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Abstract
The main aim of this paper is to describe a workable method based on stochastic
regression and multiple imputation analysis (MISR) to recover for missingness in
surveys where multi-item Likert-type scale are used to measure a latent attribute
(namely, the quality of university teaching). A simulation analysis has been car-
ried out and results have been compared in terms of bias and efficiency with other
missing data handling methods, specifically: Complete Cases Analysis (CCA) and
Multiple Imputation by Chained Equations (MICE). The authors provide also func-
tions (implemented in R language) to apply the procedure to a matrix of ordered
categorical items. Functions described allow: (i) to simulate missing data at ran-
dom and completely at random; (ii) to replicate the simulation study presented in
this work in order to assess the accuracy in distribution and in estimation of a mul-
tiple imputation procedure.
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1 Introduction
When a data matrix displays empty observations, the solution of limiting the anal-
ysis to units not affected by missingness is the default procedure applied by many
statistical softwares. This approach is known as the Complete Case Analysis (CCA).
Unfortunately, this way to cope with missing information could bias the final results
depending on the mechanism which has generated missing observations. Schafer
(1997), recommends not to ignore a fraction of missing information higher than
5%. Furthermore, dealing with real data, a CCA could produce a selection bias;
e.g., in an applied context such as the evaluation of quality of university teaching
CCA could lead to bound the analysis on a specific group of students that are not
representative of the overall population, specifically those who provide more atten-
tion in answering questionnaires. An alternative way to deal with the problem of
missingness is to perform an Available Case Analysis (ACA) using the information
provided by partially observed units for each of the variables. Nevertheless, this
technique is not recommended in a regression analysis context where it may pro-
duce bias and less efficient estimates (Haitovsky, 1968). Considering the drawbacks
of CCA and ACA another approach to deal with missingness is to recover empty
observations with plausible values generated on the basis of some reasonable crite-
ria. This is the frame of the Multiple Imputation Analysis (MIA) techniques (Rubin,
1987) which consist of imputing M plausible values for each missing value. In this
way M complete data sets are generated and separately considered. Results ob-
tained in each data set are next summarized in a single inferential statement using
results provided by Rubin (1987).

This work proposes a multiple imputation analysis (MIA) based on stochastic
regression (MISR) (Little and Rubin, 2002) to cope with missing values in surveys
where variables measured on Likert-type scale (with the same number of response
categories) define the same underlying attribute(Sulis and Porcu, 2007). The MISR
approach replaces missing values with random draws from a distribution whose pa-
rameters have been estimated by parametric regressions. The method uses both the
information provided by the observed values of the variables affected by missing-
ness and the multivariate structure of the data in order to recover partially observed
units. The application here implemented, simultaneously tackles with data-sets af-
fected by different rates of missingness and by two different missing data generat-
ing mechanisms: Missing Completely at Random (MCAR) and Missing at Random
(MAR) (Rubin, 1976). The procedure has been validated according to the criteria of
Accuracy in Distribution (AD) and Accuracy in Estimation (AE) (Chambers, 2001;
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Table 1: Example of data matrix a�ected by missingness
unit items

] I0 I1 I2 I3 I4 I5 I6
1 ··· 1 2 2 1 1 ···
2 4 4 4 ··· 3 4 4
3 3 3 ··· 4 2 ··· 3
4 3 3 3 ··· 3 3 3
5 ··· 3 ··· 4 2 ··· 3

Borgoni and Berrington, 2004). All simulations have been carried out by imput-
ing the data-sets using multiple imputation by stochastic regression (MISR) and
multiple imputation by chain equations (MICE). Results arisen from both miss-
ing data multiple imputation methods have been compared with the CCA. Functions
to replicate the simulation study are provided in the Appendix.

2 An imputation procedure to recover for missingness
This MISR procedure works in two steps. Let’s define a data matrix with n units
and p items. For the sake of simplicity, the method is described by supposing that
responses are recorded on a 4 (K) category Likert-type scale (we suppose that items
are questions on some teaching attributes): 1 =Definitely No – DN, 2 =More No
than Yes – MN, 3 =More Yes than No – MY, 4 =Definitely Yes – DY. Table 1 (for
i = 5 obs. and p = 7 items) shows the first five units.

2.1 Step 1
The procedure starts by building up for each unit i the distribution of the relative
frequencies of ratings in each of the K response categories, as Table 2 shows. From
Table 1 arises that the rate of response for unit ]1 is:

DN =
3
5

= 0.60; MN =
2
5

= 0.40; MY = DY =
0
5

= 0.00.

