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BIAS AND EFFICIENCY OF SINGLE VS. DOUBLE BOUND
MODELS FOR CONTINGENT VALUATION
STUDIES: A MONTE CARLO ANALYSIS*

Abstract: The Dichotomous Choice Contingent Valuation Method (DC-CVM),
both in the single and the double bound formulation, has been in the last
years the most popular technique among practitioners of contingent
valuation, due to its simplicity of use in data collection. The single bound
procedure is easier to implement than the double bound, especially in data
collection and estimation. On the other hand, it is well known that the
double bound is more efficient than the single bound estimator. It
remains to analyze the bias of the ML estimates produced by either
model, and the gain in efficiency associated to the double bound model,
in different experimental settings. We find that there are no relevant
differences in point estimates given by the two models, even for small
sample size, so that neither estimator can be said to be less biased than
the other. The greater efficiency of the double bound is confirmed,
although it can be seen that the differences tend to reduce by increasing
the sample size, and are often negligible for medium size samples.
Provided that a reliable pre-test is conducted, and the sample size is large,
our results warrant the use of the single rather than the double bound
model.

* We would like to thank Rossella Diana for her helpful assistance in the early stage of
this research.






1. Introduction

The Dichotomous Choice Contingent Valuation Method (DC-CVM) has
been in the last years the most popular technique among practitioners of
contingent valuation, due to its simplicity of use in data collection. When
this elicitation method is used, the respondent is only required to answer
YES or NO when asked if she/he is willing to pay a given amount (bid)
for the public good. The single bound model comprises only one such
question, while in the double bound model the first question is followed by
another specifying a lower amount, if the answer to the first question
was negative, and higher otherwise. This procedure is certainly easier for
respondents than other methods requiring long adjustment processes,
like the bidding game; or a precise assessment of the individual's own
reservation price based on introspective analysis, as it happens in the
open ended elicitation method. The price to pay for this is the limited
information arising from DC-CVM data: the only information available
to the researcher after the interview is an interval of values containing
the true willingness to pay (wtp) of the individual.

In the single bound model the interval is bounded by the bid and
the limit of the wtp distribution (the upper limit if the answer was
positive, the lower limit otherwise). In the double bound model the
interval is enclosed within two bids, if one answer to the two questions
was positive and the other negative (double bound); otherwise, the
interval is bounded by the second bid and the limit of the wip
distribution. In order to gather more information about the support of
the true wtp distribution, the initial bids are varied among individuals.

Hanemann, Loomis and Kanninen (1991) proved that the double
bound DC-CVM is asymptotically more efficient than the single bound
model; empirical results by these authors, and by Leon (1995), confirm
this property also for finite samples. These studies show that point
estimates for the mean and median wtp produced by the two models are
substantially different. Some authors interpret this finding arguing that
the double bound model produces not only more efficient but also less
biased estimates than the single bound. Hanemann et al. (1991), for
example, suggest that the double bound model allows for correction of a
poor choice of the initial vector of bids. The same contention is also
purported by Kanninen (1995): with real data and assuming that the wtp
distribution of the population is a Logistic, she calculates the bias of the
double and the single model estimates, finding out that the latter is
larger. This can be hardly thought to be a definitive answer, though,
given the small sample (100 observations) considered in her study, and,
more fundamentally, that her assumption about the true wtp model might
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have been incorrect.! To shed some light on the matter, we carry on a
Monte Carlo study, designed to compare the performance of either
estimator under different experimental situations. After a quick overview
of the two models (section 2), we present in the following sections the
experimental setting (section 3) and the results (section 4); section 5
concludes the paper.

2. The wtp models

We adopt the censored econometric model proposed by Cameron
and James (1987) and Cameron (1988), which, unlike the utility
differential model of Hanemann (1984), produces separate estimates for
the standard deviation of the wtp and the parameters of the model. This
allows us to easily compute the confidence intervals for the central
tendency measures of wtp: as described later, estimates of the standard
errors of the coefficients are directly plugged in an analytical formula. It
is worth to mention that only recently confidence intervals (either
derived through analytical calculus or through bootstrapping methods?)
for the wtp estimate are being included in contingent valuation studies.

