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Abstract

We rely on mixture models to estimate technology-specific production functions avoiding any type
of ex-ante assumption on the degree of technological sharing across firms and leaving the number
of available technologies unconstrained. Internationally comparable firm-level data are used, to
potentially capture all possible technologies available wortldwide. Differently from conventional
TFP estimates, where the terms “TFP", “productivity" and “technology" ate often used
interchangeably, our approach enables us to isolate the contribution to labour productivity
stemming from technology (i.c. between-technology TFP) from the contribution associated to
idiosyncratic productivity shocks not related to technology (i.e. within-technology TFP). While we
find the former to be much larger than the latter in most sectors, the relative role of these two
dimensions varies considerably across firms, being often reversed. We also find that the firm-level
gaps are non-lineatly correlated with the international flows of technology, as measured by the
OECD country-sector technology payments and receipts. In particular, we show higher incoming
(outcoming) flows of technology to be associated to higher (lower) average and dispersion of the
between-technology TFP gaps. This stresses the growing importance of the availability of
internationally comparable data in dealing with the technological dimension of firm-level
productivity.
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1 Introduction

Measured as the Solow residual of an aggregate production function, Total Factor
Productivity (henceforth TFP) is usually found to be as important as capital accumulation in
explaining the cross-country disparities in income and labour productivity (Kumar and Russell,
2002; Caselli, 2005; Hsieh and Klenow; 2009,2010; Battisti e a/., 2017). Since, as known, TFP is a
wide notion encompassing a number of hard to measure factors (i.e. “all the rest", respect to capital
accumulation), this means that empirical analysis is able to explain no more than 50% of the
productivity differentials (even trying to take into account the human capital differences). This
notwithstanding, and despite the potential impact in terms of policy implications, the literature
dealing with different theoretical conceptions of TFP is scant, both at the aggregate and the firm
level, and it is still true that “economists should devote more effort toward modeling and
quantifying TFP" (Eastetly and Levine, 2003).

In this paper, we aim at giving a sense of magnitude of how much of a firm’s labour
productivity can be attributed to its technological choices and, at the same time, providing with a
TEFP measure which is net of this “technological” component (taking into account the composite
nature of such TFP notion).

The way in which firm-level differences in TEFP reflect on aggregate productivity is
currently receiving increasing attention. Among others, Alfaro ez al. (2008), Banerjee and Duflo
(2005), Bartelsman e a/. (2009), Hsich and Klenow (2009,2010), Jones (2011) and Restuccia and
Rogerson (2008) study the relationship between aggregate TFP and differences in the within-
industry productivity dispersion actoss firms. A key word in this literature is “misallocation": lower
aggregate TEFP due to distortions in the allocation of inputs across units (Restuccia and Rogerson,
2013).

We deal with firm heterogeneity from a different point of view: instead of focusing on the
dispersion of a wide measure of TFP (i.e. misallocation), we focus on firm-level technology
adoption as a determinant of labour productivity differences among firms.

Indeed, among the many factors commonly included in the standard TFP figures, a
growing body of literature concentrates on “technology”, both in terms of creation of new
technologies and adoption/diffusion of already available technologies. From a theoretical point of
view, the relationship between technology adoption/diffusion and diffusion of development dates
back to Gerschenkron (1962), Nelson and Phelps (1966), Barro and Sala-i-Martin (1992) and
Howitt (2000). Within this branch of literature, Parente and Prescott (1994) show that differences
in barriers to technology adoption, which vary across countries and time, account for the great
disparities in income across countries. Acemoglu and Zilibotti (2001), Gancia and Zilibotti (2009),
Gancia e al. (2010) focus on the idea of “directed technical change". Other works stress the spatial
dimension of the process of technology adoption and diffusion. Desmet and Parente (2010) model
the relationship between market size and technological upgrading. Desmet and Rossi-Hansberg
(2014) suggest a model in which technology diffusion affects economic development because
technology diffuses spatially and firms in each location produce using the best technology they
have access to. Comin e al. (2012) propose a theory in which technology diffuses slower to



locations that are farther away from adoption leaders.? Our approach can also be of interest to the
debate on embodied versus disembodied technological progress. Differently from the latter
(Solow, 1960), in which capital equipments equally participate in technical change (see Hercowitz,
1998), our multiple technology framework allows capital equipments to differ in terms of returns
(see Zeira, 1998; Acemoglu, 2010; Battisti e# a/., 2017), as far as technology is embedded in the
capital stock.

Other papers specifically point out the importance of the firm-level dimension of
productivity growth (i.e. changes in the productivity distribution). Gabler and Poschke (2013) and
Da Rocha e7 al. (2017) introduce endogenous establishment-level productivity in the study of the
evolution of aggregate productivity. A similar approach is adopted by a number of papers in which
ageregate growth is fostered by the evolution of the firm-level TFP distribution, as induced by
trade integration (see Grossman and Helpman (2015) for an eatly review). This literature explicitly
focuses on the role of technological heterogeneity. Sampson (2016) stresses the role of the
technological choice of the entrant firms. Perla and Tonetti (2014) focus on the diffusion of
technology from the more to the less productive firms, which allows the TFP distribution to
“evolve” endogenously even without the introduction of new technologies. In Perla ¢z al. (2015),
firms choose whether to adopt a better technology or not and trade integration, by increasing the
incentives to adopt the better technologies, fosters aggregate growth. In Benhabib ez a/ (2017),
firms choose whether to keep producing with their existing technology, adopt a new technology
or innovate, but only innovation fosters growth in the long run. Luttmer (2007) focuses on
imitation, highlighting that the small size of entrants de facto indicates that imitation is difficult. In
Alvarez et al. (2014), the flow of new ideas is the engine of growth: firms get new technologies by
learning from the people they do business with, so that trade, by implying more meeting
opportunities, helps technology diffusion and aggregate growth. Bloom ez a/. (2015) highlight how
import competition from low cost countries forces firms to innovate more than otherwise.

In these frameworks, the focus is on “technology" but the terms “TFP", “productivity"
and “technology" are used as synonymous. The reason of this ambiguity is presently explained.

Anticipating the formal desctiption, let us write firm i ’s production function as

yi = ai,m + am +ﬂmki (1)

2 Another line of research studies more in detail the process of technology diffusion using data on specific
technologies. In particular, it is worth citing the Cross-country Historical Adoption of Technology
(CHAT) dataset, described in Comin and Hobijn (2009), which includes long-run information on the
extensive (whether a specific technology is present or not in a given country at a moment in time) and
intensive (the intensity with which producers or consumers employ a technology, at a given moment in
time, scaled by the size of the economy) margins of technology adoption at the country-level on a number
of technologies (e.g. tractors, fertilizer, portable cell phones). The CHAT dataset enables, among othets,
Comin and Hobijn (2010) to explain the very different speeds at which countries recovered after wars,
Cervellati e7 al. (2014) to study the effect of trade liberalization and democratization on technology
adoption, Comin and Mestieri (2013) to explore the general patterns characterizing the diffusion of
technologies, how they changed over time, and the key drivers of technology.



with ¥y, =In(Y,/L,) and k, =I[n(K,/L) . Index m is introduced to refer to a specific
“technology", with m =1,...,M and M denoting the number of available technologies. Here,
a, and B capture the technological dimension by identifying different technologies in each

sector-industry, with a number of firms using each technology, while a;, encapsulates the

idiosyncratic productivity differences among the firms using the same technology and can be
thought of as the firm’s ability to exploit the given technology m (say “pure” TFP). To highlight
the importance of disentangling between these two dimensions, and the role that technology can
play in the evolution of output, Bernard and Jones (1996a,1996b) use the expression “total
technological productivity”.

