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    Abstract 
 
Financial time series are often characterized by similar volatility structures, often 
represented by GARCH processes. The detection of clusters of series displaying similar 
behavior could be important to understand the differences in the estimated processes, 
without having to study and compare the estimated parameters across all the series. This 
is particularly relevant dealing with many series, as in financial applications. The 
volatility of a time series can be characterized in terms of the underlying GARCH 
process. Using Wald tests and the AR metrics to measure the distance between GARCH 
processes, it is possible to develop a clustering algorithm, which can provide three 
classifications (with increasing degree of deepness) based on the heteroskedastic patterns 
of the time series. The number of clusters is detected automatically and it is not fixed a 
priori or a posteriori. The procedure is evaluated by simulations and applied to the sector 
indexes of the Italian market 
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1 Introduction

The topic of classification of time series has recently received a lot of contributions, in
particular in time series data mining (see, for example, Agrawal et al., 1994), computer
science (Gray and Markel, 1976), economic time series (Caiado et al., 2006). Liao
(2005) provides an extensive review of studies in clustering and discrimination of time
series. In particular, he distinguishes three major categories of approaches to time series
clustering: 1)raw-data-based approaches, in which the series compared are considered
as normally sampled at the same interval; 2)features-based approaches, in which the
series are compared using some selected features; 3)model-based methods, where the
time series are considered similar when the models characterizing them are similar.

The approach proposed in this work belongs to the third category; in particular it
follows the tradition of AR processes to capture the similarity among time series, as
in Piccolo (1990), Maharaj (1996, 1999, 2000), Xiong and Yeung (2002) (see Piccolo,
2007, and Corduas and Piccolo, 2008, for a review). Most of these studies are devoted to
capturing the structure of the mean of the process hypothesized as generator of the data,
whereas little attention was put on the variance. This is a correct approach when dealing
with classifications based on ARMA models and in presence of homoskedastic variance
(for example, the clustering methods based on the AR metrics proposed by Piccolo,
1990); in fact, in this case, the variance is a function of the process parameters, so that it
is implicitly considered in the classification. Dealing with heteroskedastic time series, in
which the (conditional) variance follows a stochastic process (typically a GARCH pro-
cess; Engle, 1982, Bollerslev, 1986), the comparison of the dynamics of the variances is
fundamental. This is particularly important if dealing with financial time series, when
the investor has a very large investment universe (hundreds of stocks) and s/he would
like to have groups of series with similar characteristics (similar unconditional variance,
similar dynamics, etc.). Moreover, the volatility of a return is generally considered as
a proxy of the risk of the same return; in other words the classification of returns of
several assets is equivalent to classifying the assets in clusters with similar risk. Further-
more movements in a time series could help to forecast the movements of a similar time
series. In fact, the financial time series are generally subject to co-movements and sim-
ilar volatility structures, due to the strong reciprocal influence among financial markets
(see, for example, Bollerslev et al., 1994) and the increasing integration among markets
(Gallo and Otranto, 2007b). Generally, turmoil periods are transmitted from a market to
another. The classification of financial time series in homogeneous clusters for similar
volatility structures could be an important objective for the financial analysts. Such a re-
sult could be useful, for example, in the analysis of the spillover effects among markets,
where the shocks affecting a market can influence the behavior of another market (see,
for example, Gallo and Otranto, 2007a and 2007b).

