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Abstract

The asset allocation decision is often considered as a trade-off between maxi-
mizing the expected return of a portfolio and minimizing the portfolio risk. The
riskiness is evaluated in terms of variance of the portfolio return, so that it is fun-
damental to consider correctly the variance of its components and their correlations.
The evidence of the heteroskedastic behavior of the returns and the time-varying
relationships among the portfolio components have recently shifted attention to the
multivariate GARCH models with time varying correlation. In this work we insert
a particular Markov Switching dynamics in some Dynamic Correlation models to
consider the abrupt changes in correlations affecting the assets in different ways.
This class of models is very general and provides several specifications, constrain-
ing some coefficients. The models are applied to solve a sectorial asset allocation
problem and are compared with alternative models.
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parameters, volatility.
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1 Introduction

The problem of choosing the weights of single assets of a financial portfolio depends
on the hypotheses underlying the economic model adopted. The simplest approach is
the mean-variance analysis (Markowitz, 1959), in which the asset allocation is derived
solving a constrained maximization problem; in this case the optimal allocation depends
on the expected returns and the covariance matrix of the same returns. This framework
requires strong hypotheses, but the solution is very simple and for this reason it is the
most utilized approach. Other approaches are based on the Capital Asset Pricing Model
(Sharpe, 1964), which introduces the hypothesis of equilibrium between supply and de-
mand; the Arbitrage Pricing Theory (Ross, 1976), in which the risk of the assets is gen-
erated from multiple sources; the Bayesian approach of Black and Litterman (1991 and
1992), in which the Markovitz approach is integrated by priors representing the views of
the operators.

An optimal allocation requires the forecast of the return and the evaluation of the
risk of the portfolio; the risk is generally represented by the portfolio variance, hence the
correct specification of the covariance matrix is of paramount importance.

Because of the large number of assets that could be potentially considered, the anal-
ysis were formerly conducted using simple models (Arnott and Fabozzi, 1988) and the
variances and covariances were considered constant along the entire period under study
(see, for example, French and Poterba, 1991). Recent studies emphasize the empirical
evidence in favor of time varying variances and time varying correlation between assets.
In particular, a number of studies point out that correlations between assets are higher
during turmoil periods than during quiet periods (see, for example, Clare et al., 1998, and
Longin and Solnik, 2001). For this reason and in absence of transaction costs, a diversi-
fied portfolio is potentially re-balanced each period, changing the risk of the returns (the
covariance matrix is time-varying) and making new information available (the expected
returns are compared with the realised returns to adjust the asset allocation).

The introduction of multivariate GARCH models has provided the possibility to solve
such problems. In particular the diffusion of the Dynamic Conditional Correlation (DCC)
model of Engle (2002) has provided the possibility to use a simple class of models with
few unknown parameters, which consider both variances and correlations as time varying.

One of the limits of this model is to hypothesize the same dynamics for the correla-
tions of all the assets. To avoid this problem, Billio et al. (2006) propose the Flexible
DCC (FDCC) model, in whichk groups of assets followk different DCC models, pro-
viding flexible dynamics. This model was experimented on a sectorial asset allocation
problem, using the Italian sectors, and it outperformed the DCC model and the Condi-
tional Constant Correlation (CCC) model of Bollerslev (1990).

As noted by Pelletier (2006), the correlation matrix of financial time series is often
subject to regime switching. In general, the shocks affecting the markets provide an
abrupt yet persistent increase in the correlations. For example, the dramatic event of
11 September 2001 has produced an increase in the correlation of the markets (Drakos,
2004), but the models with constant coefficients can not capture this fact. For this purpose
Pelletier (2006) introduces the Regime Switching Dynamic Correlation (RSDC) model,
in which the unconditional level of correlation changes over time, following a Markov
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Switching dynamics.
In this work we suggest to insert a particular Markovian dynamics in a general FDCC

model, in which the unconditional correlation matrix and the dynamics of the conditional
correlation can switch from one regime to another. The correlations between assets follow
a Markov Switching model (MS hereafter), allowing the possibility that groups of homo-
geneous assets stay in different states at timet. We call this model the Regime Switching
Flexible Dynamic Correlation (RSFDC) model. The introduction of some constraints
provides different specifications; the case in which the unconditional correlation is not
switching can be considered as an extension of the FDCC model; the case in which the
dynamic coefficients of the conditional correlation are zero is similar to the RSDC model,
the only difference being constituted by the different Markov chain driving the switching.

The new models are applied to a portfolio of Italian sectors during a time period which
includes September 2001, and they are compared with CCC, DCC, FDCC and RSDC
models. The procedures are evaluated in terms of portfolio performance through classical
performance measures, and in terms of covariance performance, following the approach
of Engle and Colacito (2006). The results show some evidence in favor of the presence of
MS dynamics and good results for the RSFDC models.

In the next section we briefly review the dynamic correlation models, whereas in sec-
tion 3 we develop the new models. In section 4 we illustrate the empirical application.
Some remarks conclude the paper.

2 Dynamic Correlation Models

Let us assume ann-variate processyt:

yt = µ + H
1/2
t ut t = 1, ...T (2.1)

whereµ is a constant vector,Ht is a positive definite matrix andut is a Normal i.i.d.
process with mean0 and covariance matrix given by then×n identity matrixIn. Ht can
be decomposed into:

Ht = DtRtDt (2.2)

whereDt is a diagonal matrix containing the standard deviations ofyt andRt is the
correlation matrix ofyt. Each squared element ofDt follows a univariate GARCH model
(Bollerslev, 1986). In our framework the vectoryt contains the data on then assets
included in a portfolio.

In a CCC specification (Bollerslev, 1990)Rt = R; in other words, the correlation be-
tween assets is considered constant along time. As said in the introduction, this hypothesis
is not realistic, as is confirmed by several empirical studies.

