choosing the 

frontier technology. This is equivalent to quantifying the productivity gain each firm would enjoy 
by filling the gap with the highest productivity firms in the same technology group or by switching 
to the best available technology in the sector. 

To quantify the former, we measure the difference between a firm’s observed WTFP and 
that of the best performing firms in the group (identified as the average WTFP of the best 5%  
of the WTFP distribution).11 Formally, we consider ii WTFPWTFP=WTFPgap 5%best � . This 

represents a firm-level measure of the expected productivity gain which would be obtained by 
eliminating the WTFP dispersion within a technology cluster. 

To quantify the BTFP gaps, we can simply consider ii BTFP=BTFPgap � . This gap is 

a measure of the productivity gain that would be obtained by eliminating the technology dispersion 
within each sector and having all firms at the local frontier technology.12 

The sectoral distribution of the estimated BTFP and WTFP gaps is reported in Figures 5 
and 6, respectively. The two figures highlight that neither dimensions are correlated with the 
within-sector number of technologies suggested by the analysis (see Table 2 and Figure 2). In 
Figure 7, we look at the firm-level distribution of the relative weight of WTFP and BTFP gaps by 
plotting the firm-level ratio BTFP/WTFP, which, again, does not seem to be correlated with the 
suggested number of within-sector technologies. Figure 7, in particular, unveils that, while BTFP 
gaps are generally higher than WTFP gaps, the distribution shows the presence of substantial 

                                                      
11 Notice that the estimated WTFP tends to zero when averaged at the sectoral level. 
12 This makes sense as far as we are willing to accept that a firm, switched from a given technology m  to 

Hm , is able to use Hm  with the same ability it uses the actual technology m . 
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heterogeneity, with the exception of the wood products industry, where the within-sector 
BTFP/WTFP profile of firms is rather homogeneous. 

We can then obtain aggregate figures of the gaps by averaging iWTFPgap  and 

iBTFPgap  by sector. These are reported in Table 4 and visualized in Figure 8, where the WTFP 
gaps are plotted against the BTFP gaps. The average gaps in Table 4 range from less than 40% for 
electronic products to around 140% for beverages. The overall contribution of the WTFP is much 
smaller. In fact, when aggregated at the sectoral level, the WTFP of the top 5% firms (in terms of 
WTFP) is on average 90% higher than the other firms, while having all firms at the technological 
frontier (i.e. eliminating the BTFP dispersion) would increase the aggregate labour productivity of 
firms by 5.3  times roughly, with smaller potential gains in the electronic products and 
pharmaceuticals, where only one significant technology emerges from our mixture analysis, and 
larger potential gains in the non-metallic products, basic metals and chemicals. 
 
 
5.2  Markers of WTFP and BTFP gaps and relationship with international exchanges of 
technology 

 To help with the interpretation of the documented WTFP and BTFP gaps, we consider 
their relationship with the country-sector international flows of knowledge and technology in a 
very simple cross-sectional regression analysis. Whilst not establishing causality, a statistically 
significant correlation between these two dimensions might support our emphasis on the 
opportunity to isolate the technological component of the labour productivity differentials by 
adopting an international perspective allowing to potentially observe all the available technologies 
in a given industry. 

In particular, we study how our firm-level measures of the productivity loss associated 
with WTFP and BTFP correlate with country-sector patterns in the global markets of knowledge 
and technology, and how such patterns are associated with the dispersion of the labour 
productivity (as reflected in the WTFP and BTFP gaps). 

We use OECD Stat (2015) data from the technology balance of payments, measuring 
international technology receipts - i.e. outcoming technology flows (variable Tech Receipts) - and 
payments - i.e. incoming technology flows (variable Tech Payments). Data covers licence fees, 
patents, purchases and royalties paid, know-how, research and technical assistance.13 

                                                      
13 Technology receipts depend on firms’ R&D effort and correspond to foreign sales of the marketable 
results of that effort. Technology payments correspond to the acquisitions technology inputs that are 
immediately useable by the firms. Thus, technology receipts and payments may reflect different 
dimensions, including the ability of firms in a country-sector to sell their disembodied technology abroad 
and the extent to which they make use of foreign technologies, the degree of technological autonomy (i.e. 
the ability to assimilate foreign technologies) and, more in general, the choice between domestic 
production of technology or foreign absorption, which is a crucial dimension of globalization and growth 
(Perla et al., 2015). 