Unobserved items for unit i are replaced by drawing values from a Multinomial
distribution with parameters set equal to the relative frequencies of ratings observed
for each category (see Table 3).
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Table 2: Response pattern for each unit
unit counts: 4 categories
] DN MN MY DY
1 3 2 0 0
2 0 0 1 5
3 0 1 3 1
4 0 0 6 0
5 0 1 2 1

Table 3: Parameters for the Multinomial random draws
unit vector of parameters of the Multinomial distribution

πi1 πi2 πi3 πi4
1 0.60 0.40 0.00 0.00
2 0.00 0.00 0.17 0.83
3 0.00 0.20 0.60 0.20
4 0.00 0.00 1.00 0.00
5 0.00 0.25 0.50 0.25
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For unit ]1 unobserved items I0 and I6 (see Table 1) are replaced by generating
M× 2 values from a Multinomial (0.60,0.40,0.00,0.00). These values fill in the
two unobserved records I0 and I6 in the M data-sets. Similarly, the unobserved
values in items I0, I2 and I5 for unit 5 are replaced by drawing M× 3 values from
a Multinomial with parameters (0.00,0.25,0.50,0.25). Table 4 shows the first M
random draws generated for unit ]1

Table 4: Values for the imputation of missing items I0 and I6 (unit ]1)
Missing Items MMM randomly generated data sets

unit ]1 1 2 3 4 5 . . . M
I0 111 111 111 222 222 . . . 111
I6 111 111 111 111 111 . . . 111

The first step uses just the information provide from unit response pattern in
order to generate plausible imputed values for each record affected by missingness.

2.2 Step 2
Lets consider one of the M imputed data-set obtained as described in Step 2.1. In
this second step a stochastic regression approach is used: p regression equations
are specified (one for each of the items in the data-set) where each of the p item
is considered as a response variable whose values depend upon the set of (p− 1)
remaining predictors, and (p−1) times as predictor (e.g. the value of I0 is assumed
to depend on I1− I6, the value of I1 is assumed to depend on the predictors I0, I2− I6
and so forth).

By adopting a proportional odds logistic regression model (Agresti, 2002) to
predict the probability to answer a category lower rather than greater than k

logit[P(Y ≤ k|xxx)] = αk +βββ ′′′xxx, (1)

the probability to provide a response in each category is expressed as

πk =
[ exp(αk +βββ ′′′xxx)

1+ exp(αk +βββ ′′′xxx)
− exp(αk−1 +βββ ′′′xxx)

1+ exp(αk−1 +βββ ′′′xxx)

]
. (2)

The α̂ks and β̂ββ ks are estimated using the complete data-set generated in Step 2.1.
Next, for each unobserved unit, 1 random draw is generated from a Multinomial

5



distribution with vector of parameters [π̂1(xxx), . . . , π̂K(xxx)] estimated using equations
(1) and (2). The procedure is iterated in each of the M data-sets. Conditional re-
gression methods allow enormous flexibility for predicting missing values (Raghu-
nathan, 2004). They consider both the information provided by the observed values
of the variables affected by missingness and the multivariate structure of the data.

3 An application of MISR to a survey on university
course quality

MISR has been tested on data provided by the survey on university course quality
carried out at the University of Cagliari. Specifically the data-set concerns ques-
tionnaires gathered at the first level degree scheme at the Faculty of Engineering in
2004-05 academic year. The study aims to assess the extent to which the imputa-
tion procedure fulfills the two criteria of AD and AE. To validate the method with
respect to a benchmark data-set, a complete data set has been built up discarding all
the records with missing observations. The final CD contains 1725 records concern-
ing 24 courses and 10 items: 7 items are related to student’s evaluation of lecturer
(L1−L7), one is related to students’ overall satisfaction towards the course (S), one
is related to student’s attendance at classes (A), one to student’s interest toward the
topic (I). Courses evaluated by less than 50 students have been not considered in
the analysis. The final data set contains 1725 records on 24 courses and it will be
called in the next sections complete data-set (CD). The imputation procedure has
been applied to seven items related to student’s evaluation of lecturer (L1−L7) and
to the item concerning students’ overall satisfaction (S) (Table 5); all are measured
on a four-category Likert scale: Definitely No, More No than Yes, More Yes than
No, Definitely Yes.