A more realistic representation was proposed by Engle (2002), introducing the DCC
model. In this case theRt matrix is obtained as:

Rt = Q̃−1
t QtQ̃

−1
t

Qt = (1 − a− b)R + aut−1u
′
t−1 + bQt−1

Q̃t = diag(Qt)

(2.3)
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wherea andb are unknown scalar coefficients (a + b < 1), R is the unconditional corre-
lation matrix. Note that we need to rescale the matrixQt as in the first equation of (2.3)
because it does not directly provide a correlation matrix; in fact the elements on the diag-
onal ofQt are not constrained to be equal to one. Let us note also that the CCC model is
a particular case of (2.3), wherea andb are equal to zero.

The DCC representation is very useful and has had a lot of success because it provides
a time varying conditional correlation involving few parameters to be estimated. It could
be easily extended to considerq lags ofut andp lags ofQt in the second equation of (2.3).
On the other hand it imposes a strong restriction: the correlations of all the assets included
in yt follow the same dynamics. Engle (2002) generalizes the model (2.3) providing a
different formulation for each element ofQt:

Qt = (ιnι
′
n −A −B) �R + A � ut−1u

′

t−1 + B �Qt−1 (2.4)

where� indicates the Hadamard product,ιn is a n × 1 vector of ones andA andB
are matrices of unknown coefficients. This is a particular specification of the class of
MARCH models of Ding and Engle (2001), which requires the estimation of a lot of
parameters, in the unconstrained case. Ding and Engle (2001) show thatQt is positive
definite if (ιnι

′
n −A −B), A andB are positive definite.

A solution to the trade-off between the estimation of few parameters and a more flex-
ible representation of the correlation dynamics was suggested by Billio et al. (2006) with
the FDCC model, introducing a block-diagonal structure in the second equation of (2.3).
They definek groups of assets; each group follows a proper DCC model substituting the
second equation of (2.3) as:

Qt = cc′ + aa′ � ut−1u
′

t−1 + bb′ �Qt−1 (2.5)

where

c = [c1ιn1 , ..., ckιnk
]′

andni (i = 1, ...k) is the number of assets in the groupi (similarly for a andb). To avoid
explosive patterns, the set of constraintsaiaj + bibj < 1 (i, j = 1, ...k) is added. Note that
the unconditional correlation matrixR is not included in the FDCC model, whereas the
additional vector of parametersc is introduced.

A different approach in modelling the correlations was proposed by Pelletier (2006),
introducing the RSDC model. In this case, the unconditional correlation matrix follows
a regime switching model and it is constant within a regime but different across regimes.
In practice the CCC model of Bollerslev (1990) is a special case of the RSDC model with
only one regime. Formally, the covariance matrix in the RSDC model is given by (2.2),
with:

Rt = Rst (2.6)

where the suffixst is a discrete unobservable variable representing the regime at timet,
which follows a Markov chain assumingh possible states. The probability to switch from
statei to statej is indicated by:

pij = Pr [st = j|st−1 = i] (i, j = 1, ..., h)
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Pelletier (2006) provides a simple algorithm based on the Hamilton (1990) filter and
smoother to obtain the maximum likelihood estimators of model (2.6).

Another approach in a MS framework is due to Billio and Caporin (2005), who extend
the DCC model (2.3) by allowing both the unconditional correlation and the parameters
to be driven by an unobservable Markov chain.

A strong advantage of the previous representations is that, under the assumption of
normality of ut, it is possible to split the log-likelihood into the sum of the volatility
part and the correlation part.1 Let L be the log-likelihood of the full model,LV the
volatility part of the log-likelihood,LC the correlation part,θV the parameters present in
the univariate GARCH models andθC the parameters present in the correlation model.
Engle (2002) has shown that:

LV (θV ) = −1

2

T∑
t=1

[nlog(2π) + 2log(|Dt|) + ut
′ut] (2.7)

LC(θC |θV ) = −1

2

T∑
t=1

[
nlog(2π) + log(|Rt|) + ut

′R−1
t ut

]
(2.8)

L(θV , θC) = LV (θV ) + LC(θC |θV ) (2.9)

LV is the sum ofn univariate log-likelihoods and its maximization is equivalent to
maximizing each univariate log-likelihood. The maximization of (2.9) consists of two
steps: in the first step the function (2.7) is maximized, obtaining the estimates ofθV ; in
the second step (2.8) is maximized conditional on the estimates of the first step.

3 The Regime Switching Flexible Dynamic Correlation
Model

We propose a model that introduces a particular MS dynamics implying changes in the
parameters of groups of homogeneous variables. As said in the previous section, the
introduction of MS dynamics in the correlation matrix has been already made by Pelletier
(2006), who uses as basic model the CCC model, and Billio and Caporin (2005), who
introduce such dynamics in the DCC model (2.3). Our basic model can be considered a
combination of these models and the FDCC model (2.5), with the dynamic coefficients
also allowed to switch. The more general form of the model is:

Qt,st = (ιnι
′
n −asta

′
st
− bstb

′
st
)�Rst +astast

′�ut−1u
′

t−1 + bstb
′
st
�Qt−1,st−1 (3.1)

We call this model RSFDC-F (where the final F stays for full and indicates that we
allow both the unconditional correlation matrix and the dynamic coefficients to switch
from one regime to another). As in the RSDC model, the suffixst is a discrete unobserv-
able variable representing the regime at timet, which follows a Markov chain assuming

1If the assumption of normality is not valid, we can use the same approach and the estimator is a Quasi-
Maximum Likelihood estimator (Bollerslev and Wooldridge, 1992).
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h possible states, but the form of the transition probability matrix is different. To stress
the fact that the assets considered in the model are homogeneous within thek groups but
different among the groups, we give a particular interpretation of the states. We suppose
that each group can switch between 2 states (call them0 and1). At time t, the groupg1

is in states1t, the groupg2 in states2t,..., the groupgk in stateskt (s1t, s2t, ..., skt can
assume value0 or 1). In practice, the statest is constituted by a combination ofk un-
observable dichotomic variables, so that the Markov Chain can assumeh = 2k possible
regimes.2 The parameters of the model (3.1) can assume two possible values, depending
on the state of the group at timet. Formally, the vector of coefficientsast is given by:

ast = [a1,s1tιn1 , ..., ak,skt
ιnk

]′ ;

(similarly for bst). For example, in the case of two groups (k = 2), constituted respec-
tively by 2 and 3 assets, ifs1t = 0 ands2t = 1, thenst = 01 and the vector of coefficients
a will be:

a01 = [a1,0, a1,0, a2,1, a2,1, a2,1]
′ .