In this paper we propose a clustering procedure based on simple statistical tools. In
particular, we consider the squared disturbances of the returns of a financial time series
as the volatility of the series. Then, we use the GARCH representation of the conditional
variance to derive the model underlying the squared disturbances. From this model we
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can separate the volatility in a constant part and a time-varying part; this subdivision can
have an appealing interpretation, in particular when we use the volatility to represent
the risk of the asset. The constant part of the volatility is measured in a natural way,
whereas we measure the time-varying part extending the idea of distance between AR
models (Piccolo, 1990) to the GARCH family. The constant part could be interpreted as
the lower bound of volatility (minimum expected risk) of a certain series, whereas the
unconditional volatility represents the expected risk and seems more interesting for the
investor. We classify the series with similar unconditional volatility and similar time-
varying volatility using classical Wald statistics. The use of the results of a statistical
test (the p-value) to classify time series was successfully performed by Maharaj (1996,
1999, 2000), dealing with AR models. Her approach is different from the one proposed
here because she calculates the p-value for every pair of series and uses these results in
an algorithm which follows the principles of hierarchical clustering. In our approach
we consider a starting benchmark series and then apply an agglomerative algorithm. In
particular we can obtain three different levels of clustering, depending on the degree of
deepness chosen. An interesting characteristic of this procedure is that, unlike the main
agglomerative algorithms, the number of clusters is detected automatically and it is not
determined by the user.

In the next section we deal with the statistical tools we need to develop the clustering
algorithm, which will be described in section 3; this algorithm is based on a sequence of
statistical tests, described in section 4. In section 5 we show some simulations studies,
using various GARCH data generating processes, to evaluate the performance of the
clustering algorithm, whereas in section 6 we apply the procedure to classify the sectors
of the Italian financial market. Final remarks will conclude the paper.

2 Some Statistical Tools

Let us consider a time seriesyt; we suppose that it is the sum of a constant term and a
heteroskedastic disturbance:

yt = µ + εt, t = 1, ..., T
and

εt = h
1/2
t ut

(1)

whereut are i.i.d. Normal disturbances with mean zero and variance one. The condi-
tional varianceht follows a GARCH(p,q) process (Bollerslev, 1986), as:

ht = γ + α1ε
2
t−1... + αpε

2
t−p + β1ht−1 + ... + βqht−q, (2)

with γ > 0, 0 ≤ αi < 1, 0 ≤ βj < 1 (i = 1, ...p, j = 1, ..., q),
(∑p

i=1αi +
∑q

j=1 βj

)
<

1.
In this section we will characterize the volatility of a time series as (1) in terms of

squared disturbances, describing some statistical tools to develop a clustering procedure.
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2.1 Unconditional, Minimum and Time-varying Volatilities

The volatility of a financial time series is not observable and its study is generally made
using a proxy, such as the squared returns, the intra-daily range, the realised volatility.
In the framework described by equation (1) the disturbancesεt (and the observed time
seriesyt) have the heteroskedastic behavior represented by the GARCH process (2).
Then the squared disturbancesε2

t can represent the unobserved volatility ofyt. In our
approach we do not need to create a proxy of the volatility, but only to derive a statistical
model for it.

From equation (2), after simple algebra, we can represent the time seriesε2
t by an

ARMA(p∗, q) model, withp∗ = max(p, q):

ε2
t = γ +

p∗∑

i=1

(αi + βi)ε2
t−i −

q∑

j=1

βj(ε2
t−j − ht−j) + (ε2

t − ht), (3)

where(ε2
t − ht) are mean zero errors, uncorrelated with past information,αi = 0 for

i > p if p∗ = q andβi = 0 for i > q if p∗ = p. Substituting recursively in (3) the errors
with their ARMA(p∗, q) expression, we obtain the AR(∞) representation:

ε2
t =

γ

1−∑q
j=1 βj

+
∞∑

k=1

πkε
2
t−k +

(
ε2
t − ht

)
. (4)

From the ARMA expression (3) it is easy to obtain the AR coefficientsπk. As it is well
known, indicating withφi the generic AR coefficient andθj the generic MA coefficient
of an ARMA(p,q) model, the recursive formula (see, for example, Brockwell and Davis,
1996):

πk −
q∑

j=1

θjπk−j = φk, k = 0, 1, ..., (5)

provides the sequence of the coefficientsπk. In (5)φ0 = 1, φi = 0 for i > p andπk = 0
for k < 0. From (3), the previous relationship is equivalent to:

πk = (αk + βk)−
q∑

j=1

βjπk−j . (6)

From (4) the expected volatility at timet+1, given the information available at time
t, is given by:

Et(ε2
t+1) =

γ

1−∑q
j=1 βj

+
∞∑

k=1

πkε
2
t−k. (7)

Let us note that the expected volatilityEt(ε2
t+1) can be split in two positive parts: a

constant partγ/(1−β1− ...−βq), which can represent theminimum expected volatility
of the return; atime-varyingpart (

∑∞
k=1πkε

2
t−k), which depends on the past history of
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the volatility and can vary along the time. Dealing with financial time series, it is likely
that returns referred to shares with high risk or funds with a large risky component will
show a high constant part. Anyway, the investor is interested in a general measure of
the risk and not in its lower bound; this measure is given by the unconditional expected
value ofε2

t+1 (unconditional volatility), given by:

E(ε2
t+1) =

γ

(1−∑q
j=1 βj)(1−

∑∞
k=1πk)

. (8)

Series with similar unconditional volatility can have different dynamics, characterized
by different time-varying volatilities.

2.2 Distance between GARCH Processes

Piccolo (1990) proposed a metrics measuring the distance between two ARMA models,
based on the comparison of the coefficients of their AR(∞) representation. This tool
has had a large success in several fields; a review of its properties and applications with
several references can be found in Piccolo (2007) and Corduas and Piccolo (2008).

Indicating withπ1j andπ2j the coefficients at lagj of the two models, the general
form of this metrics is given by:

d =

[ ∞∑

k=1

(π1k − π2k)2
]1/2

. (9)

This metrics requires only that the two ARMA processes are invertible. Following
Otranto (2004), this metrics can be applied to the AR(∞) structures of the squared distur-
bances, expressed in (4); the invertibility is assured by the constraints on the coefficients
of the GARCH model. A higher distance implies a more different dynamics between the
two series; a distance equal to zero implies that the two series follow the same dynamics.
It is important to note that a distance equal to zero does not mean that the series have the
same volatility, but only that the time-varying part of the volatility is the same.

2.3 Equal Volatility Structures

If two series have the same unconditional (and/or minimum) volatility and the same
time-varying volatility, it is not possible to conclude that they are generated by the same
GARCH process. In fact the equality of the two unconditional volatilities and the two
time-varying volatilities is relative to two nonlinear combinations of the coefficients. The
case of equality of the two data generating processes (which we defineequal volatil-
ity structure) is obtained if and only if the constantγ and the coefficientsαi andβj

(i = 1, ...p; j = 1, ..., q) are the same for the two GARCH models. This is a stronger
relationship with respect to the equality of the unconditional volatilities and the time-
varying volatilities. It is obvious that equal volatility structure ofs time series implies
equal unconditional, minimum and time-varying volatilities (but not vice versa).
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3 The Clustering Algorithm

The statistical tools illustrated in the previous section can help in the development of
an algorithm which creates clusters of series with homogeneous volatility. In particular,
the definition of unconditional and time-varying volatility could suggest two levels of
clustering: one based only on the unconditional volatility and the other based on both
kinds of volatilities. Finally, a more accurate classification can be obtained distinguish-
ing, within the groups with equal unconditional and time-varying volatilities, the series
with equal volatility structure.

In sum, we can obtain three levels of clustering. Deeper clustering could imply
small groups and a large number of clusters. The steps of the clustering algorithm can
be synthesized in the following way:

1. First Level (clusters with equal unconditional volatility):

(a) order the series in terms of increasing unconditional volatility and choose an
initial benchmark;

(b) insert in the same cluster the series with unconditional volatility not sig-
nificantly different from the benchmark volatility; the series with minimum
unconditional volatility which does not enter in this cluster is considered the
benchmark for the successive cluster;

(c) go on until no series remain;

2. Second Level (clusters with equal unconditional volatility and equal time-varying
volatility):

(a) in each first level cluster, order the series by increasing time-varying volatil-
ity; the series with minimum time-varying volatility of each cluster is the
benchmark of the cluster;

(b) form sub-clusters with series having equal time-varying volatility with re-
spect to the benchmark; the series with minimum time-varying volatility
which does not enter in a sub-cluster is considered the benchmark for the
successive sub-cluster.