Five data sets with an increasing rate (5%, 10%, 15% ,20%, 25%) of missing
units have been generated deleting observations from the CD. Records have been set
missing according to two different mechanisms: MCAR and MAR. The two mech-
anisms have be simulated using function miss.CAR (see § A.3) and miss.AR (see
§ A.4). The former sets an observation missing independently from any response
scheme (see §A.4). The latter fixes the probability to set an observation missing on
the bases of some significant units’ covariates. In the study two students’ covari-
ates, both measured on a four category scale, have been selected as predictors of the
probability of non response: Students’ attendance at classes (1 =Always; 4 =Very
rarely) and Students’ interest toward the topic (1 =Definitely No; 4 =Definitely Yes).
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Table 5: Item considered for the application
Item Contents
L1 Lecturer ability on motivating students
L2 Lecturer highlights topics
L3 Lecturer answers questions during the

class
L4 Lecturer clari�es goals of the course
L5 Lecturer clearly explains topics
L6 Lecturer suggests how to study
L7 Lecturer gives classes on schedule
S Global satisfaction
A Student's attendance at classes
I Student's interest toward the topics

In the CD data-set, the cross-classification of units according to the two covariates
provides 16 clusters of students; each of them has a different probability (π) to skip
an item:

πi =
exp(βββ ′xxxi)

1+ exp(βββ ′xxxi)
. (3)

The βββ vector has been defined attaching the lowest probability πi to skip an item
to students who say to be Definitely Yes interested on the topic and who Always at-
tend classes, instead the highest πi is attached to students who are Definitely No
interested and who have Rarely attended classes. A unit i in the matrix has been set
missing if the result of a random draw from a Bernoulli(πi) was 1 (see §A.4). Five
data-sets have been generated according to the MCAR criteria and five according
to the MAR criteria. The 10 data-sets have been imputed by MISR and by MICE.
The latter procedure has been implemented by Van Buuren & Oudshoorn in the
mice package for the R environment (Van Buuren and Oudshoorn, 2000). MICE
generates multiple imputations for incomplete multivariate data by Gibbs Sampling
(Van Buuren and Oudshoorn, 2004; Schafer, 1997). The algorithm imputes an in-
complete column by generating appropriate imputation values given other columns
in the data matrix. In this application the predictors are the set of the remaining
columns in the data. The imputation function specified is polyreg, which is the
default method for polytomous variables.
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3.1 AD
The AD has been assessed by comparing the agreement between the marginal dis-
tribution of each item in the CD with the marginal distributions of the same item in
each of the M = 100 randomly imputed data sets (Sulis, 2007). The Dissimilarity
index z′ (Leti, 1983) for ordinal variables has been used to measure the discrep-
ancy. For each item, 100 comparisons have been made. Function multipledissimi-
larity.index (see § A.6) calculates the average values of the index taken over the 100
data-sets. Results are depicted in Table 6.

For each of the five rates of missingness, the dissimilarity index exhibits bet-
ter performances when the MCAR assumption holds. Another measure proposed
to evaluate the discrepancy between distributions is the Chi-square statistic. The
Chi-square test highlights those items for which the lack of agreement between the
benchmark and the imputed distributions may not be considered random. Results
obtained by using MISR shows that none of the 100 distribution imputed for each
item departs significantly from the reference. Function multiplechisq.test (see §A.5)
returns for each item the average value of the Chi-square statistic taken over the M
imputed data-sets (the greatest value observed is χ̄2 = .099 for L7). Under both
MCAR and MAR none of the average values signal a significant departure from
the benchmark distribution. The values of multiplechisq.test highlights a good per-
formance of both the imputation procedures in terms of AD. The overall degree of
agrement is high also when the rate of missingness in the data matrix is equal to 25%
(the highest value assumed by the index is 0.02). However, even though for any rate
of missingness MICE seems to perform slightly better than MISR, differences in
absolute terms may be considered no relevant.

3.2 AE
The AE has been assessed by comparing the parameters of a random intercept logit
model estimated using the CD with the one obtained as a synthesis of the cor-
responding estimates observed in the 100 randomly imputed data sets. The logit
model with random intercept has been estimated using the glmmML function im-
plemented in the R package glmmML (Broström, 2007). Function multiglmmML
(see § A.7) summarizes in a single inferential statement results observed in each of
the M randomly imputed data sets using the formula provided by Rubin (1987). By
indicating with θ̂m an estimate for a parameter θ in data set m, the final estimate for
θ is the mean of θ̂m taken over M data sets:
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Table 6: Accuracy in distribution: average values taken over M data sets
Dissimilarity Index