Similarly the5 × 5 unconditional correlation matrixR01 will be composed by two
blocks on the diagonal; the first block will contain the2 × 2 sub-matrix relative to the
first group, with correlations in state 0, whereas the second block will be composed by
the3 × 3 sub-matrix relative to the assets of the second group, with correlations in state
1. The out-of-diagonal blocks will represent the cross-correlations between the assets of
group 1 and the assets of group 2 in the state01.

It is interesting to note that, constraining the dynamic coefficients equal to zero, we
obtain a model similar to the RSDC model (2.6), but the changes in regime are relative to
the single blocks ofRst and not to the overall matrix, as in Pelletier (2006). We call this
specification RSFDC-C (where the final C indicates the the switch is relative only to the
correlation matrix).

Another specification is obtained constraining the unconditional correlation matrix to
remain constant over time and allowing only the dynamic coefficients to be switching.
This case can be viewed as a FDCC model with MS, or, more correctly, as a general DCC
(2.4) with MS because we keep the dependence on the unconditional correlation matrix
to include the correlation targeting property (differently from the specification (2.5) of
Billio et al., 2006). We call this model RSFDC-D (the final D indicates that the switch is
relative only to the dynamic parameters).

The estimation of model (3.1) can make use of the split of the likelihood into two
parts, as in (2.7)-(2.9), the switching coefficients being present only in (2.8). After the
estimation ofθV , by maximizing (2.7), we obtain the residualsût, which substituteut in
(2.8). For the second part (maximization of (2.8)), we can use the following procedure:

1. for a given value of the parametersast, bst andpij, run the Hamilton (1990) filter
and smoother, obtaining the probabilityPr[st = i|ΨT ], for eachi = 1, ..., h, where
ΨT represents the full information available;

2A similar interpretation was given by Edwards and Susmel (2001), studying the contagion in emerging
financial markets.
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2. using these probabilities, compute the sample correlation matrix for each regime
(Rst) by weighting eacĥutû

′
t by the probability of being in that regime, obtained

in the previous step. This procedure is very similar to the approach used by Pelletier
(2006) to estimateRst;

3. given the estimates ofRst, estimate the parametersast, bst, pij;

4. iterate these three steps until convergence.

The procedure can be used to estimate the RSFDC-F model, though it becomes sim-
pler using the constrained models RSFDC-C (in step 1 and 3ast andbst vanish) and
RSFDC-D (the classical Hamilton filter is ran to explicit the likelihood).

A problem arises in the estimation algorithm considering that in (3.1) the matrixQt,st

depends on which regime it was at timet − 1. This means that evaluating the likelihood
recursively, we need to keep track of all the possible paths that the regimes might take
from t = 1 to t = T , involving a non tractable model. To avoid this problem, we use the
solution proposed by Kim (1994), dealing with a similar problem with a state-space MS
model. After each step of the Hamilton filter, at timet we collapses theh × h possible
matricesQt,st−1,st, into h matrices by an average over the probabilities at timet− 1:

Q̂t,st =

∑h
i=1 Pr[st−1 = i, st = j|Ψt]Qt,st−1,st

Pr[st = j|Ψt]
(3.2)

whereΨt represents the information available at timet and the probabilities present in
(3.2) are obtained by the Hamilton filter. In practice, we can not use model (3.1) directly,
but we have to replaceQt−1,st−1 with Q̂t−1,st−1 , calculated as in (3.2); in other words we
change slightly the model so that it becomes tractable. This is the solution often used
to deal with non tractable MS models (see, for example, many examples showed in Kim
and Nelson, 1999, and Billio and Caporin, 2005, for a similar problem with dynamic
conditional correlations).

It is important to notice that the potential large dimension of the transition probabilities
matrix could imply computational problems in the maximization algorithm. This case is
frequent when some combinations of states are not verified in the data. For example,
considering three groups, if the statest = 011 is not found or it occurs rarely, it is likely
that the maximization algorithm will not converge. In this case it is preferable to set the
corresponding transition probabilities equal to 0 (as in Hamilton and Susmel, 1994). In
the following section we will show how to proceed in a real case.

4 An Application to the Sectorial Asset Allocation

In this section we consider a hypothetical portfolio constituted by indices relative to the
two main sectors of the Italian Mibtel general index: banks (Ban), insurance (Ins) and
finance holdings (Hol) relative to the finance sector; minerals metals (Min), chemicals
(Che) and textile clothing (Tex) relative to the industrial sector. Billio et al. (2006)
have analyzed all the sectorial indices of the Mibtel, noticing similar correlation dynamics
among the indices belonging to the same sector. For this reason we consider two groups of
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homogenous variables (g1 = F constituted byBan, Ins andHol, andg2 = I constituted
by Min, Che andTex). The data considered cover the period 4 January 2000 - 29 August
2003 (daily data; 954 observations)3 and in Figure 1 we show the 6 series of the returns
of the indices. We notice that the time series start with a turmoil period that seems to end
at the beginning of 2001; the volatility increases dramatically after 11 September 2001
and remains high in the rest of the series. This behavior is less evident for the industrial
indices, in particular forMin.

Following the approach proposed, we consider a 6-variate GARCH(1,1) model for the
volatility part of the model, whereas we estimate a CCC, a DCC, an FDCC,4 an RSDC
and the models proposed here (the general model RSFDC-F and the sub-cases RSFDC-C
and RSFDC-D) for the correlation part. The model considered is (2.1)-(2.2), in which the
squared elements on the diagonal ofDt are six univariate GARCH(1,1) models as:

hit = γi + αiε
2
it + βihit−1, i = Ban, Ins,Hol, Min, Che, Tex

whereεit = yit − µi are obtained from (2.1). In Table 1 we show the estimation results of
the GARCH models.