16 
 

In this exercise, as baseline controls, we also consider a vector of firm-level characteristics 
(intangible assets intensity, firm age, liquidity, and whether the firm is listed in a stock market and 
is part of a multinational group; provided by Bureau van Dijk, 2015).14 

Results are collected in Table 5. 
We find that both WTFP and BTFP gaps, on average, tend to be negatively correlated 

with technology receipts. That is, country-sectors with relatively higher outcoming flows of 
technology are characterized by higher rates of firms better positioned in the WTFP distribution 
and using the relatively more productive technologies. BTFP gaps are also higher for firms in 
country-sector environments with higher technology payments, that is higher incoming technology 
flows. 

These correlations are likely to be associated with different dispersion patterns. The most 
intuitive way to investigate this aspect would be that to study the correlations in terms of the first 
and the second moment at a country-sector level. However, this would be highly problematic given 
the country bias in the Orbis database. We thus follow an alternative strategy. We sub-sample our 
firms according to having WTFP and BTFP gaps above or below the median value in the WTFP 
gap and BTFP gap distributions and perform separate regressions on the two sub-samples (see 
columns 2-3 and 5-6 in Table 5). Under this approach, a significative relationship with dispersion 
emerges if the estimated coefficients in two sub-samples are opposite in sign and significative: a 
positive (negative) coefficient in the above (below) the median regression is revealing of a positive 
(negative) correlation with the WTFP and BTFP gap dispersion. 

Indeed, this is what we find for the BTFP gap dispersion, which is higher in country-
sectors with a higher degree of technology inflows and lower in country-sectors with a higher 
degree of technology outflows. Mindful that the BTFP gaps are not relative to a country 
benchmark but the identified frontier technology is the same for all the sample firms in the same 
sector, and assuming that firms tend to trade relatively better technologies, this might suggest that 
international exchanges of technology favour the technologically advanced firms in the importing 
country-sectors but not in the exporting country-sectors, where firms tend to be concentrated 
around the median. This can somehow reflect a “competition effect” of globalization, in the form 
highlighted by, e.g., Baldwin and Robert-Nicoud (2008). 

Moreover, only firms with above-median WTFP gaps are negatively correlated with 
aggregate technology receipts, while firms with below-median WTFP gaps are positively correlated 
with aggregate technology payments. Again, this can be interpreted in terms of dispersion: country-
sectors with high volumes of both technology outflows and inflows are associated with lower 
dispersion. 
 
 
 
 

                                                      
14 Details on all the variables’ construction are provided in Appendix 7. 
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6  Conclusions 
  A long standing literature tends to attribute large differences in output per worker 

among firms to differences in total factor productivity, i.e. the firm’s ability to exploit production 
inputs. At a country level, it is shown that the contribution of TFP to explain differences in total 
output per worker is around 50% or even more (see Kumar and Russell, 2002; Caselli, 2005; Hsieh 
and Klenow, 209,2010; Battisti et al., 2017). In this literature, a firm’s difference in output per 
worker with respect to its counterparts in a sector is given by an idiosyncratic factor, likely 
attributable to managerial ability, that remains unexplained after estimating a sector-specific 
production function through which the available technology is framed. This approach, extensively 
used to measure both firm-level and aggregate productivity differences, with notable influences on 
policy studies and growth dynamics modeling, neglects a real-world source of heterogeneity: the 
presence of multiple technologies, possibly chosen by different groups of firms in a same sector. 

Only few empirical studies have directed their attention towards how to take into account 
the technological dimension in firm-level production function estimation. 