%
miss

L1 L2 L3 L4 L5 L6 L7 S

MCAR
MISR

5% 0.0015 0.0019 0.0014 0.0027 0.0016 0.0025 0.0023 0.0013
10% 0.0038 0.0035 0.0036 0.0024 0.0029 0.0041 0.0055 0.0025
15% 0.0081 0.0057 0.0054 0.0026 0.0032 0.0042 0.0078 0.0026
20% 0.0111 0.0046 0.0075 0.0041 0.0030 0.0080 0.0115 0.0038
25% 0.0157 0.0077 0.0091 0.0067 0.0038 0.0152 0.0199 0.0057

MICE
5% 0.0018 0.0016 0.0013 0.0023 0.0016 0.0031 0.0016 0.0015
10% 0.0028 0.0025 0.0022 0.0021 0.0032 0.0049 0.0019 0.0029
15% 0.0048 0.0039 0.0024 0.0028 0.0041 0.0057 0.0022 0.0029
20% 0.0053 0.0035 0.0024 0.0031 0.0031 0.0044 0.0033 0.0039
25% 0.0067 0.0053 0.0028 0.0037 0.0028 0.0049 0.0038 0.0071

MAR
MISR

5% 0.0018 0.0019 0.0016 0.0023 0.0013 0.0029 0.0020 0.0016
10% 0.0049 0.0031 0.0027 0.0024 0.0021 0.0038 0.0039 0.0041
15% 0.0120 0.0065 0.0052 0.0042 0.0037 0.0049 0.0072 0.0062
20% 0.0119 0.0044 0.0064 0.0056 0.0038 0.0102 0.0110 0.0068
25% 0.0128 0.0108 0.0106 0.0079 0.0039 0.0143 0.0217 0.0067

MICE
5% 0.0015 0.0022 0.0012 0.0019 0.0014 0.0034 0.0017 0.0015
10% 0.0033 0.0027 0.0019 0.0023 0.0024 0.0031 0.0019 0.0044
15% 0.0084 0.0040 0.0025 0.0037 0.0042 0.0040 0.0034 0.0056
20% 0.0081 0.0030 0.0025 0.0031 0.0044 0.0033 0.0044 0.0077
25% 0.0075 0.0042 0.0040 0.0029 0.0033 0.0038 0.0045 0.0057

9



θ̄ = M−1
M

∑
m=1

θ̂m. (4)

For the Vm associated variances, the overall variance of θ is a combination of
the Within imputation variance and the Between imputation variance:

T = Within+(1+M−1)Between; (5)

Within = M−1
M

∑
m=1

V̂m; (6)

Between = (M−1)−1
M

∑
m=1

(θ̂m− θ̄)2. (7)

The model fitted specifies the probability to be or not to be globally satisfied
(item S) as a function of items L1−L7. Both response and predictor variables have
been previously dichotomized. The model is defined as

logit[Pr(Yig = 1|ug)] = α +
p

∑
j=1

β jxi j +ug (8)

where i = 1, . . . ,ng are students’ evaluations for the gth course and the random in-
tercept ug ∼ N(0,σ2). Results depicted in Table 7 and 9 show that MISR method
produces satisfactory estimates of coefficients regression parameters under both
MCAR and MAR assumptions for rates of missing records in the matrix not over
10%.

The advantage of adopting MICE in respect of MISR seems to be higher under
the MCAR than MAR. Moreover, the convenience increases as the rate of miss-
ingness in the data set becomes severe. From the simulation study arises that both
multiple imputation methods do not perform well in estimating the intercept pa-
rameter (α̂) and the parameter (β̂L7). Nevertheless, the latter is better estimated by
MICE. The estimates of α̂ become strongly unreliable when the rate of missing
units increases. Both procedures show a better performance in respect of the CCA
results; as depicted in Table 7 and 9, the latter leads to bias and inefficient estimates
of many parameters in data-sets strongly affected by missingness. In the MAR data-
sets, the two multiple imputation procedure provides results quite similar for rates
of missingness under 15%. Tables 8 and 10 show , as could be expected, that both
multiple imputation procedure, MICE and MISR, produce accurate estimates of
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Table 7: MCAR: Coe�cient parameters for the random intercept logit model

% miss α̂ β̂L1 β̂L2 β̂L3 β̂L4 β̂L5 β̂L6 β̂L7 σ̂
MCAR
MISR

5% −4.048 1.484 0.599 .770 .507 1.702 .734 1.713 0.559
10% −3.942 1.399 0.630 .839 .592 1.683 .707 1.503 0.571
15% −3.469 1.369 0.632 .727 .465 1.649 .667 1.219 0.553
20% −3.155 1.274 0.590 .712 .555 1.492 .742 1.002 0.552
25% −2.961 1.156 0.679 .599 .453 1.404 .899 0.994 0.532