The second estimation step needs the standardized disturbancesut; they are obtained
from the first step, by standardizing the disturbancesεit contained in the (T ×6) matrixE

by H
1/2
t E. In Table 2 we show the estimation results of each dynamic correlation model

and the corresponding log-likelihood.5 As it is well known, these likelihoods cannot be
directly used within a likelihood ratio testing approach for the presence of nuisance pa-
rameters present only under the alternative hypothesis (see, for example, Hansen, 1992),
but we show them for a first comparison among models.

Let us observe the estimates of the models without switching (CCC, DCC and FDCC).
The unconditional correlation matrixR is equal for all these models (it is the only esti-
mated part of the CCC model). It is given by:

R =


1.000 0.764 0.662 0.358 0.606 0.543
0.764 1.000 0.586 0.395 0.532 0.503
0.662 0.586 1.000 0.280 0.703 0.539
0.358 0.395 0.280 1.000 0.176 0.226
0.606 0.532 0.703 0.176 1.000 0.514
0.543 0.503 0.539 0.226 0.514 1.000

 (4.1)

The matrix shows a higher correlation among the financial indices with respect to the
industrial indices. The DCC model shows a large value of the parameterb, which implies a
strong persistence of the correlation. Distinguishing between sectors in the FDCC model,

3We choose this period so that the data relative to the terroristic attack of 11 September 2001 is in the
middle of the series.

4We specify the FDCC model as in (3.1) without switching parameters to compare similar models with
the correlation targeting.

5We have estimated also a DCC model with MS, as in Billio and Caporin (2005), considering the same
change of state for all the variables. In this case there is no evidence for the presence of regimes: the
probability of permanence in a state is 1 and in the other is 0. This result seems to support the idea that,
for the time series studied, the presence of regimes in a dynamic conditional correlation model has to be
analyzed separately for each sector.
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this persistence decreases, in particular for the industrial sector, whereas the value of the
a coefficients increases (the likelihood seems to favor the FDCC model). This effect is
due to our different specification with respect to (2.5) to take into account the correlation
targeting. In fact, in our specification, the unconditional correlation matrixR enters the
equation in different ways with respect to the DCC model; in the latter it enters with a
very small coefficient equal to(1 − a − b); in the FDCC model it enters with different
coefficients, in correspondence of the different blocks. In practice, in the FDCC model
with correlation targeting,R is pre-multiplied (element by element) by the matrix(ιnι

′
n−

aa′ − bb′), so that its effect is evaluated differently in the different blocks. As a matter
of fact, part of the correlation persistence captured by the coefficientb in the DCC model
is moved to the constant part of the FDCC model. To support this idea we have estimated
also a model, like (2.5), avoiding the constraint of the correlation targeting; we obtain
results very similar to DCC, with coefficientscF andcI near to zero and coefficientsbF

andbI more than 0.9.
The introduction of regime switching increases considerably the likelihood, particu-

larly in the case of the RSDC model, in which the change in regime is contemporaneous
for all the assets. We have two different correlation matrices in correspondence of regime
0 and regime 1 for the RSDC model; they are given by:

R0 =


1.000 0.635 0.527 0.095 0.401 0.344
0.635 1.000 0.380 0.204 0.277 0.274
0.527 0.380 1.000 0.064 0.631 0.371
0.095 0.204 0.064 1.000 −0.160 −0.044
0.401 0.277 0.631 −0.160 1.000 0.373
0.344 0.274 0.371 −0.044 0.373 1.000



R1 =


1.000 0.899 0.823 0.661 0.836 0.763
0.899 1.000 0.812 0.624 0.805 0.737
0.823 0.812 1.000 0.545 0.800 0.737
0.661 0.624 0.545 1.000 0.556 0.515
0.836 0.805 0.800 0.556 1.000 0.686
0.763 0.737 0.737 0.515 0.686 1.000


The states0 and1 can be considered respectively as a regime of low correlation and a
regime of high correlation. In this case the persistence of a regime is a function of the
transition probabilities ( 1

1−pii
, i = 0, 1, see Hamilton, 1989); the persistence of the state

of low and high correlation is very similar (around 7 days).
The introduction of the RSFDC models involves some computational difficulties. The

transition probabilities matrix has dimension4 × 4 and the elementpij,lm indicates the
probability that at timet the groupF is in statel and the groupI in statem, given that
at timet − 1 the groupF was in statei and the groupI in statej (i, j, r, s = 0, 1). The
maximization algorithm described in section 3 does not converge, because the covariance
matrix of the parameters becomes singular, from whatever starting point.6 To understand
why such situation arises, we have tried to apply the filtering and smoothing algorithm
(Hamilton, 1990 and Kim, 1994) to the series using the values of the parameters where

6This happens not only for the RSFDC-F model, but also for the RSFDC-C and RSFDC-D models.
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the algorithm stops (this is possible because the filtering and smoothing algorithms do
not require the inversion of the covariance matrix). The problem seems related to the
identification of the number of states in the Markov chain. In fact the smoothing algorithm
provides the probabilitiesPr [st = lm|ΨT ], which are the probabilities that at timet the
state of the group of financial indices isl and the state of the group of industrial indices
is m, given the full information available. The behavior of the smoothing probabilities
shows evidence of the presence of states0 and 1 for group F and only one state for
groupI. In other words only the financial group has a switching correlation, whereas the
industrial group follows a DCC model without switching. This result is consistent with
the estimation of the FDCC model, where the coefficientbI is small, so that the block of
the correlation matrix relative to the industrial sector changes slightly over time.

In other words, we have to adopt a2 × 2 MS model with some constraints on the
RSFDC specification. Now, the transition probabilities matrix is:

P =

[
p0·,0· p0·,1·
p1·,0· p1·,1·

]
wherep0·,1· = 1 − p0·,0· andp1·,0· = 1 − p1·,1· and the dot indicates that we have always
the same regime for groupI. In Table 2 we can observe the estimated coefficients for
the three RSFDC models. In the RSFDC-F case the model identified does not contain
the coefficientsbF andbI ; in practice the persistence of the correlations, which in FDCC
model was partially captured by the constant part, now is captured by the presence of
two correlation matrices corresponding to the two regimes and the dynamic part is only
represented by the lagged squared disturbances. This is more evident when we consider
the RSFDC-D model, in which the correlation matrix is constant and equal to (4.1); in
this case the coefficientsb are present in state 0 and the persistence of the regimes is very
high (272 days for state0· and 216 days for state1·, against 3 days in state0· and 30 days
in state0· in model RSFDC-F)).