In this paper, we tackled this issue stressing the importance of using internationally 
comparable data in order to potentially capture all possible technologies available worldwide. We 
have relaxed the standard, often implicit, assumption of all firms sharing the same technology and 
proposed a novel approach based on mixture regression, which allows to unbundle the technology 
and the TFP component of a firm’s productivity. In particular, we have estimated technology-
specific production functions and decomposed the generic notion of TFP into a technology-
specific component and a firm-specific term. 

Our approach also allows to identify the most productive technologies in each sector and 
to quantify the productivity gaps associated with either not choosing the frontier technology or 
being relatively less productive within a given technology group. 

From our empirical exercise, it emerges that the technology component (BTFP) of the 
firm-level productivity gaps within sectors is significantly larger than the “pure” TFP component 
(WTFP). Specifically, we found that the WTFP of the top 5% firms is on average 90% higher than 
the other firms in the same technology group, while having all firms at the technological frontier 
would increase the aggregate productivity of firms by 5.3 times roughly. Moreover, the dispersion 
of the productivity gaps associated with both components is shown to correlate with the 
international patterns of knowledge and technology trade, consistently with a dynamics of 
technology exchanges favouring the technologically advanced firms in the importing country-
sectors relative to their exporting counterparts. 

In light of these results, our analysis suggests giving more emphasis to the technological 
component of TFP in defining firm-strategies and public policies aimed at reducing the labour 
productivity gaps across firms and countries. 
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Appendix 

 
 

A Appendix: Variables description 
  
Added Value. Log of added value. Added value is defined as profit for period + 

depreciation + taxation + interests paid + cost of employees. Firm-level variable, deflated using 
the OECD-Stan sector-country specific deflators (source: Orbis (2015)). 

 
Labour Input. Log of total number of employees included in the company’s payroll. Firm-

level variable, deflated using the OECD-Stan sector-country specific deflators (source: Orbis 
(2015)). 

 
Capital Input. Log of tangible assets. Tangible assets include buildings, machinery and all 

other tangible assets. Firm-level variable, deflated using the OECD-Stan sector-country specific 
deflators (source: Orbis (2015)). 

 
Firm Intangibles. Log of intangible to tangible assets ratio. Intangible assets include 

formation expenses, research expenses, goodwill, development expenses. Tangible assets include 
buildings, machinery and all tangible assets. Firm-level variable (source: Orbis (2015)). 

 
Firm Age. Age of the firm (years). Firm-level variable (source: Orbis (2015)). 
 
New Entrant. Dummy variable (1 = firm age is below or equal to five years, 0 = otherwise). 

Firm-level variable (source: Orbis (2015)). 
 
Listed Firm. Dummy variable (1 = the firm is listed in the stock market, 0 = otherwise). 

Firm-level variable (source: Orbis (2015)). 
 
Multinational. Dummy variable (1 = the firm is part (as a controller or controlled 

enterprise) of multinational group. Firm-level variable (source: Orbis (2015)). 
 
Liquidity Ratio. Cash and cash equivalents as a percentage of total asset. Firm-level variable 

(source: Orbis (2015)). 
 
Tech Payments. International technology payments for licence fees, patents, purchases and 

royalties paid, know-how, research and technical assistance, weighted by sectoral value added, 
drawn from the WDI database. Country-sector-level variable (source: OECD Stat, Technology 
Balance of Payments (TBP) Database). 
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Tech Receipts. International technology receipts for licence fees, patents, purchases and 
royalties paid, know-how, research and technical assistance, weighted by sectoral value added, 
drawn from the WDI database. Country-sector-level variable (source: OECD Stat, Technology 
Balance of Payments (TBP) Database). 
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B Appendix: comparison with conventional TFP estimates. 

  In this Section we re-estimate the production functions at the sectoral level without 
taking the presence of different technologies into account. We present results with and without 
controlling for simultaneity. 