Since estimating (1) with standard econometrics is not possible without an ex-ante
assumption on the technology used by each firm, in the standard approach to production function

estimation, the information captured by @, , , @, and [, entirely flows into the TFP index

(computed as the Solow residual y, — J,), often referred to as “technology” or “productivity”

interchangeably. Arguably, the TFP estimated in this way conflates technological effects and
“pure" TFP effects. Common sense tends to always attribute most of this TFP variation to
technology, even when the analysis points to particular aspects, such as managerial ability in
Bhattacharya ez a/. (2013).3

To shed light on this aspect, we suggest a novel approach to production function
estimation that enables us to relate the labour productivity differences among firms to their
technological choices. This results into a quantification of the part of a firm’s labour productivity
that can be traced back to producing at a given capital-labour ratio using a given technology,
instead of a different one (among the technologies used by the other firms). Relying on mixture
models, we estimate technology-specific production functions avoiding any type of ex-ante
assumption on the degree of technological sharing across firms and leaving the number of available
technologies (i.e. technology groups) unconstrained. In doing this, we improve on the two-
technology setting experimented in Battisti ez 2/ (2015), where mixture models are implemented
to measure the effects of intangible assets on firms’ technological choices.

Recently, the importance of isolating the technological component of firms’ productivity
has been highlighted by Collard-Wexler and De Loecker (2015) with reference to the steel industry,
documenting important productivity increases at the industry level associated to the the adoption
of a particular technology (the “minimill” technology).* However, to the best of our knowledge,
no attempts have been made in order to generalize the identification of firm-level technologies.

3 In this case, the most intuitive interpretation points to different managerial ability in adopting the best
technologies.

4 According to Collard-Wexler and De Loecker (2015), a third of the industry’s productivity increase can
be traced back to the mere displacement of the older technology, with the rest associated to indirect
effects occurring through increased competition.



We use balance sheet data on about 73.000 worldwide distributed manufacturing firms
observed over 2013-2014, drawn from the Orbis database, provided by Bureau van Dijk, to

estimate as many production function parameters (da, , [, ) as the number of technologies

suggested by our algorithm at the sectoral-level. This enables us to express a firm’s productivity
(i.e. TFP) relative to the other firms in the same technology group (i.e. Within-technology TFP, or
“pure" TFP: hereafter WTFP) or relative to the labour productivity that the firm could have
reached, given its capital-labour ratio, had it chosen the frontier technology (i.e. Between-
technology TFP: hereafter BTFP). While the former can be thought of as the firm’s ability to
exploit a given technology (compared to the other firms using the same technology), the latter is a
quantification of the labour productivity gap associated with the technological choice.

The large international covarage offered by the Orbis database, ranging from OECD to
low-income and emerging countries, is key in order to allow our algorithm to potentially capture
all the technologies available worldwide. Our estimates point to a sectoral number of technologies
ranging from one to five, depending on the industry.

We then focus on the labour productivity gaps associated with either being relatively less
productive within a given technology group (WTTEP gap) or not choosing the frontier technology
(BTFP gap). This analysis reveals that the average WTFP contribution to labour productivity
differences is much smaller than the BTFP contribution in most industries: when aggregated at
the sectoral level, the WTFP of the top 5% firms (in terms of WTFP) is on average 90% higher
than the other firms, while having all firms at the technological frontier (i.e. eliminating the within-
sector BTFP dispersion) would increase the aggregate labour productivity of firms by 5.3 times.
This notwithstanding, the relative contribution to labour productivity of these two dimensions
varies substantially across firms, even within the same industry, with WTFP gap dominating the
BTFP gap in many cases.

To help with the interpretation of the documented WTFP and BTFP gaps, we also
consider their relationship with the country-sector international flows of knowledge and
technology, as measured by the OECD country-sector technology payments and receipts, in a very
simple cross-sectional regression analysis. Whilst not establishing causality, we show higher
incoming (outcoming) flows of technology to be associated to higher (lower) average and
dispersion of the BTFP gaps. These statistically significant correlations might support our
emphasis on the opportunity to isolate the technological component of the labour productivity
differentials by using international data in which all the available technologies in a given industry
are potentially observed.

The exposition proceeds as follows. In Section 2, we develop a theoretical framework
modeling technology adoption at the firm-level. In Section 3, we present the mixture model. In
Section 4, we describe the within and between decomposition. In Section 5, we quantify the labour
productivity gaps associated with the within and between dimensions. Section 6 concludes. In
appendix 8 we discuss the analogies and differences with standard TFP measures.



2 Modeling Technology Adoption
Our first step in the analysis consists of recovering, for each technology m , the
parameters @, and [, from the estimation of Equation (1).

As highlighted by the literature (see Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
Ackerberg ef al., 2006; Wooldridge, 2009; and Doraszelski and Jaumandreu, 2012), productivity
estimation at the firm level involves simultaneity issues. Our multiple technology framework
amplifies this order of problems, which make the OLS estimation output distorted.

A first source of simultaneity stems from the fact that the term a,,m is to some extent
known to the firm when it makes input levels decisions. This is usually expressed saying that
Cov(K,,,4;,)#0 and/or Cov(L,,,4,)#0 , with index ¢ used to denote time.

Additionally, in our multiple technology case (M > 1), it can be the case that Cov(K mi,z) #0

it
and/or COV(LU, ml.’t) #0 . This introduces an additional potential source of simultaneity,
associated with the technological choice.

Since we want to avoid any type of ex-ante assumption on the degree of technological
sharing across firms, and leave the number of available technologies unconstrained, we have to
address both issues. To this aim, we present an “empirical model” of technology adoption and
develop an estimation strategy, consistent with the model assumptions, that allows us to estimate
the production function controlling for both sources of simultaneity.

First of all, we introduce the quite standard (see e.g. Olley and Pakes, 1996) “one period
time-to-build” hypothesis, according to which the new technology is productive one petiod after
its acquisition. Second, we assume that idiosyncratic productivity follows the first order Markov

process a;, = Ela;, |a;, ]+ where &, ;, denotes innovation in either the adopted

m,i,t >
technology (in which case we have that m;, # m;, ;) or the ability to exploit it (in which case,
m, =m;, ).