MICE
5% −4.131 1.490 .587 .745 .527 1.739 .709 1.806 .561
10% −4.294 1.409 .622 .857 .605 1.785 .673 1.788 .566
15% −3.918 1.434 .579 .750 .482 1.781 .611 1.613 .554
20% −3.633 1.404 .488 .841 .489 1.694 .644 1.382 .565
25% −3.627 1.282 .637 .765 .265 1.684 .852 1.555 .524

CCA
5% −4.009 1.606 .660 .510 639 1.672 .610 1.710 .428
10% −4.370 1.630 .710 .516 671 1.905 .612 1.775 .359
15% −3.294 1.756 .733 .141 360 1.946 .636 1.140 .441
20% −3.071 1.254 .678 .085 549 2.008 .977 .887 .000
25% −3.492 1.078 .954 −.009 333 1.609 1.017 1.492 .000

CD
- −4.254 1.494 0.666 0.658 0.575 1.742 0.767 1.871 0.599
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Table 8: MCAR: SE of the coe�cient parameters for the random intercept
logit model

% miss α̂ β̂L1 β̂L2 β̂L3 β̂L4 β̂L5 β̂L6 β̂L7 σ̂
MCAR
MISR

5% .415 .184 .203 .235 .202 .182 .189 .345 .133
10% .423 .192 .210 .243 .209 .191 .196 .346 .138
15% .398 .193 .225 .252 .221 .193 .204 .340 .137
20% .391 .198 .240 .270 .220 .195 .205 .330 .140
25% .394 .207 .214 .261 .228 .202 .201 .336 .140

MICE
5% .418 .183 .205 .239 .203 .184 .189 .344 .134
10% .447 .196 .218 .248 .217 .196 .203 .375 .141
15% .444 .204 .240 .257 .229 .205 .211 .373 .142
20% .449 .218 .251 .288 .242 .211 .214 .390 .139
25% .463 .221 .243 .286 .259 .214 .239 .397 .138

CCA
5% .438 .212 .235 .270 .230 .210 .215 .367 .142
10% .571 .274 .317 .357 .301 .261 .278 .484 .206
15% .616 .334 .383 .442 .377 .324 .341 .580 .263
20% .728 .429 .521 .554 .474 .426 .445 .693 .344
25% 1.003 .542 .626 .681 .621 .565 .523 .978 .358

CD
- .417 .177 .197 .230 .195 .176 .182 .347 .138
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Table 9: MAR: Coe�cient parameters for the random intercept logit model

% miss α̂ β̂L1 β̂L2 β̂L3 β̂L4 β̂L5 β̂L6 β̂L7 σ̂
MAR
MISR

5% −4.109 1.481 .572 .774 .566 1.752 .715 1.733 .558
10% −3.726 1.436 .733 .725 .489 1.683 .759 1.341 .521
15% −3.421 1.342 .727 .697 .433 1.537 .689 1.264 .539
20% −3.256 1.310 .724 .679 .462 1.482 .778 1.111 .536
25% −3.086 1.189 .792 .726 .408 1.479 .769 0.967 .533

MICE
5% −4.175 1.502 .535 .755 0.584 1.783 .705 1.809 .554
10% −3.853 1.486 .660 .681 0.535 1.785 .687 1.486 .538
15% −4.067 1.399 .610 .762 0.399 1.735 .549 1.897 .519
20% −3.894 1.408 .546 .721 0.416 1.743 .719 1.761 .546
25% −3.597 1.312 .838 .701 0.290 1.712 .749 1.373 .544

CCA
5% −3.977 1.578 .570 .518 .496 1.731 .703 1.817 .438
10% −3.678 1.632 .813 .422 .561 1.668 .556 1.382 .290
15% −3.673 1.894 1.080 .118 .393 2.013 .415 1.182 .001
20% −4.187 1.696 1.248 −.059 .723 2.409 .635 1.093 .000
25% −4.803 1.759 1.533 −.015 .355 2.490 .745 1.690 .001

CD
- −4.254 1.494 0.666 0.658 0.575 1.742 0.767 1.871 0.599
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Table 10: SE of coe�cient parameters for the random intercept logit model
% miss α̂ β̂L1 β̂L2 β̂L3 β̂L4 β̂L5 β̂L6 β̂L7 σ̂

MAR
MISR

5% .415 .183 .206 .235 .200 .183 .187 .347 .137
10% .421 .189 .212 .249 .217 .197 .196 .364 .136
15% .415 .192 .225 .253 .218 .207 .207 .356 .144
20% .405 .201 .230 .257 .232 .200 .206 .353 .144
25% .392 .207 .227 .258 .231 .199 .212 .343 .146