Assuming a linear functional form for the wtp, the econometric
model is the following:

(21) Y, =x®b +e,

where Y; is the true individual willingness to pay, which is
assumed to depend on individual socioeconomic characteristics
contained in the vector x;. The error term & is distributed with c.d.f. F(e
) with zero mean and variance equal to v2. In this model Y; is considered
a latent continuous censored variable: the observed variable is the
answer YES or NO to the question regarding whether or not the
individual would be willing to pay a given amount ti. Letting P; the
probability that the reservation price Y; for a given individual is greater
than ti, and Py the complementary probability, the single bound model is
specified as follows:

1 Another interpretation is that the answers to the first question and the follow up come
from two different distributions, even though correlated: cfr. Herriges and Shrogren
(1996), and Cameron and Quiggin (1994). Other sources of disturbance on the data
arising from the follow up question are analyzed by Alberini, Kanninen and Carson
(1997). For a comparison between the univariate and the bivariate double bound model
cfr. Alberini (1995).

2 For a comparison between different methods cfr. Cooper (1994).

3 Cfr. Cameron (1991) and Park, Loomis and Creel (1991).
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and, after standardization,
(23) R =Pr(z >(t - xB)/v).

For a given sample of n independent observation, the log-
likelihood function is:

(2.4)
LOgL:én{li |Og [1' F ((ti - xi(lb)/v)]+(1- Ii)|09 [F ((ti - xiﬂb)/v)]}’

i=1

where I; is a dummy variable assuming value one if the answer is
positive, zero otherwise.

Since 1/v is the coefficient of the bid t and bids are varied among
individuals, b and v can be estimated separately, so we have a direct
estimate of the standard deviation of wtp.

When the double bound model is chosen instead, we observe two
dichotomous variables, i.e. the answers to the first question and its
follow up. This method produces four possible outcomes, with
probabilities as follows:

(

(25 Prlvesno)= Pl £Y £t0)=F(t)- F(t)
( £Y £t
(

with log-likelihood function:



LogL = ;3-”1 { I, 1 log [F((ti“ - xidb)/v)]+
(2.6) w1, - 10)1og [F (e - x®)/v)- F(@ - x®)/v))+
w11 (1= 1) 1og [F((t; - x®)/v)- F(! - xt)/v)]+

#@- 1) - 1 )iog [F( - xw)yv)}

Here t. stays for the bid offered in the first question; t" is the

follow up if the answer to the first question has been positive; ti' is the
follow up when the answer to the first question has been negative.
|, 1", 1 are dichotomous variables with value one if the answer to the
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first bid or the corresponding follow-up has been positive, and zero
otherwise.
Once the parameters of either model are estimated, through
Maximum Likelihood procedure, estimation of the mean wtp is
straightforward: it suffices to calculate

Q2.7) E(Y)=x®

where X is the vector of sample averages of the regressors and

b is the vector of ML estimates of the parameters. Another measure of

interest in contingent valuation studies, especially when the wtp
distribution is asymmetric, is the estimate of the median wtp, whose
analytical form depends on the wtp distribution.

It is useful to calculate also confidence intervals for the mean or
median wtp. Only recently researchers have begun to include confidence
intervals in their reported fitted wtp measures, either using refinements
of the bootstrap method (Krinsky and Robb (1986); McLeod and
Bergland (1989)) or using the analytical formula proposed by Cameron
(1991). For the model in eq. (2.1), Cameron demonstrated that an
interval for E(Y) at significance level a can be calculated as follows:

28) Cl_,[E(Y)]=%® %t,,, /X6, X

where S, is an estimate of the variance-covariance matrix of the
parameter estimates. In a paper by Cooper (1994) it is shown that either
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method to calculate confidence intervals performs quite well, the relative
ranking depending on sample size and specification of the wtp model.
Given the simplicity of Cameron's method, we use her analytical formula
to calculate confidence intervals for the fitted mean (median) values of
Wwtp in our experiments.