(c) go on until no series remain;

3. Third Level (clusters with equal volatility structure)

(a) in each second level sub-cluster verify the equal volatility structure (by some
test) for each pair of series;

(b) if all the p-values are less than the nominal size of the test, the series con-
sidered have different volatility structures; otherwise, select the pair of series
with maximum p-value and repeat the test of equal volatility structure adding
a series to the pair selected;
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(c) select the group of series with maximum p-value and go on until the hypoth-
esis of equal volatility structure is rejected;

(d) repeat steps 3.(b) and 3.(c) for the remaining series;

(e) go on until no series remain.

Note that, in the first two levels, the clusters have a natural order, with the series
with smallest unconditional volatility (first level clustering) or the series with smallest
unconditional and time-varying volatilities (second level clustering) belonging to the
first group and the series with highest unconditional (and time-varying) volatility to the
latest group.

To provide this classification we need to define an initial benchmark series. In step
1.(a) the choice is rather natural if we define an hypothetical series with null uncondi-
tional volatility. This case is verified when the seriesyt is constant (in (1) the stochastic
part is absent).

In step 2.(a) we have to establish what is the minimum time-varying volatility. This
is a less obvious idea because the time-varying volatility is an infinite weighted sum of
unobserved random variables (see equation (7)). In this case we can use the relationship
between the distance (9) and the time-varying volatility, described in section 2.2. In
particular, a null time-varying volatility is obtained when eachπ coefficient is equal to
zero. From (6) it is easy to deduce that this is obtained whenαi = 0 for eachi = 1, ..., p.
If we do not imposeβj = 0 for j = 1, ..., q, the conditional varianceht of the process (2)
is constant from a certaint; so, having to choose a benchmark, we impose alsoβj = 0
for every j, obtaining a constant conditional variance for eacht. In other words, we
characterize the case of null time-varying volatility by a series with constant conditional
variance. In this way, in step 4 of the clustering algorithm, the arrangement of the series
in terms of increasing time-varying volatility is obtained calculating the distance of each
seriesr from the case of constant volatility:

[ ∞∑

k=1

π2
rk

]1/2

. (10)

In the third level clustering we verify if the series belonging to the same cluster can
be considered as generated by the same data generating process. For this case the order
is based on a p-value approach; its use in a clustering algorithm is justified because the
p-value is a measure of similarity and satisfies properties of a semi-metric (see Maharaj,
1999).

In the next section we describe the tests to apply the clustering procedure.

4 Wald Statistics to Perform the Clustering Procedure

The algorithm proposed to cluster the series in groups with similar volatility requires
verifying what series have similar unconditional volatility, what series have similar time-
varying volatility and what series have the same volatility structure. We can obtain
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this result verifying a set of constraints on the GARCH parameters. This section will
illustrate the test to be used for each clustering level.

Let us considern time series, each one following the model (1)-(2). Three points
have to be emphasized. First, the series can follow different dynamics in (1), for example
they can have an ARMA expression or can depend on some observed variables; what we
need is only that the conditional variance ofεt follows a GARCH(p,q) process. Second,
the ordersp andq of the GARCH processes are not necessarily the same for each time
series. Third, the results are valid also in multivariate modeling, assuming a Dynamic
Conditional Correlation structure as in Engle (2002); in fact, in this case the estimation of
the volatility part of this model can be performed estimatingn univariate GARCH(p,q)
models (in the final section we will comment more in detail this point).

Let us callγ̂r, α̂r,i, β̂r,j the maximum likelihood estimates of the parameters of the
n GARCH models; the indexr is referred to the time series (r = 1, ..., n), whereas
i = 1, ..., pr, j = 1, ..., qr, wherepr and qr are the orders of the GARCH process
underlying ther − th series.