MICE
5% .419 .182 .205 .239 .202 .180 .189 .349 .135
10% .429 .191 .215 .249 .224 .191 .198 .373 .136
15% .467 .200 .243 .273 .239 .203 .209 .412 .139
20% .465 .209 .251 .289 .256 .211 .227 .400 .143
25% .470 .205 .281 .274 .262 .223 .236 .423 .148

CCA
5% .438 .203 .231 .268 .226 .204 .212 .375 .144
10% .495 .241 .276 .320 .269 .240 .248 .436 .200
15% .612 .306 .381 .415 .362 .302 .321 .523 .170
20% .731 .351 .467 .477 .421 .347 .359 .586 .181
25% .925 .435 .585 .583 .529 .438 .443 .721 .303

CD
- .417 .177 .197 .230 .195 .176 .182 .347 .138
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Figure 1: Comparisons between MISR and MICE estimates under MCAR assumption

MICE_MCAR

Estimated parameters

β̂L1
β̂L2

β̂L3
β̂L4

β̂L5
β̂L6

β̂L7 σ̂

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

CD
5%
10%

15%
20%
25%

MISR_MCAR

Estimated parameters

β̂L1
β̂L2

β̂L3
β̂L4

β̂L5
β̂L6

β̂L7 σ̂

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

standard errors. In the Mixed effect model framework the greatest advantage of the
MICE and MISR approaches is the accuracy in the estimation of the random term
(see last column of Tables 7 and 9). Figures 1 and 2 better highlight the accuracy in
estimation of both multiple imputation methods and make easier the comparisons
between them under the two missing data generating mechanisms.

4 Some �nal remarks
In this article a multiple imputation approach based on stochastic regression models
has been described, implemented and evaluated in respect of the widely validated
MICE approach. The proposed MISR procedure is an ad hoc method to recover
for missingness in data where items measured on Likert-type scale define the same
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Figure 2: Comparisons between MISR and MICE estimates under MAR assumption
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latent trait. The examination of subject pattern of responses provides information
on the way students score categories and help us to learn if subject tends to use
high, low or middle categories. This motivates the first step of the procedure. MISR
seems to produce unbias and efficient estimates of many coefficient parameters in
Mixed effect models framework. Estimates provided by MISR under MAR assump-
tion do not seems to show a remarkable departure from the one obtained using
MICE library, at least when the rate of missingness in the data matrix does not
become severe.
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A Some functions implemented in R-language
A.1 Multiple imputation procedure for a single item a�ected by

missingness: the function imputrm
Description:

A multiple imputation procedure to impute unobserved units in a single cate-
gorical item measured on a K category ordinal scale.

Use:

imputrm(B,m)

Arguments:

B: A data matrix composed by p categorical variables all measured on a K cate-
gory ordinal scale. The variable which has to be imputed is in the first column
of the BBB data matrix.

m: The number of M randomly imputed variables.

Function:

imputmr<-function(B, m){
library(nnet)
library(MASS)
y<-B[,1]
cat<- length(table(B[,1]))
n<-nrow(B)
ca<-c(1:cat)
distfreq<-matrix(NA, n, cat)

for(i in 1:n) {
for(j in 1:cat){

distfreq[i,j]<-length(B[i,][B[i,]==ca[j]&
!is.na(B[i,])])

}
}

j<-ncol(B)
nrisp<-apply(distfreq,1,sum)
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freq<-distfreq/nrisp
ceck<-is.na(freq)*5
impm<-array(NA, c(n,cat,j,m))

for(i in 1:n) {
impm[i,,,]<-ifelse( array(rep(ceck[i,],j*m),
c(cat,j,m))==array(rep(5,j*m),c(cat,j,m)),
array(rep(freq[i,],j*m),c(cat,j,m)),
array( rmultinom(j*m,1, c(freq[i,])),c(cat,j,m)))

}
for(k in 1:cat){

impm[,k,,]<-ifelse(impm[,k,,]==1, k, impm[,k, ,])
}

imp<-array(NA,c(n,j,m))
for(t in 1:j) {
for(s in 1:m) {

imp[,t,s]<-apply(impm[,,t,s],1, sum, na.rm=TRUE)
}
}

mat<-array(NA, c(n,j,m))
for(t in 1:j) {
for(s in 1:m) {

mat[,t,s]<-ifelse(is.na(B[,t])==TRUE & imp[,t,s]!=0 ,
imp[,t,s],B[,t])