3. The Monte Carlo Study

We consider two specifications for the wtp among the most
commonly used in CVM studies. The first one is a linear equation for
the latent variable:

(3.2)
The second specification is a logarithmic function:

(3.2)

The variables e and h are error terms with zero mean and
variance s2 and t2 respectively. In designing the Monte Carlo analysis we
assume, for specification (3.1), that wtp has two different distributions
with mean and variance equal to s2: the first is Normal, the
second is a mixture of two Normal which resembles an asymmetric
distribution.

For specification (3.2), wtp is assumed to have a lognormal
distribution (so that the error term h has a Normal distribution) with
mean , median
and variance:

This specification is particularly suited to account for asymmetries
in the wtp distribution, often observed in real data.

For each specification we generate 200 samples with four
different size: 100, 250, 400 and 1000 observations.

3.1. The linear specification
The wtp data is generated according to the model:



(3.1.1)

with a = 20, b = 0.1 and values of the regressor x drawn from a
Uniform distribution in the range 40-750. In a first set of experiments,
the error term e is a Normal variable with zero mean and standard
deviation s = 10. In another experiment, we consider a situation where
the error term has a mixture distribution:

(3.1.2)

where and . Varing the values

of p, m, m, si2 and sz, fle ) is allowed to assume different forms
(either simmetric or asymmetric, unimodal or bimodal). We choose p =
04, m=-8 m=>5233 s;1=3and s;= 15.22, in order e to have mean
equal to zero and standard deviation equal to 10; besides, the resulting
distribution is somehow bimodal and asymmetric with a heavy right tail
(Figure 1).



Fig. 1. Density function of the mixture distribution
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We report results for two bid designs: in the first (bid design A),
the chosen bids are the quartiles of the wtp empirical distribution in a
small independent sample (50 observations), simulated through eq.
(3.1.1) with no error term. In the second experiment instead (bid design
B), three bid values (10, 20, 30) are selected such that only the left tail of
the wtp distribution is covered (less than 15% for both wtp distributions).

In both experiments, the selected values are then randomly
assigned to the individuals of the sample and compared with the
corresponding Yi in order to create the dichotomous variable for the first
answer. The follow ups required for the double bound model are
obtained from the first bid by increasing or decreasing it by 25% of its
amount: whenever the first bid is lower than Y;, the bid is reduced;
otherwise, it is increased. The dichotomous dependent variable, I
assumes value zero if the true wtp is lower or equal to the assigned bid;
otherwise it assumes value one. For the double bound model, we have
two dependent variables: the first is generated, as before, by comparing
each Y; to the assigned first bid; the second is obtained analogously,
matching Y; with the second bid.

The two models are estimated with ML procedure, using the log-
likelihood functions (2.4) and (2.6), respectively for the single and the
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double bound model. The Normal c.d.f. F is plugged in the log-
likelihood functions in place of the generic c.d.f. F: the model is
therefore correctly specified in both the deterministic and the stochastic
part when the wtp distribution is normal, while we are allowing for
misspecification in the stochastic part of the model when the wtp
distribution is asymmetric.

3.2. The loglinear specification
The wtp data for the loglinear model is simulated according to the
following equation:

(3.2.1)

where | = 1.05, d = 0.35 and x is a Uniform regressor in the
range 2500-1250004.

The disturbance h is simulated from a Normal distribution with
mean zero and standard deviation t = 1.48.

The bids are selected as percentiles (5th, 10th, 20th, 45th, 75th,
95th) of the wtp (obtained as exp(In (Y)) ) empirical distribution in a
small independent sample. Analogously to the experiment with the linear
model, the follow-up bid is created by increasing, or decreasing, the first
bid by 25% of its amount. The dichotomous dependent variables are
then created by comparing In(Y;) to the logarithm of the first bid and,
sequentially, to that of the appropriate follow up.

For this experiment we assume a correct specification of the
model, so that for estimation of the single and the double bound models
the normal c.d.f. F is substituted for F in the log-likelihood equation
(2.4) and (2.6) respectively.