The two estimated correlation matrices of model RSFDC-F are given by:

R0· =


1.000 0.412 0.136 0.042 0.042 −0.035
0.412 1.000 0.013 0.064 0.010 −0.036
0.136 0.013 1.000 0.027 0.186 0.046
0.042 0.064 0.027 1.000 0.177 0.226
0.042 0.010 0.186 0.177 1.000 0.514
−0.035 −0.036 0.046 0.226 0.514 1.000



R1· =


1.000 0.822 0.749 0.380 0.652 0.611
0.822 1.000 0.678 0.411 0.577 0.561
0.749 0.678 1.000 0.300 0.709 0.577
0.380 0.411 0.300 1.000 0.177 0.226
0.652 0.577 0.709 0.177 1.000 0.514
0.611 0.561 0.577 0.226 0.514 1.000


The differences between states are sharper than the RSDC case. Notice also that the

correlation between the series of sector F and the series of sector I are almost zero in state
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0·. Note also the characteristic of this model, in which the lower block on the diagonal is
equal in state0· and state1· and also equal to the corresponding block in (4.1).

Changing specification and considering RSFDC-C, in which the dynamic coefficients
are not considered, the inference on the regime changes again. The two correlation matri-
ces are:

R0· =


1.000 0.755 0.646 0.352 0.597 0.556
0.755 1.000 0.569 0.390 0.521 0.510
0.646 0.569 1.000 0.272 0.695 0.551
0.352 0.390 0.272 1.000 0.177 0.226
0.597 0.521 0.695 0.177 1.000 0.514
0.556 0.510 0.551 0.226 0.514 1.000



R1· =


1.000 0.961 0.986 0.126 0.190 −0.002
0.961 1.000 0.950 0.133 0.197 0.037
0.986 0.950 1.000 0.126 0.196 0.007
0.126 0.133 0.126 1.000 0.177 0.226
0.190 0.197 0.196 0.177 1.000 0.514
−0.002 0.037 0.007 0.226 0.514 1.000


In this case, in state1·, where we have an increase in the correlations among the series
of the financial sectors, we can observe a decrease of correlations between the series of
the financial sector and the series of the industrial sector. The state1· is not persistent (2
days), whereas the persistence of state0· is around 27 days.

As for likelihood functions, the RSFDC-F model has the highest one among the
RSFDC models.

In Figure 2 we show the smoothed probabilities of the state 1, identified as high corre-
lation for the model RSDC, and the smoothed probabilities of states1· for the RSFDC
models, identified as high correlation for the finance sector in models RSFDC-F and
RSFDC-C; in the RSFDC-D case it represents the state in which the coefficientaF in-
creases changing the regime. The graphs show four different behaviors. The change in
regime derived by model RSDC seems to have a different behavior before and after 9/11:
before this date the periods of high correlation are infrequent and short; after 9/11 they are
the majority. In the case of RSFDC-F model we have a similar break in correspondence
of 9/11, but in the first span the periods of high correlation are frequent and short; after
9/11 the high correlation is dominant with only four short periods of low correlation. It
is likely that the presence of switching dynamic coefficients adjusts the correlation with-
out the need for a change in regime. The inference derived by the RSFDC-C model is
not easy to explain; in the full period the switch to regime1· is infrequent and short. A
purely constant correlation matrix without any dynamics for the industrial sector seems
inadequate and, given also the value of the likelihood ratio with respect to the RSFDC-F
model,7 we will not consider this model any further. Finally, the RSFDC-D model shows
a clear behavior; in the first period the probability that the state is1· is around 1; it de-
creases at the end of October 2000 and it is around zero (where the state is almost surely
0·) from April 2001 until the terrorist attack of 11 September 2001. After this date the

7In this case model RSFDC-C is nested in RSFDC-F without nuisance parameters under the alternative
hypothesis, so the use of the likelihood ratio test makes sense.
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probability of state1· has an abrupt increase and it remains around 1 until the end of
the series, excluding the period October-December 2002 and August 2003, in which the
graph shows two slight troughs.

Despite the differences, comparing these graphs with the returns of the time series in
Figure 1 we notice a certain coherence between periods of high volatility and the state1
for model RSDC and1· for models RSFDC-F and RSFDC-D; this result seems to confirm
the idea that periods of turmoil are associated with periods of high correlation. On the
other side, it is difficult to establish from these results what model performs the best.
We will carry on with comparisons based on the performance of a hypothetical portfolio
and with the comparison of their realized volatility and the relative performance of the
covariance matrices.

4.1 Evaluating the portfolio performance

We expect the covariance model which estimates the risk in an appropriate way to provide
a good portfolio allocation. To evaluate this property we have performed a historical
simulation. We start considering the time series at the end of July 2001 and perform the
optimal asset allocation solving the simple mean-variance problem (Markovitz, 1959), but
using different estimations for the covariance matrix. The portfolio weights are computed
under the hypothesis of short selling constraints (positive weights) and no transaction
costs. Under these hypotheses and considering the absence of risk-free assets, the optimal
portfolio allocation is given by the following weights:

Σ−1
t+1|tµt+1|t

ι′nΣ
−1
t+1|tµt+1|t

whereµt+1|t andΣt+1|t represent the expected vector of returns and their expected covari-
ance matrix at timet+1 given the information until timet. We repeat the same experiment
several times, using the previous formula to calculate the weights, adding one observation
and estimating a new (2.1)-(2.2) model with six different specifications for the covariance
matrix (CCC, DCC, FDCC, RSDC, RSFDC-F and RSFDC-D). We make this simulation
until the end of the period, estimating recursively the six models (543 replications).