As a first comparison, we report in Figure 9 the production functions estimated through 
simple OLS (dashed line), together with our technology-specific production functions. Essentially, 
the former can be seen as one-technology mixture regression ( 1=M ). More precisely, being the 
mixture regression carried out through WLS, we might see the OLS-estimated coefficients as a 
weighted average of the M  technology-specific coefficients, with weights (i.e. m4 ) given by the 
ratio of the number of firms in the m -technology group to the total number of firms in the sector 

- i.e., 
m

M

m

m
m

M

m 4

4

¦
¦

1=
1=
ˆ=ˆ EE . The same reasoning applies to D . 

Consistently, we see in Figure 9 that the dashed line lies essentially in between, respect to 
the technology-specific production functions. The OLS-estimated coefficients are reported in 
columns 2 to 5 of Table 6. 

As highlighted in Section 2, among the issues highlighted by the literature on production 
function estimation, recent works have focused on the “simultaneity bias”. The source of the 
simultaneity bias is the fact that information on actual productivity, although unknown to the 
econometrician, is known to the firm when the decision concerning the amount of inputs is made. 
This makes the production function parameters obtained through least squares estimates biased 
by the potential correlation between the regressors and the error term. 

A successful stratagem suggested by the literature, in order to cope with this issue, consists 
of recovering the ia  component by the traces it leaves in the observed behaviour of the firm. 
Key studies examining this approach, which is commonly referred to as “semi-parametric”, include 
Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2006), and Wooldridge 
(2009). The basic idea of this methodology consists of identifying a (proxy) variable that reacts to 
the changes in the TFP observed by a firm and is thus a function of these changes. Insofar as this 
function is invertible, its inverse may be calculated and plugged into the production function 
estimating equation. Olley and Pakes (1996) suggest resorting to investment as a proxy, whereas 
Levinsohn and Petrin (2003) use intermediates. Doraszelski and Jaumandreu (2012) develop an 
extension of Olley and Pakes (1996) in which a firm’s TFP is stochastically affected by its 
investment in knowledge (considered in terms of R&D)15 

                                                      
15  Firms’ productivity is assumed to evolve according to a Markov process, which is “shifted” (either positively or negatively) 
by R&D expenditures. The R&D choice gives rise to an additional policy function (besides the policy function for investment in 
physical capital) that, under the crucial assumption that the error in  t   is uncorrelated with the innovation choice in  1�t , 
may be exploited in the production function estimation to purge the estimates from the part of the error correlated with the 
input choice. Loosely speaking, this approach allows for the estimation of firms’ TFP while controlling for simultaneity and the 
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The implementation of a such semi-parametric approach within our mixture model 
framework raises identification problems. In particular, the way in which the proxy variable (either 
investment or materials) reacts to changes in technology and TFP should be specified separately 
because firms’ input choices may be differently correlated with the technology parameters and the 
firms’ TFP. Our model of technology adoption developed in Section 2 is meant to deal with these 
two sources of simultaneity separately, without the need to rely on a specific proxy variable. In our 
setting, the correlation between capital and technology, as well as between either capital or labour 
and TFP flows into the residuals of the system of equations in (6), consisting of the K policy 
function and the static condition for L. Once estimated, these residuals give us the chance to 
control for simultaneity in the mixture analysis. 

To get a sense of how the different estimation strategies reflect on the firm TFP 
distribution, we compare in Figure 10 our WTFP with the OLS-estimated TFP and the TFP 
estimated through the Olley and Pakes (1996) procedure (the coefficients are reported in the four 
last columns of Table 6), used as a benchmark estimation within the semi-parametric approach. 
As known, the OLS approach tends to fatten the tails of the distribution, in particular by 
overstating the TFP of the most productive firms. Our methodology results in a distribution that 
lies in the middle between the OLS and the OP ones. This is because part of the correction 
imposed by the OP method is recognized to be related to firms’ technological choices, rather than 
to TFP, and thus captured by our BTFP term. 