Given the asymmetric shape of the wtp distribution generated by eq.
(3.2.1), the median rather than the mean value can be indicated as an
appropriate measure of central tendency. In such a case the calculus of
the confidence intervals follows two steps: in the first step we calculate
the limits of the interval around E (In(Y)); then, we transform these
values by taking the anti-log. This is a correct confidence interval for the
median (cfr. Greene (1991, pag.168) for OLS estimates and Cameron
(1991) for ML estimates of the loglinear model parameters); the results,

4 These values for the parameters and the regressor are taken from Jordan and
Elnagheeb (1994).
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though, are not entirely satisfactorily, as it will be seen in the next
section.

4. Results

Results for all Monte Carlo experiments are reported in Tables 1
through 5.

The theoretical result about the higher efficiency of the double
bound model is confirmed in all experiments: the standard deviations of
the estimates from the double bound are always smaller than those
obtained from the single bound. Point estimates from both models get
more precise when the number of observations increases, though, and
for medium size samples the differences in efficiency are often
negligible.

The results about the bias of the estimates obtained from the
models instead are not so clear cut. Although the double bound model
generally gives less biased parameter estimates, this is not always true for
the estimate of the standard deviation of wtp. Furthermore, the central
tendency measures are in some cases estimated more accurately by the
single bound model, even though the opposite holds more often. Yet, as
we can see from the results in the following tables, there are no
substantial differences in bias for the relevant measure of wtp between
the two models.

More remarkable differences can be found in the estimates of
confidence intervals: as it can be expected, the double bound model
gives narrower intervals (about half the length of corresponding interval
of the single model). As a consequence of this, and since the bias of the
estimated mean or median wtp for the two models is quite similar, the
double bound model produces also intervals with lower empirical
confidence level in almost all experiments. It can be noticed that in
general, for small sample size, the estimated confidence intervals are not
much reliable: for acceptable interval lengths the empirical level is
generally far away from the nominal confidence level, while empirical
levels closer to the nominal are associated to wide intervals. This
problem reduces for higher sample dimensions, where we find narrower
intervals and empirical levels closer to the nominal confidence level of
90%.



Table 1(a). Linear model (bid design A): average and
standard deviation (in parenthesis) of parameter point
estimates across 200 replications

Sample size
Estimates
100 250 400 1000
a (20)
Single 19.471 19.754 19.936 19.925
(6.469) (4.105) (3.010) (2.047)
Double 19.878 19.890 19.986 20.044
(3.531) (2.307) (1.848) (1.209)
b (0.1)
Single 0.101 0.100 0.100 0.100
(0.0104)  (0.009) (0.007) (0.005)
Double 0.100 0.100 0.100 0.100
(0.007) (0.005) (0.004) (0.003)
s (10)
Single 9.699 9.843 10.059 9.976
(2.338)  (1.487) (1112 (0.748)
Double 9.971 9.869 10.019 9.965

(1397)  (0.778)  (0.603)  (0.377)
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Table 1(b). Linear model (bid design A): summary statistics on estimated mean wtp
across 200 replications

Sample size
Estimates
100 250 400 1000

E(Y) (59.5)
Single 63.184 2 61.014 60.687 59.820

(2.255) b (1.181) (1.034) (0.641)
Double 63.228 61.002 60.649 59.860

(1.476) (0.842) (0.663) (0.473)
Bias (E(Y))
Single 3.684 1513 1.187 0.320
Double 3.727 1.501 1.149 0.360
Conf. Level
Single 447 ¢ 64.5 63.5 85.5
Double 18.1 47.0 485 78.0
Average width
Single 6.976 ¢ 4211 3.335 2.115
Double 4,629 2.868 2.280 1.442

a Average of estimated mean wtp; bStandard deviation of estimated mean wtp; cEmpirical confidence levels:
percentage of inclusion of true mean wtp into the confidence intervals; dMean difference between upper and
lower limits

A comparison of tables 1(a) and 1(b) with tables 2(a) and 2(b)
shows that a wrong bid design (design B) affects to some extent the
performance of both models: estimates are more biased and less precise,
in particular for small sample size. Especially severe is the increase in the
standard deviation of mean wtp estimates, which is reflected also in the
marked increase, for small sample size, of the width of the confidence
intervals.