}
}

p<-cat
pred<-array(NA, c(n,p,m))
mat1<-mat

for(s in 1:m){
mat1[,,s]<-apply(mat1[,,s],2,factor)

}
for(s in 1:m) {

reg<- polr(factor(mat1[,1,s]) ~., data=mat1[,-c(1),s],
na.action='na.exclude')
x<-mat1[,-c(1),s]
hat<-predict(reg, newdata=x, type="prob")
pro<-as.matrix(hat)
p<-ncol(pro)
ceck<-is.na(pro)*1

for(i in 1:n) {
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pred[i, ,s]<-ifelse(ceck[i,]==rep(1,p), pro[i,],
rmultinom(1,1, c(pro[i,])) )

}
}

for(k in 1:p){
pred[,k,]<-ifelse(pred[,k,]==1, k, pred[,k,])

}
imp<-matrix(NA,n,m)
for(t in 1:m) {
imp[,t]<-apply(pred[,,t],1, sum, na.rm=TRUE)

}
for(t in 1:m) {
imp[,t]<-ifelse(is.na(y)==TRUE ,imp[,t], y)

}
return(imp)
}

A.2 Multiple imputation procedure for a set of items a�ected by
missingness: the function imputmult

Description:

Multiple imputation procedure to impute missing observations in a set of cat-
egorical items all measured on a K category ordinal scale.

Use:

imputmult(B,m)

Arguments:

B: A data matrix of p categorical variables all measured on a K category ordinal
scale. The procedure starts imputing firstly the first column of the BBB data
matrix, using the set of the p−1 categorial items as a predictors, next it carries
on imputing the second column using the remaining items as predictors and
so forth.

m: The number of M randomly imputed data sets.
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Function

imputmult<-function(B,m){
n<-nrow(B)
j<-ncol(B)
prova<-array(NA,c(n,m,j))
for(v in 1:j) {
prova[,,v]<-imputmr(cbind(B[,v],B[,-c(v)]),m)

}
return(prova)

}

A.3 Function to simulate MCAR observation in the data matrix:
the function miss.CAR

Description:

Function to simulate a given rate of completely at random missing values in
each of the p items of the data matrix B

Use:

miss.CAR(B,pi, numbers)

Arguments:

B: A data matrix of p categorical variables all measured on a K category ordinal
scale.

pi: The rate of observations simulated missing in each item.

numbers: Seed of the random numbers generator.

Function:

miss.CAR<-function(B, pi, numbers){
n<-nrow(B)
c<-ncol(B)
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set.seed(numbers)
Binom<-matrix(NA,n,c)
for(j in 1:c){
Binom[,j]<-rbinom(n,1,pi)

}
item2<-matrix(NA,n,c)
for(j in 1:c) {
item2[,j]<-ifelse(Binom[,j]==1,NA, item[,j])

}
return(item2)

}

A.4 Function to simulate MAR observation in the data matrix:
the function miss.AR

Description:

Function to simulate a given rate of missing values at random in each of the
p items of the data matrix B

Use:

miss.AR(B, X, numbers, b)

Arguments:

B: A data matrix of p categorical variables all measured on a K category ordinal
scale.

X: A data matrix where the first column is a vector of ones and the remaining
J columns are the predictors of the probability of non response. For each
predictor measured on a K categories scale are introduced (K− 1) dummy
variables.

numbers: Seed of the random numbers generator.

b: The vector of coefficient parameters corresponding to X .
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Function:

miss.AR<-function(B, X, numbers, b){
n<-nrow(B)
c<-ncol(B)
set.seed(numbers)
pi=exp(X%*%b)/(1+exp( X%*%b))
Binom<-matrix(NA,n,c)
for(j in 1:c){
Binom[,j]<-rbinom(n,1,pi)

}
item2<-matrix(NA,n,c)
for(j in 1:c) {item2[,j]<-ifelse(Binom[,j]==1, NA, item[,j])}
return(item2)

}

A.5 Function to assess the accuracy in distribution 1: the function
multiplechisq.test

Description:

The function calculates for each of the M randomly imputed data sets the
Chi-squared test between the marginal distribution of the randomly imputed
variables and the true distribution in the CD data set. The statistic is calculated
for all items involved in the imputation procedure. For each item the function
returns the average value of the Chi-square Test taken over the M results.

Use:

multiplechisq.test<-function(imp,item,K)

Arguments:

imp: An array of dimensions n× j×M which contains the M imputed data sets

item: The Complete data set (CD).