The OLS estimates reported in Figures Figure 9 and 10 includes the correction for 
simultaneity suggested by our model. To illustrate the the effect of this correction, we reporte the 
estimated coefficients in Table 6 and, in Figure 11, the distribution of the difference between the 
OLS estimates with and without the correction. The distribution looks quite reasonable and 
suggests the absence of specific patterns, for example a stronger effect on more productive firm. 
The estimated coefficients obtained without correction are reported in table 6. 

 

                                                      
effect of innovation choices at the same time. 
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Table 2: Mixture regressions: estimated production function parameters

SECTOR ↵1 �1 ↵2 �2 ↵3 �3 ↵4 �4 ↵5 �5

Fd -1.925*** 0.275*** -0.774* 0.719 -0.853 0.677*** 0.131 0.127
(0.002) (0.000) (0.054) (n.a.) (0.258) (0.000) (0.528) (n.a.)

Bv -0.001 0.765*** -0.711*** 0.582***
(0.981) (0.000) (0.000) (0.000)

TX 1.715*** 0.139*** 1.329* 0.465*** 1.725 0.113
(0.005) (0.000) (0.093) (0.000) (0.418) (0.174)

WA -0.075 -0.004 -0.217 0.210*** -0.817*** 0.242*** -0.491 0.545*** -0.039 0.237***
(0.672) (0.609) (0.847) (0.000) (0.000) (0.000) (0.518) (0.000) (0.962) (0.000)

LP 0.866 -0.254 -0.507*** 0.722*** 1.139*** 0.251***
(0.074) (0.304) (0.000) (0.000) (0.000) (0.000)

Wo -0.374 0.431*** -0.485 0.506*** 0.068 0.095
(0.628) (0.000) (0.838) (0.000) (0.866) (n.a.)

Pa -0.473 0.617*** -0.505 0.178***
(0.611) (0.000) (0.136) (0.000)

Pr 0.935*** 0.072*** -0.538*** 0.418***
(0.000) (0.000) (0.000) (0.000)

Ch 0.997*** 0.217*** 0.238 0.710***
(0.000) (0.000) (0.469) (0.000)

Ph 1.529** 0.158 0.324 0.736***
(0.043) (0.211) (0.789) (0.000)

RP -0.614 0.581*** -0.133 0.106***
(0.233) (0.000) (0.583) (0.000)

NM -0.180 0.282*** -0.705*** 0.739*** -1.020*** 0.687*** 0.918*** 0.146***
(0.450) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

BM 1.034*** 0.141*** 0.879* 0.552***
(0.000) (0.000) (0.078) (0.000)

MP -1.459** 0.273*** 0.625 0.526*** 0.556* 0.112*** 0.591 0.309***
(0.012) (0.000) (0.225) (0.000) (0.100) (0.000) (0.147) (0.000)

EP -1.732*** 0.012 1.024 0.155***
(0.000) (0.579) (0.127) (0.000)

El -0.413 0.338*** -0.337 0.105***
(0.758) (0.000) (0.530) (0.000)

Ma 0.323 0.328*** 0.639*** 0.115***
(0.176) (0.000) (0.000) (0.000)

MV -0.059 0.327*** 1.013*** 0.107***
(0.626) (0.000) (0.000) (0.000)

Tr 0.737 0.543*** 0.933 0.152***
(0.605) (0.000) (0.116) (0.006)

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are in parenthesis.