Adopting the terminology X[f] to remember that variable X is chosen at time [7],
we assume the following decision timing. At the end of period [f], firm chooses
(K, alt],m,,[t]) . At the beginning of period [f+1], a;,,, and Z, (e a vector of
exogenous market-level state variables) are observed, so that the firm freely chooses the amount
of labour (i.e. L, [t]). Finally, firm chooses K, ,[t+1] and m, [t +1], at the end of period
[£+1], on the basis of @,,,, and Z,,.

In period ¢, firm [ maximizes the present value of its future profits conditional to the
information set €2:



. max £, 25‘]._[13,_/' |Qi,_/’ ) @)

i+ 1) =
with net profit

£y=m,K,,a

i,j2 4o Mi

Zi,j) - C(Ki,j+l ) Ki,j > mi,j+l)

Grossprofit

and

C(Ki,j+l K,

i,j?

mi,j+1) = Ci[,j (Ii,j) + Cil,)j (Di,j) + CiA I(mi,j+l # m ; )([z;j)

5J>m

Inv.cost Disinv.cost Techadjustmentcost

O is the discount rate and firm’s investment 1, ;= K

; Pl —Kl.,j +Di’j encompasses

disinvestment costs D, ; = ¢, K, . (with 0<¢g, ;S 1). While disinvestment costs ate borne

independently of changing technology or not, the technology adjustment cost in the third term on
the LHS includes the costs associated to switching to a different technology in period [j+1].
Capital accumulates according to

K :Ki,j_éy{i,j—i_]i,j_D‘ , 3)

i,j+1 i,j

and the Bellman equation can be written as

Vi,t (Qi,t) = max (Pi,t + éEt I_Vi,t+l | Qi,t J) (4)

(K p415M 141)

The solution of (4) consists of the values of (K, ,,;) and (m,, ) that satisfy the policy

it+1 it+1

function for K:

Ki,t+l (mi,t+l’Ki,t’ai,tﬂzi,t) (5)

with the firm choosing, at time [t], the technology m;, ,,, that maximizes

i
I_é‘Ez (Vi,t+l | Qi,t )_ C(Ki,t+1’Ki,t’mi,t+l)J| m=m,,,
among all possible m € {M } .

This framework provides with the chance to take the simultaneity associated to both the
choice of inputs and the choice of technology into account while estimating the production
function.



Operationally, this boils down to preliminary estimating the system of equations
consisting of the K policy function in (5) and the static condition for L

K, [t~11=p, + pInK,, [t =21+ Z,, + e +uf

ijt—1
©)

InL, [t]=p,+ pInK, [t-1]+Z, ++e, +u],

where Zc,t captures country-year effects.

. K L .. K :
Under the assumption that #,, and #;, are iid error terms, e;, embodies the

it
covariance terms COV(KZ.J[Z - 1],mi’t [t— 1]) and COV(KZ.J[Z —-1], ai,H) , while el.ljt embodies

Cov(L,,[t],a;,) . In other words, as far as Z_, effectively absorbs all the country-level

heterogeneity in the data, the regression residuals of the two equations in (6) can be thought of to
embody the firm-level variability in input choices correlated to both the idiosyncratic productivity
shock and the technological choice.

- : - K K 1 L L
Thus, the estimated residuals @, =e, +u,, and ¥, =e  +u,, can be seen as
correction factors to be included as additional regressors in a second step of regressions in order

to obtain simultaneity-free production function parameters.

3 Production Function(s) Estimation

Differently from the standard approach to firm-level TFP estimation (see the surveys
by Del Gatto ez al., 2011 and Van Beveren, 2012), our framework requires estimating as many sets
of production function coefficients as the number of available technologies in each sector.
However, we want to avoid any type of ex-ante assumption on the degree of technological sharing
across firms, countries, or regions. In other words, we do not want to cluster the firms ex-ante.
To this purpose, we rely on mixture models (Mc Lachlan and Peel, 2000). In this way, since the
number of available technologies is endogenously determined by the mixture estimation algorithm,
the distribution of technologies is indeed observed ex-post.

To allow our algorithm to potentially capture all possible technologies available
worldwide, it is important to use internationally comparable data with the largest possible coverage.
To this aim, we take advantage of information provided from the Orbis database (Bureau van
Dijk, 2015), on a large sample of around 73.000 worldwide distributed firms, over the 2013-2014
period and across 22 2-digit sectors.>

5 Arguably, a larger country coverage comes with a lower representativeness in terms of the cross-country
distribution of firms (as known, the national standards of balance sheet disclosure vaty across countties).
However, this issue is not crucial in our empirical strategy. More important is the chance to identify as
many technologies as possible, by observing as many worldwide distributed (and potentially



In particular, in the production function estimation, we use information on value added (
VA), capital inputs (K , i.e. tangible assets, including buildings, machinery and all other tangible
assets) and labour inputs L . Value added and capital are deflated using the OECD-STAN sector-
country specific deflators. Descriptive statistics are presented in Table 1, while a detailed variables
description is provided in the Appendix 7.

We follow the approach described in Section 2 to estimate our technology specific
production functions controlling for the simultaneity associated to the choice of inputs and the
choice of technology.

We first use three-stage least squares to estimate the system of equations in (6), then use
the estimated regression residuals of the two equations as additional regressors in a second step of
regressions based on mixture models, in order to obtain simultaneity-free production function
parameters.

In this second step of regressions, we want to estimate the technology specific «,, and

P, for each technology m avoiding any ex-ante assumption on the degree of technological
sharing across firms. To this aim, we adopt a mixture approach. The idea is that the probability

distribution of ); can be seen as a weighted average of the M unknown segment (i.e.,

technology) distributions, each with proper mean ( g, ) and variance ( O'jl ):
Y\ u,0)= Zj\:zlwm f. (Y| i,,0.) . The weights @, are given by the ex-ante probability
of belonging to group m .

The fact that these probabilities are unknown generates a problem of missing data that is
solved by applying the EM (expectation-maximization) algorithm of Dempster e a/. (1977) to the
estimation of the following production function through weighted least squares (WLS), as
suggested by De Sarbo and Cron (1988):

5, x 5

Y=o, + Bk + oD +y ¥ + FE + 6, %
where FE_ atre 4-digits industry fixed effects.

The estimation is carried out sector-by-sector (at the 2-digit level) for the year 2014¢ and

starts with random values of @, (see below) to compute the posterior probability p, , that firm

I belongs to group m , and thus the observation weights in (7) as:

technologically different) firms as possible in each sector.
¢ The estimation in (6) requires a minimum of two years, the reference year [t] and the previous year [t-1],

for the lagged term In K ;1L —2]. Here, the time index is dropped since the estimation is based on

cross-section regressions for year [t].