K: Number of categories of the item in the data matrix .
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Function:

multiplechisq.test<-function(imp,item,K){
f.count<-function(var){
freq<-table(var) /sum(table(var))
}

m<-dim(imp)[2]
j<-dim(imp)[3]

distr<-apply(imp, c(2,3), f.count)
orig<-apply(item,2,f.count)
cumor<-apply(orig,2, cumsum)
cumdist<-array(NA,c(m,K,j))
for(t in 1:m){
cumdist[t,,]<- apply(distr[,t,],2,cumsum)
}
onesm<-rep(1,m)
cumorm<-outer(onesm,cumor)
distrm<-array(NA,c(m,K,j))

for(t in 1:m) {
distrm[t,,]<-distr[,t, ]
}
orm<-outer(onesm,orig)
chisq<-(distrm-orm)^2/orm
r.chisq<-matrix(NA,m,j)

for(g in 1:j) {
r.chisq[,g]<-apply(chisq[,,g],1,sum)
}
list(chisq=apply(r.chisq,2,mean))
}

A.6 Function to assess the accuracy in distribution 2: the function
multipledissimilarity.index

Description:

The function calculates in each of the M randomly imputed data sets the Dis-
similarity Index for ordinal categorical variables between the marginal dis-
tribution of the randomly imputed variables and the true distribution in the
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CD data set. The statistic is calculated for all items involved in the imputa-
tion procedure. For each item the function returns the average value of the
Dissimilarity Index taken over the M results.

Use:

multidissimilarity.test<-function(imp,item,K)

Arguments:

imp: An array of dimensions n× j×M which contains the M imputed data sets

item: The Complete data set (CD).

K: Number of categories of the item in the data matrix .

Function:

multipledissimilarity.index<-function(imp,item,K){
f.count<-function(var){
freq<-table(var) /sum(table(var))

}
m<-dim(imp)[2]
j<-dim(imp)[3]

distr<-apply(imp, c(2,3), f.count)
orig<-apply(item,2,f.count)
cumor<-apply(orig,2, cumsum)
cumdist<-array(NA,c(m,K,j))

for(t in 1:m){
cumdist[t,,]<- apply(distr[,t,],2,cumsum)

}
onesm<-rep(1,m)
cumorm<-outer(onesm,cumor)
absdiff<-abs(cumdist-cumorm)
dissimilarity<-matrix(NA,m,j)

for(g in 1:j){
for(t in 1:m){

dissimilarity[t,g]<-(sum(absdiff[t,,g])/(K-1))
}
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}
list(dissimilarity.mean=apply(dissimilarity,2,mean),

dissimilarity.m=dissimilarity)
}

A.7 Function to �t a logit model with random intercept in each of
the M multiple imputed data-sets: the function multiglmmML

Description:

The function multiglmmML fits GLMs with random intercept by Maximum
Likelihood and numerical integration (see function glmmML implemented
in the package glmmML) in each of the M randomly imputed data sets and
summarizes multiple results in a single inferential statement. The function
multiglmmML returns the following estimates:

� mean.beta: the average value of coefficient parameters taken over the
M imputed data-sets;

� W.beta: the within data-sets variance of the coefficient parameters;

� B.beta: the between data-sets variance of the coefficient parameters;

� sigma.coe�: the average value of the random parameter taken over the
M imputed data-sets;

� W.sigma : the within data-sets variance of the random parameter

� B.beta: the between data-sets variance of the random parameter

Use:

multiglmmML<- function(Y, X, I, npar)

Arguments:

Y: A matrix of dimensions n×M: the dependent variable in each of the M
randomly imputed data-sets.

X: An array n×J×M: the matrix of J predictors in each of the M randomly
imputed data-sets.
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I: A matrix of dimensions n×M: the group variable in each of the M
randomly imputed data-sets.

npar: Number of coefficients

Function:

multiglmmML<- function(Y, X, I, npar){
library(glmmML)
m<-dim(X)[2]
coeff<-matrix(NA, m,npar)
varianza<-matrix(NA,m,npar)
random<-rep(NA,m)
var.random<-rep(NA,m)

for(t in 1:m){
mod1<-glmmML(Y[,t]~X[,t,], cluster=I[,t],

family=binomial)
## See the help of function glmmML to add/change some options to mod1

coeff[t,]<-mod1$coeff
varianza[t,]<-(mod1$coef.sd)^2

random[t]<-mod1$sigma
var.random[t]<-(mod1$sigma.sd)^2
}

list(mean.beta=apply(coeff,2,mean), W.beta=apply(varianza,2,mean),
B.beta=apply(coeff,2,var), sigma.coeff=mean(random),
W.sigma=mean(var.random), B.sigma=var(random))
}
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