Fd: Food products; Bv: Beverages; Tb: Tobacco products; TX: Textiles; WA: Wearing apparel; LP: Leather and related products; Wo:

Wood and of products of wood and cork; Pa: Paper and paper products; Pr: Printing and reproduction of recorded media; PC: Coke and refined

petroleum products; Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products and pharmaceutical preparations; RP: Rubber and

plastic products; NM: Other non-metallic mineral products; BA: Basic metals; MP: Fabricated metal products, except machinery and equipment;

EP: Computer, electronic and optical products; El: Electrical equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and

semi-trailers; Tr: Other transport equipment; Fu: Furniture.
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Table 3: Mixture regressions: total probability by technology group

SECTOR prob1 prob2 prob3 prob4 prob5 # firms
Fd 916 1813 2829 2043 0 7601
Bv 648 405 0 0 0 1053
TX 526 1214 514 0 0 2253
WA 702 487 566 1346 336 3438
LP 117 1091 594 0 0 1802
Wo 2031 778 626 0 0 3435
Pa 770 467 0 0 0 1237
Pr 696 1947 0 0 0 2643
Ch 990 1092 0 0 0 2082
Ph 241 263 0 0 0 504
RP 2029 1279 0 0 0 3308
NM 838 1100 934 830 0 3702
BM 625 730 0 0 0 1355
MP 1261 4438 3403 2631 0 11732
EP 1144 1228 0 0 0 2372
El 1232 1086 0 0 0 2318
Ma 2543 3058 0 0 0 5601
MV 1008 455 0 0 0 1463
Tr 352 267 0 0 0 619

Total 18668 23199 9466 6850 336 58518

For each technology m (with m = 1, . . . , 5), the reported values represent the

sum, over all firms in the sector, of the probability of using technology m.

Fd: Food products; Bv: Beverages; Tb: Tobacco products; TX: Textiles;

WA: Wearing apparel; LP: Leather and related products; Wo: Wood and of

products of wood and cork; Pa: Paper and paper products; Pr: Printing and

reproduction of recorded media; PC: Coke and refined petroleum products;

Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products

and pharmaceutical preparations; RP: Rubber and plastic products; NM:

Other non-metallic mineral products; BA: Basic metals; MP: Fabricated metal

products, except machinery and equipment; EP: Computer, electronic and

optical products; El: Electrical equipment; Ma: Machinery and equipment nec;

MV: Motor vehicles, trailers and semi-trailers; Tr: Other transport equipment;

Fu: Furniture.
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Table 4: Aggregate gaps (sectoral averages)

SECTOR WTFP gap BTFP gap
Fd 70.6 517.4
Bv 139.0 1154.3
TX 89.8 396.4
WA 118.4 159.5
LP 108.0 251.2
Wo 80.2 37.6
Pa 85.7 1286.8
Pr 66.0 0.0
Ch 103.0 1391.9
Ph 67.5 0.0
RP 91.0 988.3
NM 113.4 1496.7
BM 91.3 1346.0
MP 90.4 543.8
EP 43.3 0.0
El 97.2 284.4
Ma 85.3 242.7
MV 93.9 500.3
Tr 110.6 698.2
Total 89.0 544.4

Fd: Food products; Bv: Beverages; Tb: Tobacco products; TX:

Textiles; WA: Wearing apparel; LP: Leather and related prod-

ucts; Wo: Wood and of products of wood and cork; Pa: Paper

and paper products; Pr: Printing and reproduction of recorded

media; PC: Coke and refined petroleum products; Ch: Chemicals

and chemical products; Ph: Basic pharmaceutical products and

pharmaceutical preparations; RP: Rubber and plastic products;

NM: Other non-metallic mineral products; BA: Basic metals; MP:

Fabricated metal products, except machinery and equipment; EP:

Computer, electronic and optical products; El: Electrical equip-

ment; Ma: Machinery and equipment nec; MV: Motor vehicles,

trailers and semi-trailers; Tr: Other transport equipment; Fu:

Furniture.
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Figure 1: Selection criteria results for the sectoral number of clusters