In Table 3 we show the two first unconditional moments of the portfolio weights for
the various models and the coefficient of an AR(1) model estimated for each series of
weights; this last indicator would represent a sort of turnover index of portfolio weights:
values around 1 will indicate a certain persistence of the weights and hence a small
turnover (viceversa for values around 0). On average, all the models seem to distribute the
investment among the six indices, except RSFDC-F, which suggests more investments in
the industrial sector. In general it is possible to note a high degree of turnover; the index
with the least turnover isMin for all the models, but it is less persistent for RSFDC-F
than all other models. Note that the volatility ofMin is the most regular among the six
indices, as can be seen on Figure 1 and Table 1, where the constant parameter of the
GARCH model is very high with respect to the constants of the other indices and the
coefficientβ is the lowest.

In Figure 3 we show a graphicalhorse-raceamong the models to gain an idea of
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the results of the six allocation strategies. We suppose to have a starting investment of
100 and then we apply the returns obtained by the previous historical simulation along
the period considered. We note that the date of 11/9 is that one which discriminates the
different behaviors of the models. All the models show a trough after this date, which
is deeper for the no switching regime models. After this date the portfolio created by
RSFDC-F reacts better than others and at the end of 2001 its value has increased more
than the others. This gap lingers until July 2002, when a new trough characterizes the
graph; after this date the increase of RSFDC-F is very large compared to the others; the
other portfolios show a similar behavior, except for the one derived by FDCC, which has
the worst performance during 2002. In 2003 the portfolios behave in similar ways and the
distances are approximately constant.

The evaluation of the performance can be made through a portfolio benchmark; the
purpose of the optimal allocation is to obtain a portfolio which has a higher return and a
lower volatility than the portfolio benchmark (Philips et al., 1996). In our case the global
market index is a natural benchmark (in this case the Mibtel). The comparison of the six
simulated portfolios with the benchmark is made using four classical measures based on
returns. The first one is the Jensenα (Jensen 1968 and 1969), which is the constant of
a regression model where the portfolio return is the dependent variable and the return of
the portfolio benchmark is the independent variable. The second is theratio proposed
by Treynor (1965), obtained as the ratio between the expected portfolio return and the
slope of the same regression (often used to evaluate portfolio without risk-free assets).
Then we consider theappraisal ratioof Treynor and Black (1973), obtained as the ratio
between the Jensenα (which represents the systematic risk) and the standard deviation of
the disturbances of the same regression (which represents the idiosyncratic risk). Finally
we show the Sharpe ratio (mean of returns divided by their standard deviation) of each
portfolio. The performance increases when the measures increase. In Table 4 we show the
unconditional moments of the portfolio returns for all the models and the four measures.
All the portfolios show a higher mean of returns and a lower variance than the benchmark.
In particular the RSFDC models show the highest mean and the lowest variance (RSFDC-
F better than RSFDC-D). Considering the measures of performance, we note that in all
cases the RSFDC-F model has the best performance for the period considered and that
all the portfolios have better performance than the benchmark (which shows a negative
Sharpe ratio). The good performance of the RSFDC-F model during the periods of turmoil
with sudden shocks is confirmed by calculating the Sharpe ratio separately for each year
of the historical simulation. These results are shown in the bottom part of Table 4; we
note that in 2001 and 2002 the Sharpe ratio of the RSFDC-F model is almost twice the
amount of the others, whereas in 2003, when the benchmark also has a positive Sharpe
ratio, the portfolios have similar performances, except for FDCC.

The differences among the models in terms of Sharpe ratio are small, so we have com-
pared the Sharpe ratios across the models and with respect to the benchmark, following
the contributions of Memmel (2003) and Ledoit and Wolf (2008). More accurately we
have tested the null hypothesis of the equality of two Sharpe ratios against the alternative
that their difference is not zero. Following Ledoit and Wolf (2008), we denote withµi

the mean of returns of the portfolio obtained by modeli andδi the uncentered second
moment of the returns of portfolio derived by modeli; in addition, letv be the vector
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containing the elements(µi, µj, δi, δj). Ledoit and Wolf (2008) verify the equality of the
Sharpe ratios derived by modelsi andj, by testing the null hypothesis:

µi

(δi − µ2
i )

1/2
− µj

(δj − µ2
j)

1/2
= 0 (4.2)

assuming that, under the null,(T )1/2v is asymptotically Normal with mean0 and covari-
ance matrixΣ. In our application, we estimateΣ taking into account the serial correla-
tion and heteroskedasticity of returns (HAC inference, Newey and West, 1987, Andrews,
1991); then the standard error of distribution of (4.2) is easily obtained applying the delta
method. In Table 5 we show the p-values of the absolute value of (4.2) for each pair of
model and for Mibtel. All the portfolios display a significantly higher Sharpe ratio than
Mibtel, but there is not significant difference in performance among the portfolios. This
result is not surprising; in fact the asset allocations of each portfolio differ only for the
correlation matrices and not for returns and variances. In general, the effect of returns
is more important than the one of covariance matrices in the allocation strategies (see,
for example, Chopra and Ziemba, 1993 and Engle and Colacito, 2006). To evaluate the
goodness of the correlation matrices adopted we need to isolate the effect of covariance
information from the effect of returns, which we do in the following sub-section.