Table 2(a). Linear model (bid design B): average and standard deviation (in
parenthesis) of parameter point estimates across 200 replications

Sample size
Estimates
100* 250 400 1000
a (20)
Single 19.047 19.651 19.767 19.825
(6.396) (4.381) (3.023) (1.923)
Double 19.219 19.855 19.849 19.910
(3.990) (2.423) (2.057) (1.224)
b (0.1)
Single 0.104 0.102 0.101 0.101
(0.029) (0.018) (0.012) (0.007)
Double 0.103 0.100 0.100 0.100
(0.014) (0.008) (0.007) (0.004)
s (10)
Single 8.355 9.643 9.767 9.931
(2.893) (1.963) (1.556) (0.848)
Double 9.450 9.774 9.828 9.967
(1.725) (1.177) (0.922) (0.514)

*Two replications giving abnormal values have been dropped off from the results of the single bound model

Table 2(b). Linear model (bid design B): summary statistics on estimated mean wtp
across 200 replications

Sample size
Estimates
100* 250 400 1000

E(Y) (59.5)
Single 63.914 2 61.609 60.840 59.982

(7.806) b (3.776) (2.461) (1516)
Double 63.648 61.114 60.731 59.898

(3.545) (1.850) (1.440) (0.899)
Bias (E(Y))
Single 4414 2.109 1.339 0.482
Double 4.148 1614 1.231 0.398
Conf. Level
Single 917¢ 87.0 94.0 915
Double 765 815 84.0 88.0
Average width
Single 22.4534d 11.795 8.830 5.363
Double 11.162 6.071 4.682 2.926

*Two replications giving abnormal values have been dropped off from the results of the single bound model;
Average of estimated mean wtp; bStandard deviation of estimated mean wtp; cEmpirical confidence levels:
percentage of inclusion of true mean wtp in the confidence intervals; dMean difference between upper and lower
limits
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Tables 3(a) and 3(b) show the results from the experiment where
we consider a possible misspecification of the econometric model: we
assume that the wtp is normally distributed while instead it is not.

It can be noticed that the two models are quite robust to
misspecification, giving, in general, good point estimates of the
parameters and mean wtp. The exception is the estimate of the standard
deviation of wtp, which is always overestimated by both models for all
sample sizes. Anyway, comparison with the results reported in table 1(a)
and 1(b) shows that misspecification affects in particular the precision of
estimates, resulting in higher standard deviations.

Table 3(a). Linear model (bid design A, asymmetric mixture distribution):
average and standard deviation (in parenthesis) of parameter point estimates
across 200 replications

Sample size
Estimates
100 250 400 1000
a (20)
Single 19.339 19.326 19.099 19.154
(8.193) (4.910) (3.884) (2.424)
Double 19.097 19.160 19.220 19.225
(4.620) (2.897) (2.292) (1.419)
b (0.1)
Single 0.102 0.101 0.102 0.102
(0.019) (0.012) (0.009) (0.006)
Double 0.102 0.101 0.102 0.101
(0.010) (0.006) (0.005) (0.003)
s (10)
Single 12.726 13.381 13.484 13.618
(3.217) (1.963) (1.539) (0.989)
Double 13.058 13.408 13.447 13.504
(1.623) (1.024) (0.810) (0.518)
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Table 3(b). Linear model (bid design A, asymmetric mixture distribution): summary
statistics on estimated mean wtp across 200 replications

Sample size
Estimates
100 250 400 1000

E(Y) (59.5)
Single 63.491a 60.974 60.609 59.924

(2.641)b (1.615) (1.210) (0.760)
Double 63.283 60.821 60.560 59.722

(1.901) (1.118) (0.884) (0.548)
Bias (E(Y))
Single 3.991 1474 1.109 0424
Double 3.783 1.321 1.060 0.222
Conf. Level
Single 515¢ 735 715 855
Double 34.0 66.5 66.0 88.0
Average width
Single 8.187 d 5.066 4.005 2.559
Double 5.820 3.668 2.898 1.843

a Average of estimated mean wtp; bStandard deviation of estimated mean wtp; cEmpirical confidence
levels: percentage of inclusion of true mean wtp in the confidence intervals;
dMean difference between upper and lower limits

In tables 4(a) and 4(b) are reported the results of the experiment
with the asymmetric distribution and bid design B. When
misspecification and bad bid design combine, the optimization algorithm
fails to converge several times, particularly for small sample size. Also,
for the same sample size, we found that abnormal values for point
estimates of the parameters are produced in many replications by the
single bound model, while the double bound is more robust. In
calculating the summary statistics, the replications with such abnormal
values are dropped from the sample.