Fd Bv TX WA

2 4 6 8 10

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

number of components

AIC

BIC

ICL

2 4 6 8 10

25
00

30
00

35
00

40
00

number of components

AIC
BIC
ICL

2 4 6 8 10

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

number of components

AIC
BIC
ICL

2 4 6 8 10

80
00

90
00

10
00
0

11
00
0

12
00
0

13
00
0

number of components

AIC
BIC
ICL

LP Wo Pa Pr

2 4 6 8 10

40
00

45
00

50
00

55
00

60
00

65
00

number of components

AIC
BIC
ICL

2 4 6 8 10

80
00

90
00

10
00
0

11
00
0

12
00
0

13
00
0

14
00
0

15
00
0

number of components

AIC
BIC
ICL

2 4 6 8 10

30
00

35
00

40
00

45
00

50
00

number of components

AIC
BIC
ICL

2 4 6 8 10

70
00

75
00

80
00

85
00

90
00

95
00

10
00
0

number of components

AIC
BIC
ICL

PC Ch Ph RP

2 4 6 8 10

35
0

40
0

45
0

50
0

55
0

60
0

65
0

number of components

AIC
BIC
ICL

2 4 6 8 10

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

number of components

AIC
BIC
ICL

2 4 6 8 10

14
00

16
00

18
00

20
00

number of components

AIC
BIC
ICL

2 4 6 8 10

80
00

90
00

10
00
0

11
00
0

12
00
0

13
00
0

number of components

AIC
BIC
ICL

NM BM MP EP

2 4 6 8 10

90
00

10
00
0

11
00
0

12
00
0

13
00
0

14
00
0

15
00
0

number of components

AIC
BIC
ICL

2 4 6 8 10

35
00

40
00

45
00

50
00

55
00

number of components

AIC
BIC
ICL

2 4 6 8 10

30
00
0

35
00
0

40
00
0

45
00
0

number of components

AIC
BIC
ICL

2 4 6 8 10

70
00

80
00

90
00

number of components

AIC
BIC
ICL

El Ma MV Tr

2 4 6 8 10

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

number of components

AIC
BIC
ICL

2 4 6 8 10

16
00
0

18
00
0

20
00
0

22
00
0

24
00
0

number of components

AIC
BIC
ICL

2 4 6 8 10

40
00

45
00

50
00

55
00

60
00

number of components

AIC
BIC
ICL

2 4 6 8 10

16
00

18
00

20
00

22
00

24
00

26
00

number of components

AIC
BIC
ICL

Fu

2 4 6 8 10

70
00

80
00

90
00

10
00
0

number of components

AIC
BIC
ICL

25



F
ig
u
re

2:
E
st
im

at
ed

p
ro
d
u
ct
io
n
fu
n
ct
io
n
s

-2024
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Fd

-20246
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Bv

1234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

TX

-10123
ln(Y/L)

0
2

4
6

ln
(K
/L
)

W
A

-101234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

LP

0123
ln(Y/L)

0
2

4
6

ln
(K
/L
)

W
o

01234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Pa

-.50.511.52
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Pr

01234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

C
h

01234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Ph

01234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

R
P

-101234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

N
M

1234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

BM

-2-10123
ln(Y/L)

0
2

4
6

ln
(K
/L
)

M
P

0.2.4.6.81
ln(Y/L)

0
2

4
6

ln
(K
/L
)

EP

0.511.52
ln(Y/L)

0
2

4
6

ln
(K
/L
)

El

0.511.52
ln(Y/L)

0
2

4
6

ln
(K
/L
)

M
a

0.511.52
ln(Y/L)

0
2

4
6

ln
(K
/L
)

M
V

01234
ln(Y/L)

0
2

4
6

ln
(K
/L
)

Tr

F
d
:

F
o
o
d

p
r
o
d
u
c
t
s
;
B
v
:

B
e
v
e
r
a
g
e
s
;
T
b
:

T
o
b
a
c
c
o

p
r
o
d
u
c
t
s
;
T
X
:
T
e
x
t
il
e
s
;
W

A
:
W

e
a
r
in

g
a
p
p
a
r
e
l;

L
P
:
L
e
a
t
h
e
r

a
n
d

r
e
la

t
e
d

p
r
o
d
u
c
t
s
;
W

o
:

W
o
o
d

a
n
d

o
f
p
r
o
d
u
c
t
s

o
f
w
o
o
d

a
n
d

c
o
r
k
;
P
a
:

P
a
p
e
r
a
n
d

p
a
p
e
r
p
r
o
d
u
c
t
s
;
P
r
:

P
r
in

t
in

g
a
n
d

r
e
p
r
o
d
u
c
t
io

n
o
f
r
e
c
o
r
d
e
d

m
e
d
ia

;
P
C
:
C
o
k
e

a
n
d

r
e
fi
n
e
d

p
e
t
r
o
le

u
m

p
r
o
d
u
c
t
s
;
C
h
:

C
h
e
m

ic
a
ls

a
n
d

c
h
e
m

ic
a
l
p
r
o
d
u
c
t
s
;
P
h
:

B
a
s
ic

p
h
a
r
m

a
c
e
u
t
ic

a
l
p
r
o
d
u
c
t
s

a
n
d

p
h
a
r
m

a
c
e
u
t
ic

a
l
p
r
e
p
a
r
a
t
io

n
s
;

R
P
:
R
u
b
b
e
r

a
n
d

p
la

s
t
ic

p
r
o
d
u
c
t
s
;
N
M

:
O

t
h
e
r

n
o
n
-m

e
t
a
ll
ic

m
in

e
r
a
l
p
r
o
d
u
c
t
s
;
B
A
:
B
a
s
ic

m
e
t
a
ls
;
M

P
:
F
a
b
r
ic

a
t
e
d

m
e
t
a
l
p
r
o
d
u
c
t
s
,
e
x
c
e
p
t

m
a
c
h
in

e
r
y

a
n
d

e
q
u
ip

m
e
n
t
;
E
P
:
C
o
m

p
u
t
e
r
,
e
le

c
t
r
o
n
ic

a
n
d

o
p
t
ic

a
l
p
r
o
d
u
c
t
s
;
E
l:

E
le

c
t
r
ic

a
l
e
q
u
ip

m
e
n
t
;
M

a
:

M
a
c
h
in

e
r
y

a
n
d

e
q
u
ip

m
e
n
t

n
e
c
;

M
V
:
M

o
t
o
r

v
e
h
ic

le
s
,
t
r
a
il
e
r
s

a
n
d

s
e
m

i-
t
r
a
il
e
r
s
;
T
r
:

O
t
h
e
r

t
r
a
n
s
p
o
r
t

e
q
u
ip

m
e
n
t
;
F
u
:

F
u
r
n
it
u
r
e
.

26



Figure 3: Estimated technology clusters: Chemicals (Ch) and Food (Fd) sectors

 

 

27



F
ig
u
re

4:
D
efi
n
it
io
n
of

T
F
P

w
it
h
on

e
te
ch
n
ol
og
y
(p
an

el
a)

an
d
tw

o
te
ch
n
ol
og
ie
s
(p
an

el
b
).

ln
#y
i#

!
!si
ng
le
!te

ch
no

lo
gy
! ln
#k

i#

."
fir
m
#

a i
#

pa
ne

l!a
!!

�
!

###
###
#y
i#

###
###
#y
i#
�
!

ln
#y
i#

m
1"

ln
#k

i#

."
fir
m

m
2#

m
2"

pa
ne

l"b
""lo
ca
liz
ed

"fr
on

2e
r"

te
ch
no

lo
gy
"

###
###
#y
i;m

#
�
"

###
###
#y
i#

y i;
m
###

�
"

H"

W
tT
FP
"

Bt
TF
P"

28



Figure 5: Sectoral distribution of BTFP gaps
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Figure 6: Sectoral distribution of WTFP gaps
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Figure 7: Sectoral distribution of the BTFP/WTFP ratio
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Figure 8: Scatterplot of the WTFP and BTFP gaps (sectoral averages)
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Figure 10: Comparison across TFP densities estimated with di↵erent methods
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Figure 11: Di↵erence between corrected and non-corrected OLS-estimated TFP
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