L2
é;’ln _ [pi’m W]th pi)m = p]/'(l c m) _ Mwmfm {yl | ﬂm s Gm} (8)

.2
m=1
This set of probabilities is then used to update the regression coefficients by changing the weights
e S )
Zzp[,m

with the following constraints:

w,, according to

w, 20 Vm=1,..M and ZmeI. (10)

The algorithm iteratively alternates the WLS production function estimation and the
computation of probabilities until a log-likelihood convergence criterion is satisfied (Grun and
Leisch, 2013).7

To leave the routine free to set the number of available technologies M , we try different
numbers of clusters and pick the optimal choice following a Bayesian Info Criterion based on the
following log-likelihood function:

M= argmax{— 2108 @, f, (7, | 14,:52)] - g"(m)} im=1,...M (1)

Here {(m,) is a penalty function that implements the trade-off between a higher

number of clusters and more parameters to be estimated.® Figure 1 shows the results of the
Bayesian Info Criterion for the 19 sectors. In all sectors except one (L.e., “Computer, electronic
and optical products”), results always point towards the presence of more than one technology.
Then, in order to avoid unuseful duplications we collapse together sectors for what the capital
returns technology coefficients are close and the number of observations is very small.?
Estimation results are displayed in Table 2, reporting the estimated @ and f for each

technology group and for each sector. The estimated production functions are visualized in Figure
2. It is noteworthy how the standard hypothesis of a single technology is a restrictive assumption

7 We use Flexmix R package (Grun and Leisch, 2008) with 50 random starting points.

8 In the case of the Bayesian Info Criterion, this is equal to the natural log of the number of observations
(i.e., firms) multiplied by the number of parameters. The latter grows with the number of segments:
regressions’ coefficients, variances and weights for each segment, minus one because the weights sum up
to one (one of them is a linear combination of the others).

% The results under the alternative scenario are unchanged and available under request.

10



never supported by data. The magnitude of the & and the f coefficients is even substantial

within many industries. This entails that the usually estimated sectoral parameters hide substantial
heterogeneity, as Appendix 8 discusses more in details.
In Table 3 we report the total probability of each technology group. This is computed as

prob, = Z,pl_ » and collapses to the number of firms in the sector when summed up across all
gs

technology groups in the sector (i.e., zmzl‘pi,m)' As the Table reveals, none of the groups

presents a negligible probability. This is due to the fact that, on average, the firm-level probability
is distributed across the technology groups with a certain degree of variability.10

4 Between-technology TFP and Within-technology TFP
The technology adopted by the firm, that is the technology that solves the problem in
(4), may or may not coincide with the technology that would provide the maximum productivity

level associated with the given level of k, —i.e., frontier technology.
. . . H

To formalize this, let us refer to the frontier technology as the technology m™ that

maximizes labour productivity at the capital-labour ratio actually chosen by the firm:
_ _ H

Yo u \k=k >y, |k=k Vm#m".

Since our estimated production function parameters are technology specific, and since we
do know how many technologies are available in each sector, we are able to identify, for each firm,

the predicted labour productivity associated to each technology (at the actual level of k). In
particular, we are able to identify the predicted labour productivity associated with the actual

technology ( )A/lm) and the frontier technology () as, respectively:

J;i,mza’\m—'_ﬁmki and j} HzaH+ﬁA Hki (12)

These two values can be used to compute the Solow residual, in the two cases, as
difference between the observed and the predicted productivity:

&i,m =V _),}i,m and &LmH =V _)’}i - (13)

The difference between the two terms in (12) and in (13) provides us with a measure of
how distant the predicted labour productivity of a firm (under the actual technology) is from the

10 We show an example of our firm clustering at a sectoral level with Figure 3, on chemicals and food
products. To plot the clustering, we assigned each firm to the technology cluster it belongs to with the
relatively higher (estimated) probability, i.e. “hard assignment”. Each number in the Figure, thus, shows
the position and the “hard assigned” cluster (the clusters are numbered from 1 to 4) of each firm, in the

Y- kl. space.

11



frontier labour productivity. This provides us with a quantification of the labour productivity gap
with respect to the productivity that the firm could have reached, with the given k , had it chosen

technology m"™ . The weighted average of this term, across all the technologies available in the
sector, is our measure of Besween-technology Total Factor Productivity (BTEP):

mH mH
BTFP=> 1, -G =D )= Pl (@, —a,,) (14)
m=1 ’ m=1 '

where the weights pr; , correspond to the estimated probability of firm i belonging to the

technology group m defined in Equation (8).
Similarly, we can define the firm’s Within-technology Total Factor Productivity (WTEP) as

mH
WTFP => pr, . -d,,. (15)
m=1

This term is the empirical analogous of the idiosyncratic productivity term @, , in

Equation (1) and can be thought of as the firm’s ability to exploit the given technology, compared
to the other firms using the same technology.

The BTFP component is zero for firm i if the firm uses m" with probability one (i.e.,

pr , =1) or when one single technology is available (ie., m=1= m" ). In contrast, when a

number M >1 of technologies is available, the firm may or may not adopt the frontier
technology. Figure 4 helps the intuition. Consider, for example (panel b), that firm 7 adopts
technology m2 with probability one. On the one hand, we can see that this technology is sub-
optimal in correspondence of k;, as the predicted productivity associated to technology ml is

higher. This productivity gap can be completely attributed to the technological choice and is
captured by our measure of BTFP. On the other hand, the distance between the actual and the
predicted output under technology m2 (WTFP) provides us with a measure of the firm’s ability
to exploit the technology in use, expressed in relative terms with respect to the other firms in the
same technology group.

Note how the above TFP measures can be seen as the static counterpart of the technical
change components in a setting a la Kumar and Russell (2002) (see also Los and Timmer, 2005),
the difference being the focus on distance from the local technological frontier, rather than on
technological change. A related experiment is the one reported by Bos ez a/. (2010), based on a
pooled sample of firms, in which technical change and efficiency are expressed in terms of shift in
a time trend and output per worker relative to the maximum level of output per worker,
respectively. Compared to this approach, a feature of our analysis is the possibility to carry out
countetfactual exetcises in terms of the gains/losses associated to changing the adopted
technology, as well as to improving the ability to exploit it (i.e. efficiency). In this, our approach
resembles the notion of “localized technological progress” (Atkinson and Stiglitz, 1969).
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To gain the intuition on the relationship between our approach and conventional TFP
estimation carried out without allowing for technological heterogeneity, compare the term

a,=y,—y, inpanel a of Figure 4 with the WTFP and BTFP measures reported in panel b .

While &i would coincide with our WTFP measure in the case of one single technology available

in the sector, conventional estimates conflates our within and between productivity measures in
the general case of M >1.

To see this formally, consider the estimated version of (1) under M =1 and M #1,to
obtain the following decomposition of the standard TFP:

v, =a,+a+ fk
G, =a,,+@,-&)+(B,- Pk (0

A

yi = &i,m + 6%m +ﬂmki
This decomposition highlights that the standard estimated TFP (i.e., @,) is a composition

of three terms: &i > that is our WTFP measure; dm — &, which can be seen as a bias in the

Hicks-netural component of technology; and [, — f , which can be seen as a bias in the slope of

the production function.
Overall, neglecting the presence of different (within-sector) technologies results in
overstating the TFP of the firms that adopt relatively more productive technologies (due to

underestimation of their input coefficient - i.e. f, > f -and/or overestimation of the intercept

-ie. a, > a). The coefficients estimated on the whole sector, that is without clustering (M =1

), can be seen as a weighted (across technology clusters) average of the mixture regressions. These
aspects are discussed in Appendix 8.