Table 4(a). Linear model (bid design B, asymmetric mixture distribution): average
and standard deviation (in parenthesis) of parameter point estimates across 200

replications
Sample size
Estimates
100' 250 1 400 1000
a (20)
Single 17.316 17.283 17516 17.858
(14.814) (5.004) (3.540) (2.038)
Double 16.809 17.918 17.811 18.036
(6.049) (3.371) (2.677) (1.582)
b (0.1)
Single 0.119 0.107 0.013 0.098
(0.139) (0.042) (0.029) (0.016)
Double 0.116 0.102 0.103 0.101
(0.041) (0.020) (0.016) (0.009)
s (10)
Single 10.045 9.734 9.729 9.583
(12.156) (3512) (2.478) (1.411)
Double 10.313 9.945 10.362 10.159
(3.015) (1.691) (1.042) (0.821)

17

i21 replications are deleted because of failure to convergence and 14 for the single bound and 3 for the double
bound model due to abnormal parameter values; i3 replications are deleted because of failure to convergence
and 5 for the single bound model due to abnormal parameter values; il replication is deleted because of
failure to convergence and 2 for the single bound and 1 for the double bound model due to abnormal

parameter values; 1 replication for the single bound model is deleted due to abnormal parameter values
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Table 4(b). Linear model (bid design B, asymmetric mixture distribution): summary
statistics on estimated mean wtp across 200 replications

Sample size
Estimates
1001 250 1 400 1000"

E(Y) (59.5)
Single 69.038 @ 61.307 59.490 57.063

(37.742)® (16.092) (9.238) (5.400)
Double 67.172 59.691 59.938 58.168

(14.870) (6.172) (4.715) (2.545)
Bias (E(Y))
Single 9.537 1.807 -0.010 -2.437
Double 7.672 0.191 0.438 -1.332
Conf. Level
Single 96.3¢ 85.9 86.8 744
Double 93.2 89.3 89.8 84.5
Average width
Single 16355¢d 44.83 30.44 16.41
Double 44,36 19.34 15.46 8.78

i21 replications are deleted because of failure to convergence and 14 for the single bound and 3 for the double
bound model due to abnormal parameter values; i3 replications are deleted because of failure to convergence
and 5 for the single bound model due to abnormal parameter values; il replication is deleted because of
failure to convergence and 2 for the single bound and 1 for the double bound model due to abnormal
parameter values; V1 replication for the single bound model is deleted due to abnormal parameter values; 2
Average of estimated mean wtp; bStandard deviation of estimated mean wtp; cEmpirical confidence levels:
percentage of inclusion of true mean wtp in the confidence intervals; dMean difference between upper and
lower limits

It is quite clear that for this experimental design, the double
bound performs better. Especially for small sample size, the double
bound secures a relevant gain in efficiency, although, as usual, the
differences tend to decrease when working with more observations.

This can be noticed also by looking at the average width of the
confidence intervals: the proportion of the single bound interval width
with respect to the corresponding double bound interval is about 3.5 for
the sample size of one hundred and falls to 2 for greater sample sizes. It
is also interesting that for this experiment design the confidence levels
associated to the double bound intervals are always better than the single
bound.

Differences in bias instead are not so significant. Taking into
account the misspecification and the very poor bid design, we can say
that both estimators perform reasonably well in giving point estimates
for the parameters and of the mean wtp, at least for sample sizes 250
and over. It seems worth to point out that the irregular pattern of the
two estimators performance across sample sizes can also be attributed to



19

sampling variability introduced by dropping a different number of
replications in each experiment.