4.2 Evaluating the Correlation Matrices

The analysis carried out in the previous section is useful to evaluate the performance of the
different portfolios and to compare them with a benchmark. To evaluate only the goodness
of correlation matrices we adopt the approach proposed by Engle and Colacito (2006);
they show that the realized volatility is smallest for the correctly specified covariance
matrix for any vector of expected returns. They suggest to select arbitrary vectors of
expected returns, then construct optimal portfolio weights with the alternative covariance
models and to calculate the sample variance of each portfolio. The strategy with the
smallest covariance for each vector of expected returns will be the best strategy. The key
problem here is the choice of the vectors of expected returns; the main experiments of
Engle and Colacito (2006) only regard two assets and many alternatives can be used. In
the case of high order asset allocation the choice of an appropriate vector of expected
returns is not easy. For example, Engle and Colacito (2006), considering a portfolio
composed by 21 stocks and 13 bonds in a framework with a free-risk asset and tangency
portfolio, select only hedging portfolios, obtained putting one entry equal to 1 and the
other equal to zero; in this way the asset with 1 is hedged against all other assets. Our
framework is different from that of Engle and Colacito (2006), given the absence of free-
risk assets and the constraints of positivity of the weights summing up to one; we consider
the following 22 alternative vectors of expected returns:

• a vector in which the expected return of each asset is equal to1/6 (we call it ER);

• 6 vectors in which the expected return of one asset is equal to4/6 and the others
equal to1/15; we denote each case with the name of the asset with highest return;

• 15 vectors obtained setting the return of two assets equal to1/2 and the others equal
to 0; we denote each case with the names of the assets with nonzero return.
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In Table 6 we show the sample standard deviations of each portfolio for the 22 cases,
setting the lowest standard deviation equal to 100; in this way a number like(100 + x)
means that, knowing the true covariance matrix, anx% higher return could be required.
We notice that in 10 cases the RSFDC-F model is the best one, in 3 cases it is the DCC, in
4 the FDCC, in 2 the RSDC and in 3 the RSFDC-D model. Anyway, in many cases where
the RSFDC-F model is not the best one, the difference with respect to the others is very
small (the same for DCC and RSFDC-D). The CCC model has not a bad performance,
but there are no cases where it has the minimum variance, confirming the widespread idea
that the correlation of assets is not constant along the time.

The subsequent step is to compare the six approaches at 22 different expected returns.
Following Engle and Colacito (2006), this can be obtained using a Diebold and Mariano
(1995) procedure to test differences between each pair of covariance estimators jointly for
the 22 expected returns. We calldij,k

t the difference at timet between the squared return
of portfolio i and the squared return of portfolioj for thek − th hypothesized vector of
expected returnsµk. Let Dij

t = (dij,1
t , ..., dij,22

t )′; the approach consists in estimating the
model:

Dij
t = βι22 + εd,t

using the generalized method of moments with vector HAC covariance and then verifying
the null hypothesis:

β = 0 (4.3)

If the null is accepted, we can consider the two covariance estimatorsH i
t andHj

t equal.8

In Table 7 we show the values of thet statistic to verify (4.3) in a pair wise comparison.
It is useful to consider the sign of thet-value when the null is rejected; in factdij,k

t is
constructed as the difference of the squared realized returns of the methods indicated in
row i and columnj: a positive number is evidence in favor of the method in the column.
Notice that RSFDC-F performs better than all the alternative estimators. From Table 7
we can deduce that the models with dynamic conditional correlation performs better than
the models that only consider the unconditional correlation (switching or not). In fact,
the second best is represented by RSFDC-D, but the differences with respect to DCC and
FDCC are not large, whereas they are significant with respect to CCC and RSDC.

5 Concluding Remarks

We propose a new class of models to represent the time-varying correlations between
assets in a DCC framework. The use of the DCC family as basic model is particularly
appealing because of the small number of parameters involved, thus bypassing the prob-
lems of large number of coefficients of other multivariate models, such as that proposed
by Engle and Kroner (1995) or Kroner and Ng (1998).

The models proposed possess a particular MS dynamics, which provides different
changes in regime for different groups of variables. Formally the models are classical

8It is possible to improve the sampling properties of the test adjustingdij,k
t by the geometric mean of

the two variance estimatorsHi
t andHj

t . In this application the results are very similar to those obtained
testing (4.3), so we do not show them.
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MS models with a potentially high number of states. In fact, the particular structure in
groups is obtained allowing the parameters to switch in an appropriate way. This idea
brings some theoretical problems because it is not possible to estimate exactly the model
parameters for the dependence on all the previous regimes. Anyway the models become
tractable using the Kim (1994) approach, which is generally employed to solve this kind
of problems in a MS framework.

The computational problems are greater than the classical MS models, due to the
possible high number of states involved by the Markov chain. In our case, dealing with
two groups, the problem is bypassed observing that the computational problems are due to
the lack of evidence for the presence of four regimes. It is likely that, with more than two
groups, as the number of possible states increases, the problem of not observing some
regimes is even more serious. This is an open problem which needs a more accurate
analysis, maybe looking for alternative solutions and computational algorithms.

In the application proposed, our model RSFDC-F seems to perform better than other
models: it has a higher Sharpe ratio; it seems appropriate in cases of abrupt changes
in correlations, due, for example, to unexpected events, such as a terroristic attack; it
outperforms the other models in terms of Engle and Colacito (2006) tests.

The example was conducted in a simple framework, under the hypotheses of Markovitz
(1959), and the hypotheses of positivity restrictions and no transaction costs. The exer-
cise can be easily extended to include other cases. We have preferred to work in this
framework because it is simple and more frequent in literature.
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Table 1: Estimation results of the volatility part (standard errors in parentheses).

Index µ γ α β
Ban -0.008 0.046 0.084 0.892

(0.028) (0.017) (0.014) (0.018)
Ins 0.009 0.054 0.122 0.855

(0.052) (0.019) (0.021) (0.023)
Hol -0.019 0.054 0.125 0.851

(0.036) (0.019) (0.023) (0.025)
Min 0.061 0.234 0.100 0.800

(0.045) (0.073) (0.026) (0.049)
Che -0.015 0.026 0.078 0.918

(0.049) (0.017) (0.015) (0.016)
Tex 0.033 0.068 0.096 0.870

(0.034) (0.028) (0.020) (0.030)

Table 2: Estimation results for the dynamic correlation models (standard errors in paren-
theses) and Log-Likelihood.