Finally, two considerations are in order. First, being our production functions estimated
without controlling for workers’ skills, one may wonder to what extent our estimated BTFP term
effectively captures productivity effects associated to technology, intended in a strict sense (i.e.
effects that are distinct from human capital). Although our methodology would allow us to control
for human capital, our data do not contain information in that sense. Thus, throughout the paper
we widely attribute BTFP difference across firms to differences in technology in a strict sense (e.g.
different machineries, softwares etc.), as well as to the differences in human capital attached to
adopting a given technology. This notwithstanding, to roughly control for the role played by
human capital differences, we constructed a country-sector human capital endowment variable by
interacting the Cohen and Soto (2007) measure of education of each country in 1970 and 2005
with the industry schooling intensity of the US in 1980, drawn from IPUMS (in 2015). The
regressions of our WTFP and BTFP terms on this country-sector specific human capital variable
(plus country and sector controls) yields (results available upon request) an insignificant effect on
the latter and a negative and significative effect on the former. Under the assumption that sectoral
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schooling intensity is the same in all countries, and keeping in mind the limits involved in such a
measure of human capital, this might suggest that the largest part of the technological differences
across firms detected in the analysis does not stem from the omission of human capital.

Second, as difference between predicted values, the BTFP term should not be affected by
firms’ markups. Eventually, only (average) systematic differences across prices applied by the firms
in different technology clusters (i.e. using different technologies) flow into the BTFP. Conversely,
cross-firm differences in markups entirely reflect onto WTFP differences, together with
differences in management practices.

5 Productivity gaps

5.1 Quantification of WTFP and BTFP gaps

We now focus on the labour productivity gaps associated with either being relatively less
productive within a given technology group (that is, displaying a relatively low ability in exploiting
the given technology, as measured by the idiosyncratic component @, ) ot not choosing the

frontier technology. This is equivalent to quantifying the productivity gain each firm would enjoy
by filling the gap with the highest productivity firms in the same technology group or by switching
to the best available technology in the sector.

To quantify the former, we measure the difference between a firm’s observed WTFP and
that of the best performing firms in the group (identified as the average WTFP of the best 5%
of the WTFP distribution).!" Formally, we consider WTFPgap, = WTFP, ., — WTFP, . This

represents a firm-level measure of the expected productivity gain which would be obtained by
climinating the WTFP dispersion within a technology cluster.

To quantify the BTFP gaps, we can simply consider BTFPgap, = —BTFP,. This gap is
a measure of the productivity gain that would be obtained by eliminating the technology dispersion
within each sector and having all firms at the local frontier technology.

The sectoral distribution of the estimated BTFP and WTFP gaps is reported in Figures 5
and 06, respectively. The two figures highlight that neither dimensions are correlated with the
within-sector number of technologies suggested by the analysis (see Table 2 and Figure 2). In
Figure 7, we look at the firm-level distribution of the relative weight of WTFP and BTFP gaps by
plotting the firm-level ratio BIFP/WTFP, which, again, does not seem to be correlated with the
suggested number of within-sector technologies. Figure 7, in particular, unveils that, while BTFP
gaps are generally higher than WTTFP gaps, the distribution shows the presence of substantial

11 Notice that the estimated WTFP tends to zero when averaged at the sectoral level.
12 This makes sense as far as we are willing to accept that a firm, switched from a given technology m to

H . H . S
m ,isable touse M with the same ability it uses the actual technology 1 .
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heterogeneity, with the exception of the wood products industry, where the within-sector
BTFP/WTFP profile of firms is rather homogeneous.

We can then obtain aggregate figures of the gaps by averaging WTFPgap, and

BTFPgap, by sector. These ate reported in Table 4 and visualized in Figure 8, where the WTFP

gaps are plotted against the BTFP gaps. The average gaps in Table 4 range from less than 40% for
electronic products to around 140% for beverages. The overall contribution of the WTFP is much
smaller. In fact, when aggregated at the sectoral level, the WTFP of the top 5% firms (in terms of
WTEP) is on average 90% higher than the other firms, while having all firms at the technological
frontier (i.e. eliminating the BTFP dispersion) would increase the aggregate labour productivity of
firms by 5.3 times roughly, with smaller potential gains in the electronic products and
pharmaceuticals, where only one significant technology emerges from our mixture analysis, and
larger potential gains in the non-metallic products, basic metals and chemicals.

5.2 Markers of WIFP and BTFP gaps and relationship with international exchanges of
technology

To help with the interpretation of the documented WTFP and BTFP gaps, we consider
their relationship with the country-sector international flows of knowledge and technology in a
very simple cross-sectional regression analysis. Whilst not establishing causality, a statistically
significant correlation between these two dimensions might support our emphasis on the
opportunity to isolate the technological component of the labour productivity differentials by
adopting an international perspective allowing to potentially observe all the available technologies
in a given industry.

In particular, we study how our firm-level measures of the productivity loss associated
with WTFP and BTFP correlate with country-sector patterns in the global markets of knowledge
and technology, and how such patterns are associated with the dispersion of the labour
productivity (as reflected in the WTFP and BTFP gaps).

We use OECD Stat (2015) data from the technology balance of payments, measuring
international technology receipts - i.e. outcoming technology flows (variable Tech Receipts) - and
payments - ie. incoming technology flows (variable Tech Payments). Data covers licence fees,
patents, purchases and royalties paid, know-how, research and technical assistance.!3

13 Technology receipts depend on firms’ R&D effort and correspond to foreign sales of the marketable
results of that effort. Technology payments correspond to the acquisitions technology inputs that are
immediately useable by the firms. Thus, technology receipts and payments may reflect different
dimensions, including the ability of firms in a country-sector to sell their disembodied technology abroad
and the extent to which they make use of foreign technologies, the degree of technological autonomy (i.e.
the ability to assimilate foreign technologies) and, more in general, the choice between domestic
production of technology or foreign absorption, which is a crucial dimension of globalization and growth
(Perla ¢t al., 2015).
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In this exercise, as baseline controls, we also consider a vector of firm-level characteristics
(intangible assets intensity, firm age, liquidity, and whether the firm is listed in a stock market and
is part of a multinational group; provided by Bureau van Dijk, 2015).14

Results are collected in Table 5.

We find that both WTTFP and BTFP gaps, on average, tend to be negatively correlated
with technology receipts. That is, country-sectors with relatively higher outcoming flows of
technology are characterized by higher rates of firms better positioned in the WTFP distribution
and using the relatively more productive technologies. BTFP gaps are also higher for firms in
country-sector environments with higher technology payments, that is higher incoming technology
flows.