Finally, tables 5(a) and 5(b) report the results of the experiment
with the loglinear specification.

In spite of the correct specification and good bid design (such
that most of the wtp distribution is covered) we observe large bias and
standard deviation values, in particular if compared with the analogous
experimental design for the linear model. Some problems arise especially
in estimating the parameter | , for which negative values are produced in
many replications, and whose bias is more severe than that of the other
parameters. As usual, the more the observations the better the estimates.

Our application of Cameron's analytical formula to the loglinear
model is not very satisfying: the values of the average width cast some
doubts about the appropriateness of the procedure adopted, described in
section 3. But this result also is in line with Cooper's (1994) finding that
when the distribution is asymmetric Cameron's technique is not much
reliable, and bootstrap methods for calculating confidence intervals
should be preferred.
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Table 5(a). Loglinear model: average and standard deviation (in

parenthesis) of parameter point estimates across 200 replications

Sample size
Estimates
100 250 400 1000
I (1.05)
Single 0.718 0.813 0.850 0.952
(3.129) (2.039) (1.427) 0.972)
Double 1.020 0.991 1.009 0.991
(2.417) (1.573) (1.189) (0.808)
d (0.35)
Single 0.379 0.370 0.368 0.358
(0.285) (0.186) (0.131) (0.089)
Double 0.352 0.354 0.354 0.355
(0.220) (0.144) (0.109) (0.074)
t (1.48)
Single 1439 1471 1.482 1473
(0.288) (0.168) (0.126) (0.082)
Double 1.467 1.467 1.485 1.475
(0.189) (0.110) (0.081) (0.051)

Table 5(b). Loglinear model: summary statistics on estimated median wtp across

200 replications

Estimates

M(Y) (125.87)
Single

Double

Bias (M(Y))
Single
Double

Conf. Level
Single

Double
Average width
Single

Double

100

1325252
(31.230) b
132.231
(24.730)

6.655
6.361

89.0¢
84.0

100.770 d
77.553

Sample size
250 400
127.850 128.401
(16.490) (14.632)
128.283 128.944
(13.170) (11.026)
1.980 2531
2413 3.074
94.9 894
924 884
60.212 47.809
46.668 37.379

1000

126.155
(9.307)
126.194
(7.157)

0.285
0.234

87.5
88.5

29.310
22.898

a Average of estimated median wtp; bStandard deviation of estimated median wtp; cEmpirical

confidence levels: percentage of inclusion of true median wtp in the confidence intervals;
dMean difference between upper and lower limits
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5. Conclusion

The single bound method presents some attractive features with
respect to the double bound. It requires less information, it is easier to
implement at data collection and estimation stages, and can avoid
systematic bias in responses that are due to the introduction of the
follow-up (for example, the so called "anchoring effect™). On the other
hand, it is well known that the double bound is more efficient than the
single bound estimator. It is therefore interesting to compare their
behavior in terms of bias of the ML estimates produced by either model,
and to analyze the gain in efficiency associated to the double bound
model, in different experimental settings.
Our results confirm the theoretical findings about the efficiency of the
double bound model. It produces more precise point estimates of
parameters and central tendency measures of wtp, as well as narrower
confidence intervals around mean or median wtp. The differences though
tend to reduce by increasing the sample size, and are often negligible for
medium size samples. On the contrary, no relevant differences can be
found in point estimates given by the two models, even for small sample
size, so that neither estimator can be said to be less biased than the
other.
Granted that no other sources of systematic bias arise, and the sample
size is large enough, huge differences in point estimates between the two
models observed in some applications should probably be ascribed to
misspecification of the model, or poor bid design, or, more probably,
both. Generally, Contingent Valuation surveys are preceded by a pre-test
survey on a small population sample, that allows to gather information
about the wtp distribution. If the pre-test is conducted correctly, it gives a
good a priori for the bid design of the survey; in such a case, use of the
single bound model should be warranted. If instead the sample size is
small, or the pre-test survey is not much reliable, it is advisable to use the
double bound model: in these circumstances the gain in efficiency is so
large that indeed may overwhelm other possible costs associated to the
use of the double bound.
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