DCC
a b Log-Lik

0.036 0.922 -1489.36
(0.006) (0.018)

FDCC
aF aI bF bI Log-Lik

0.305 0.276 0.556 0.298 -1416.34
(0.025) (0.030) (0.077) (0.043)

RSDC
p00 p11 Log-Lik

0.857 0.870 -1282.00
(0.024) (0.028)

RSFDC-F
aF,0 aF,1 aI,0 p0.,0. p1.,1. Log-Lik

0.042 0.310 0.264 0.713 0.967-1350.61
(0.171) (0.033) (0.039) (0.087) (0.010)

RSFDC-C
p0.,0. p1.,1. Log-Lik
0.963 0.438 -1452.95

(0.013) (0.116)
RSFDC-D

aF,0 aF,1 aI,0 bF,0 bI,0 p0.,0. p1.,1. Log-Lik
0.346 0.120 0.277 0.618 0.249 0.996 0.995-1408.73

(0.025) (0.045) (0.039) (0.026) (0.019) (0.002) (0.005)
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Table 3: Unconditional moments and turnover index of portfolio weights for several cor-
relation models (for each case the first row indicates the mean, the second row the variance
and the third the AR(1) coefficient).

Ban Ins Hol Min Che Tex
0.200 0.160 0.192 0.138 0.156 0.155

CCC 0.070 0.053 0.067 0.035 0.057 0.049
0.175 0.194 0.169 0.347 0.172 0.224
0.198 0.163 0.182 0.136 0.165 0.157

DCC 0.069 0.054 0.063 0.033 0.059 0.049
0.182 0.192 0.148 0.335 0.156 0.216
0.197 0.159 0.195 0.139 0.154 0.156

FDCC 0.068 0.052 0.069 0.035 0.055 0.048
0.155 0.140 0.117 0.325 0.145 0.194
0.200 0.156 0.195 0.139 0.157 0.154

RSDC 0.070 0.051 0.069 0.035 0.057 0.049
0.177 0.194 0.172 0.351 0.172 0.226
0.151 0.131 0.145 0.180 0.206 0.187

RSFDC-F 0.044 0.035 0.039 0.064 0.096 0.066
0.239 0.162 0.207 0.266 0.188 0.190
0.198 0.159 0.185 0.135 0.172 0.151

RSFDC-D 0.069 0.053 0.066 0.034 0.061 0.047
0.162 0.190 0.137 0.359 0.143 0.213

Table 4: Descriptive statistics and performance measures of portfolio with respect to the
Mibtel index for several correlation models.

CCC DCC FDCC RSDC RSFDC-F RSFDC-DMibtel
Mean 0.088 0.091 0.058 0.089 0.117 0.090 -0.058

Variance 2.048 2.064 2.140 2.044 1.966 2.011 2.340
Jensenα 0.123 0.127 0.095 0.124 0.150 0.124

Treynor ratio 0.146 0.147 0.092 0.147 0.204 0.153
Appraisal ratio 0.086 0.089 0.065 0.087 0.107 0.088
Sharpe ratio 0.061 0.064 0.040 0.062 0.084 0.064 -0.038

Sharpe R. 2001 0.027 0.032 0.019 0.029 0.053 0.032 -0.058
Sharpe R. 2002 0.036 0.034 0.005 0.036 0.067 0.034 -0.067
Sharpe R. 2003 0.148 0.152 0.127 0.147 0.147 0.157 0.036
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Table 5: p-values relative to statistic (4.2) to verify the equality of a pair of Sharpe ratios.

DCC FDCC RSDC RSFDC-F RSFDC-D Mibtel
CCC 0.480 0.298 0.495 0.287 0.480 0.008
DCC 0.279 0.485 0.302 0.500 0.006

FDCC 0.293 0.133 0.281 0.030
RSDC 0.292 0.485 0.008

RSFDC-F 0.305 0.001
RSFDC-D 0.007

Table 6: Comparison of volatilities with the Engle-Colacito approach.

CCC DCC FDCC RSDC RSFDC-F RSFDC-D
ER 101.955 100.229 100.000 101.188 105.392 102.159
Ban 103.654 102.497 101.887 103.007 100.000 103.268
Ins 107.365 105.815 105.383 106.977 100.000 105.950
Hol 101.897 100.537 100.000 101.322 100.291 101.685
Min 105.993 101.708 100.000 104.505 107.040 104.372
Che 100.048 100.830 100.811 101.364 102.698 100.000
Tex 102.880 101.295 100.000 102.642 100.946 102.760

Ban-Ins 100.164 100.226 100.037 100.066 100.000 100.096
Ban-Hol 100.221 100.911 100.977 102.156 100.000 100.095
Ban-Min 101.956 102.535 103.342 103.530 100.000 101.661
Ban-Che 102.388 103.260 102.992 103.494 100.000 101.997
Ban-Tex 100.873 101.182 101.594 101.131 100.000 100.616
Ins-Hol 100.141 100.955 101.109 101.810 100.777 100.000
Ins-Min 102.326 102.813 103.780 103.818 100.000 101.902
Ins-Che 101.950 103.361 103.806 103.059 100.000 101.989
Ins-Tex 102.405 103.300 103.725 103.120 100.000 102.480
Hol-Min 100.063 100.000 101.122 100.207 101.104 100.018
Hol-Che 100.966 100.000 100.075 100.715 100.340 100.950
Hol-Tex 100.208 100.719 100.503 100.000 103.251 100.062
Min-Che 100.231 100.649 102.091 100.000 100.948 100.070
Min-Tex 100.978 100.000 102.167 101.034 100.596 100.230
Che-Tex 100.318 101.415 101.144 100.668 103.734 100.000
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Table 7:t-values to verify the equality of a pair of covariance matrices (Diebold-Mariano
test).

CCC DCC FDCC RSDC RSFDC-F RSFDC-D
CCC 1.581 0.993 -2.569 4.191 5.266
DCC -1.581 -0.742 -4.122 2.584 0.776

FDCC -0.993 0.742 -3.306 2.850 1.269
RSDC 2.569 4.122 3.306 4.680 5.153

RSFDC-F -4.191 -2.584 -2.850 -4.680 -2.631
RSFDC-D -5.266 -0.776 -1.269 -5.153 2.631
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Figure 1: Returns of six sectorial indices (4 January 2001-29 August 2003).
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Figure 2: Smoothed Probabilities of state1 for RSDC model and state1· for RSFDC
models.
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Figure 3: Portfolio value using different correlation models (starting investment=100).
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