These correlations are likely to be associated with different dispersion patterns. The most
intuitive way to investigate this aspect would be that to study the correlations in terms of the first
and the second moment at a country-sector level. However, this would be highly problematic given
the country bias in the Orbis database. We thus follow an alternative strategy. We sub-sample our
firms according to having WTFP and BTFP gaps above or below the median value in the WTFP
gap and BTFP gap distributions and perform separate regressions on the two sub-samples (see
columns 2-3 and 5-6 in Table 5). Under this approach, a significative relationship with dispersion
emerges if the estimated coefficients in two sub-samples are opposite in sign and significative: a
positive (negative) coefficient in the above (below) the median regression is revealing of a positive
(negative) correlation with the WTFP and BTFP gap dispersion.

Indeed, this is what we find for the BTFP gap dispersion, which is higher in country-
sectors with a higher degree of technology inflows and lower in country-sectors with a higher
degree of technology outflows. Mindful that the BTFP gaps are not relative to a country
benchmark but the identified frontier technology is the same for all the sample firms in the same
sector, and assuming that firms tend to trade relatively better technologies, this might suggest that
international exchanges of technology favour the technologically advanced firms in the importing
country-sectors but not in the exporting country-sectors, where firms tend to be concentrated
around the median. This can somehow reflect a “competition effect” of globalization, in the form
highlighted by, e.g., Baldwin and Robert-Nicoud (2008).

Moreover, only firms with above-median WTFP gaps are negatively correlated with
aggregate technology receipts, while firms with below-median WTFP gaps are positively correlated
with aggregate technology payments. Again, this can be interpreted in terms of dispersion: country-
sectors with high volumes of both technology outflows and inflows are associated with lower
dispersion.

14 Details on all the variables’ construction are provided in Appendix 7.
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6 Conclusions

A long standing literature tends to attribute large differences in output per worker
among firms to differences in total factor productivity, i.e. the firm’s ability to exploit production
inputs. At a country level, it is shown that the contribution of TFP to explain differences in total
output per worker is around 50% or even more (see Kumar and Russell, 2002; Caselli, 2005; Hsich
and Klenow, 209,2010; Battisti ef a/, 2017). In this literature, a firm’s difference in output per
worker with respect to its counterparts in a sector is given by an idiosyncratic factor, likely
attributable to managerial ability, that remains unexplained after estimating a sector-specific
production function through which the available technology is framed. This approach, extensively
used to measure both firm-level and aggregate productivity differences, with notable influences on
policy studies and growth dynamics modeling, neglects a real-wotld source of heterogeneity: the
presence of multiple technologies, possibly chosen by different groups of firms in a same sector.

Only few empirical studies have directed their attention towards how to take into account
the technological dimension in firm-level production function estimation.

In this paper, we tackled this issue stressing the importance of using internationally
comparable data in order to potentially capture all possible technologies available worldwide. We
have relaxed the standard, often implicit, assumption of all firms sharing the same technology and
proposed a novel approach based on mixture regression, which allows to unbundle the technology
and the TFP component of a firm’s productivity. In particular, we have estimated technology-
specific production functions and decomposed the generic notion of TFP into a technology-
specific component and a firm-specific term.

Our approach also allows to identify the most productive technologies in each sector and
to quantify the productivity gaps associated with either not choosing the frontier technology or
being relatively less productive within a given technology group.

From our empirical exercise, it emerges that the technology component (BTFP) of the
firm-level productivity gaps within sectors is significantly larger than the “pure” TFP component
(WTFP). Specifically, we found that the WTFP of the top 5% firms is on average 90% higher than
the other firms in the same technology group, while having all firms at the technological frontier
would increase the aggregate productivity of firms by 5.3 times roughly. Moreover, the dispersion
of the productivity gaps associated with both components is shown to correlate with the
international patterns of knowledge and technology trade, consistently with a dynamics of
technology exchanges favouring the technologically advanced firms in the importing country-
sectors relative to their exporting counterparts.

In light of these results, our analysis suggests giving more emphasis to the technological
component of TFP in defining firm-strategies and public policies aimed at reducing the labour
productivity gaps across firms and countties.
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Appendix

A Appendix: Variables description

Added 1Value. 1.og of added value. Added value is defined as profit for period +
depreciation + taxation + interests paid + cost of employees. Firm-level variable, deflated using
the OECD-Stan sector-country specific deflators (source: Orbis (2015)).

Labour Inpnt. Log of total number of employees included in the company’s payroll. Firm-
level variable, deflated using the OECD-Stan sector-country specific deflators (source: Orbis
(2015)).

Capital Input. Log of tangible assets. Tangible assets include buildings, machinery and all
other tangible assets. Firm-level variable, deflated using the OECD-Stan sector-country specific
deflators (source: Orbis (2015)).

Firm Intangibles. 1.og of intangible to tangible assets ratio. Intangible assets include
formation expenses, research expenses, goodwill, development expenses. Tangible assets include
buildings, machinery and all tangible assets. Firm-level variable (source: Orbis (2015)).

Firm Age. Age of the firm (years). Firm-level variable (source: Orbis (2015)).

New Entrant. Dummy variable (1 = firm age is below or equal to five years, 0 = otherwise).
Firm-level vatiable (soutrce: Orbis (2015)).

Listed Firm. Dummy variable (1 = the firm is listed in the stock market, 0 = otherwise).
Firm-level variable (source: Orbis (2015)).

Multinational. Dummy variable (1 = the firm is part (as a controller or controlled
enterprise) of multinational group. Firm-level variable (source: Orbis (2015)).

Liguidity Ratio. Cash and cash equivalents as a percentage of total asset. Firm-level variable
(source: Orbis (2015)).

Tech Payments. International technology payments for licence fees, patents, purchases and
royalties paid, know-how, research and technical assistance, weighted by sectoral value added,
drawn from the WDI database. Country-sector-level variable (source: OECD Stat, Technology
Balance of Payments (TBP) Databasc).
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Tech Receipts. International technology receipts for licence fees, patents, purchases and
royalties paid, know-how, research and technical assistance, weighted by sectoral value added,
drawn from the WDI database. Country-sector-level variable (source: OECD Stat, Technology
Balance of Payments (TBP) Database).
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B Appendix: comparison with conventional TFP estimates.

In this Section we re-estimate the production functions at the sectoral level without
taking the presence of different technologies into account. We present results with and without
controlling for simultaneity.

As a first comparison, we report in Figure 9 the production functions estimated through
simple OLS (dashed line), together with our technology-specific production functions. Essentially,
the former can be seen as one-technology mixture regression (M = 1). More precisely, being the
mixture regression carried out through WLS, we might see the OLS-estimated coefficients as a

weighted average of the M technology-specific coefficients, with weights (i.e. ®, ) given by the

ratio of the number of firms in the 1 -technology group to the total number of firms in the sector

m

-ie., B= Z:I:lﬂm 51)— . The same reasoning applies to ¢ .
Zm=l®m

Consistently, we see in Figure 9 that the dashed line lies essentially in between, respect to
the technology-specific production functions. The OLS-estimated coefficients are reported in
columns 2 to 5 of Table 6.

As highlighted in Section 2, among the issues highlighted by the literature on production
function estimation, recent works have focused on the “simultaneity bias”. The soutce of the
simultaneity bias is the fact that information on actual productivity, although unknown to the
econometrician, is known to the firm when the decision concerning the amount of inputs is made.
This makes the production function parameters obtained through least squares estimates biased
by the potential correlation between the regressors and the error term.

A successful stratagem suggested by the literature, in order to cope with this issue, consists

of recovering the @; component by the traces it leaves in the observed behaviour of the firm.

Key studies examining this approach, which is commonly referred to as “semi-parametric”, include
Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg e a/. (2000), and Wooldridge
(2009). The basic idea of this methodology consists of identifying a (proxy) variable that reacts to
the changes in the TFP observed by a firm and is thus a function of these changes. Insofar as this
function is invertible, its inverse may be calculated and plugged into the production function
estimating equation. Olley and Pakes (1996) suggest resorting to investment as a proxy, whereas
Levinsohn and Petrin (2003) use intermediates. Doraszelski and Jaumandreu (2012) develop an
extension of Olley and Pakes (1996) in which a firm’s TFP is stochastically affected by its
investment in knowledge (considered in terms of R&D)1>

15 Firms’ productivity is assumed to evolve according to a Markov process, which is “shifted” (either positively or negatively)
by R&D expenditures. The R&D choice gives rise to an additional policy function (besides the policy function for investment in
physical capital) that, under the crucial assumption that the errorin f is uncorrelated with the innovation choice in f — 1 ,

may be exploited in the production function estimation to purge the estimates from the part of the error correlated with the
input choice. Loosely speaking, this approach allows for the estimation of firms’ TFP while controlling for simultaneity and the
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The implementation of a such semi-parametric approach within our mixture model
framework raises identification problems. In particular, the way in which the proxy variable (either
investment or materials) reacts to changes in technology and TFP should be specified separately
because firms’ input choices may be differently correlated with the technology parameters and the
firms’ TFP. Our model of technology adoption developed in Section 2 is meant to deal with these
two sources of simultaneity separately, without the need to rely on a specific proxy variable. In our
setting, the correlation between capital and technology, as well as between either capital or labour
and TFP flows into the residuals of the system of equations in (6), consisting of the K policy
function and the static condition for L. Once estimated, these residuals give us the chance to
control for simultaneity in the mixture analysis.

To get a sense of how the different estimation strategies reflect on the firm TFP
distribution, we compare in Figure 10 our WTFP with the OLS-estimated TFP and the TFP
estimated through the Olley and Pakes (1996) procedure (the coefficients are reported in the four
last columns of Table 6), used as a benchmark estimation within the semi-parametric approach.
As known, the OLS approach tends to fatten the tails of the distribution, in particular by
overstating the TFP of the most productive firms. Our methodology results in a distribution that
lies in the middle between the OLS and the OP ones. This is because part of the correction
imposed by the OP method is recognized to be related to firms’ technological choices, rather than
to TFP, and thus captured by our BTFP term.

The OLS estimates reported in Figures Figure 9 and 10 includes the correction for
simultaneity suggested by our model. To illustrate the the effect of this correction, we reporte the
estimated coefficients in Table 6 and, in Figure 11, the distribution of the difference between the
OLS estimates with and without the correction. The distribution looks quite reasonable and
suggests the absence of specific patterns, for example a stronger effect on more productive firm.
The estimated coefficients obtained without correction are reported in table 6.

effect of innovation choices at the same time.
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Table 2: Mixture regressions: estimated production

function parameters

SECTOR ay B1 [P B2 as B3 [ Ba as Bs
Fd -1.925%%* 0.275%** -0.774%* 0.719 -0.853 0.67T*** 0.131 0.127
(0.002) (0.000) | (0.054) (n.a.) (0.258)  (0.000) | (0.528) (n.a.)
Bv -0.001 0.765%** -0.711%** 0.582%**
(0.981) (0.000) | (0.000) (0.000)
TX 1.715%%* 0.139%** 1.329* 0.465%** 1.725 0.113
(0.005) (0.000) (0.093) (0.000) (0.418) (0.174)
WA -0.075 -0.004 -0.217 0.210%** -0.817*** 0.242%** -0.491 0.545%** -0.039 0.237%%*
(0.672) (0.609) | (0.847) (0.000) (0.000)  (0.000) | (0.518)  (0.000) | (0.962)  (0.000)
LP 0.866 -0.254 -0.507*** 0.722%** 1.139%** 0.251%%*
(0.074) (0.304) (0.000) (0.000) (0.000) (0.000)
‘Wo -0.374 0.431%%* -0.485 0.506%** 0.068 0.095
(0.628) (0.000) (0.838) (0.000) (0.866) (n.a.)
Pa -0.473 0.617*** -0.505 0.178%**
(0.611) (0.000) | (0.136) (0.000)
Pr 0.935%** 0.072%** -0.538%** 0.418%**
(0.000) (0.000) (0.000) (0.000)
Ch 0.997*** 0.217%%* 0.238 0.710%**
(0.000) (0.000) (0.469) (0.000)
Ph 1.529%* 0.158 0.324 0.736%**
(0.043) (0.211) | (0.789) (0.000)
RP -0.614 0.581%** -0.133 0.106%**
(0.233) (0.000) (0.583) (0.000)
NM -0.180 0.282%** -0.705%** 0.739%** -1.020%** 0.687*** 0.918%** 0.146%**
(0.450) (0.000) | (0.000) (0.000) (0.000)  (0.000) | (0.000)  (0.000)
BM 1.034%** 0.141%** 0.879* 0.552%**
(0.000) (0.000) (0.078) (0.000)
MP -1.459%* 0.273%** 0.625 0.526%** 0.556* 0.112%%* 0.591 0.309%**
(0.012) (0.000) (0.225) (0.000) (0.100) (0.000) | (0.147)  (0.000)
EP -1.732%%* 0.012 1.024 0.155%**
(0.000) (0.579) | (0.127) (0.000)
El -0.413 0.338%** -0.337 0.105%***
(0.758) (0.000) (0.530) (0.000)
Ma 0.323 0.328%** 0.639%** 0.115%**
(0.176) (0.000) (0.000) (0.000)
MV -0.059 0.327%** 1.013%%* 0.107%**
(0.626) (0.000) | (0.000) (0.000)
Tr 0.737 0.543%** 0.933 0.152%**
(0.605) (0.000) (0.116) (0.006)

* p < 0.10, ¥* p < 0.05, *** p < 0.01. Standard errors are in parenthesis.

Fd: Food products; Bv: Beverages; Th: Tobacco products; TX: Textiles; LP: Leather and related products; Wo:

Wood and of products of wood and cork; Pa: Paper and paper products; Pr: Printing and reproduction of recorded media; PC: Coke and refined

WA: Wearing apparel;

petroleum products; Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products and pharmaceutical preparations; RP: Rubber and
plastic products; NM: Other non-metallic mineral products; BA: Basic metals; MP: Fabricated metal products, except machinery and equipment;
EP: Computer, electronic and optical products; El: Electrical equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and

semi-trailers; Tr: Other transport equipment; Fu: Furniture.
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Table 3: Mixture regressions: total probability by technology group

SECTOR  proby  proba  probs probs probs # firms

Fd 916 1813 2829 2043 0 7601
Bv 648 405 0 0 0 1053
X 526 1214 514 0 0 2253
WA 702 487 566 1346 336 3438
LP 117 1091 594 0 0 1802
Wo 2031 778 626 0 0 3435
Pa 770 467 0 0 0 1237
Pr 696 1947 0 0 0 2643
Ch 990 1092 0 0 0 2082
Ph 241 263 0 0 0 504
RP 2029 1279 0 0 0 3308
NM 838 1100 934 830 0 3702
BM 625 730 0 0 0 1355
MP 1261 4438 3403 2631 0 11732
EP 1144 1228 0 0 0 2372
El 1232 1086 0 0 0 2318
Ma 2543 3058 0 0 0 5601
MV 1008 455 0 0 0 1463
Tr 352 267 0 0 0 619

Total 18668 23199 9466 6850 336 58518

For each technology m (with m = 1,..., 5), the reported values represent the

sum, over all firms in the sector, of the probability of using technology m.

Fd: Food products; Bv: Beverages; Tb: Tobacco products; TX: Textiles;
WA: Wearing apparel; LP: Leather and related products; Wo: Wood and of
products of wood and cork; Pa: Paper and paper products; Pr: Printing and
reproduction of recorded media; PC: Coke and refined petroleum products;
Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products
and pharmaceutical preparations; RP: Rubber and plastic products; NM:
Other non-metallic mineral products; BA: Basic metals; MP: Fabricated metal
products, except machinery and equipment; EP: Computer, electronic and
optical products; El: Electrical equipment; Ma: Machinery and equipment nec;
MYV: Motor vehicles, trailers and semi-trailers; Tr: Other transport equipment;

Fu: Furniture.
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Table 4: Aggregate gaps (sectoral averages)

SECTOR WTFP gap BTFP gap

Fd 70.6 517.4
Bv 139.0 1154.3
TX 89.8 396.4
WA 118.4 159.5
LP 108.0 251.2
Wo 80.2 37.6

Pa 85.7 1286.8
Pr 66.0 0.0

Ch 103.0 1391.9
Ph 67.5 0.0

RP 91.0 988.3
NM 113.4 1496.7
BM 91.3 1346.0
MP 90.4 543.8
EP 43.3 0.0

El 97.2 284.4
Ma 85.3 242.7
MV 93.9 500.3
Tr 110.6 698.2
Total 89.0 544.4

Fd: Food products; Bv: Beverages; Tbh: Tobacco products; TX:
Textiles; WA: Wearing apparel; LP: Leather and related prod-
ucts; Wo: Wood and of products of wood and cork; Pa: Paper
and paper products; Pr: Printing and reproduction of recorded
media; PC: Coke and refined petroleum products; Ch: Chemicals
and chemical products; Ph: Basic pharmaceutical products and
pharmaceutical preparations; RP: Rubber and plastic products;
NM: Other non-metallic mineral products; BA: Basic metals; MP:
Fabricated metal products, except machinery and equipment; EP:
Computer, electronic and optical products; El: Electrical equip-
ment; Ma: Machinery and equipment nec; MV: Motor vehicles,
trailers and semi-trailers; Tr: Other transport equipment; Fu:

Furniture.
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Figure 1: Selection criteria results for the sectoral number of clusters
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Figure 3: Estimated technology clusters: Chemicals (Ch) and Food (Fd) sectors
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Figure 5: Sectoral distribution of BTFP gaps
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Fd: Food products; Bv: Beverages; Tbh: Tobacco products; TX: Textiles; WA: Wearing apparel; LP: Leather and related prod-

ucts; Wo: Wood and of products of wood and cork; Pa:
media; PC: Coke and refined petroleum products;

Paper and paper products; Pr:
Ch: Chemicals and chemical products;

Printing and reproduction of recorded

Ph: Basic pharmaceutical products

and pharmaceutical preparations; RP: Rubber and plastic products; NM: Other non-metallic mineral products; BA: Basic metals;

MP: Fabricated metal products, except machinery and equipment; EP: Computer, electronic and optical products; El: Electrical

equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and semi-trailers; Tr:

Fu: Furniture.
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Density

Figure 6: Sectoral distribution of WTFP gaps
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Fd: Food products; Bv: Beverages; Th: Tobacco products; TX: Textiles; WA: Wearing apparel; LP: Leather and related prod-
ucts; Wo: Wood and of products of wood and cork; Pa: Paper and paper products; Pr: Printing and reproduction of recorded
media; PC: Coke and refined petroleum products; Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products
and pharmaceutical preparations; RP: Rubber and plastic products; NM: Other non-metallic mineral products; BA: Basic metals;
MP: Fabricated metal products, except machinery and equipment; EP: Computer, electronic and optical products; El: Electrical
equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and semi-trailers; Tr: Other transport equipment;

Fu: Furniture.
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Density

Figure 7: Sectoral distribution of the BTFP/WTFP ratio
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Fd: Food products; Bv: Beverages; Th: Tobacco products; TX: Textiles; WA: Wearing apparel; LP: Leather and related prod-
ucts; Wo: Wood and of products of wood and cork; Pa: Paper and paper products; Pr: Printing and reproduction of recorded
media; PC: Coke and refined petroleum products; Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products
and pharmaceutical preparations; RP: Rubber and plastic products; NM: Other non-metallic mineral products; BA: Basic metals;
MP: Fabricated metal products, except machinery and equipment; EP: Computer, electronic and optical products; El: Electrical
equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and semi-trailers; Tr: Other transport equipment;

Fu: Furniture.
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Figure 8: Scatterplot of the WTFP and BTFP gaps (sectoral averages)
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Fd: Food products; Bv: Beverages; Tb: Tobacco products; TX: Textiles; WA: Wearing apparel; LP: Leather and related prod-
ucts; Wo: Wood and of products of wood and cork; Pa: Paper and paper products; Pr: Printing and reproduction of recorded
media; PC: Coke and refined petroleum products; Ch: Chemicals and chemical products; Ph: Basic pharmaceutical products
and pharmaceutical preparations; RP: Rubber and plastic products; NM: Other non-metallic mineral products; BA: Basic metals;
MP: Fabricated metal products, except machinery and equipment; EP: Computer, electronic and optical products; El: Electrical
equipment; Ma: Machinery and equipment nec; MV: Motor vehicles, trailers and semi-trailers; Tr: Other transport equipment;

Fu: Furniture.
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Figure 10: Comparison across TFP densities estimated with different methods
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Figure 11: Difference between corrected and non-corrected OLS-estimated TFP
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