4.1 Testing the Hypothesis of Equal Unconditional Volatility

From (8) the estimation of the unconditional volatility can be expressed as:

γ̂r

(1−∑qr

j=1 β̂r,j)(1−
∑∞

k=1π̂k)
; (11)

s series (let us indicate them with1, 2, ..., s) have the same unconditional volatility if the
following hypothesis is verified:

H0 : γ1

(1−∑q1
j=1 β1,j)(1−

∑∞
k=1π1,k)

= γ2

(1−∑q2
j=1 β2,j)(1−

∑∞
k=1π2,k)

= ...

... = γs

(1−∑qs
j=1 βs,j)(1−

∑∞
k=1πs,k)

.
(12)

A simple test to verify this hypothesis is the classical Wald test. Let

δ̂ =

[
γ̂1

(1−∑q1
j=1 β̂1,j)(1−

∑∞
k=1π̂1,k)

, ...,
γ̂s

(1−∑qs

j=1 β̂s,j)(1−
∑∞

k=1π̂s,k)

]′

the vector of maximum likelihood estimators of thes unconditional volatilities; for the
invariance property it is asymptotically Normally distributed with mean:

δ =

[
γ1

(1−∑q1
j=1 β1,j)(1−

∑∞
k=1π1,k)

, ...,
γs

(1−∑qs

j=1 βs,j)(1−
∑∞

k=1πs,k)

]′

and covariance matrix given byGΛ̂G′, whereΛ̂ is a block diagonal matrix with blocks
constituted by the covariance matricesΛ̂r (r = 1, ...s), andG is the matrix of derivatives
of γ̂r/(1−∑qr

j=1 β̂r,j)(1−
∑∞

k=1π̂r,k), for eachr, with respect to

θ = (γ1, α1,1, ..., α1,p1 , β1,1, ..., β1,q1 , ..., γs, αs,1, ..., αs,ps , βs,1, ..., βs,qs)
′.
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The null hypothesis can be rewritten as:

Aδ = 0, (13)

whereA is the(s− 1)× s matrix:

A =




1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1


 .

The Wald test statistic for the null hypothesis (13) is given by:

WA = (Aδ̂)′(AGΛ̂G′A′)−1(Aδ̂). (14)

WA is asymptotically distributed as a central chi-square random variable with(s − 1)
degrees of freedom.

Recalling the clustering algorithm described in section 3, the first benchmark in step
1.(a) is given by an hypothetical series with null unconditional volatility. Labeling with
1 the series with smallest unconditional volatility, the first hypothesis to be verified is:

H0 :
γ1

(1−∑q1
j=1 β1,j)(1−

∑∞
k=1π1,k)

= 0. (15)

In this case, in (14) we put̂δ = γ̂1/(1 − ∑q1
j=1 β̂1,j)(1 −

∑∞
k=1π̂1,k), Λ̂ = Λ̂1 and

A = 1. If the null hypothesis is not rejected, the series belonging to the first cluster have
null unconditional volatility.

4.2 Testing the Hypothesis of Equal Time-varying Volatility

Concerning the hypothesis of equal time-varying volatility, we can use the interpretation
of the distance given in section 2.2 and, in particular, expression (10) as a measure of the
time-varying volatility. Similarly to the case of equal unconditional volatility,s series
have the same time-varying volatility if the following null hypothesis is verified:

[ ∞∑

k=1

π2
1,k

]1/2

=

[ ∞∑

k=1

π2
2,k

]1/2

= ... =

[ ∞∑

k=1

π2
s,k

]1/2

. (16)

The hypothesis (16) can be verified using the Wald test statistic:

WB = (Aη̂)′(AV Λ̂V ′A′)−1(Aη̂), (17)

whereη̂ is the vector containing thes maximum likelihood estimates of the time varying

volatilities,V is the matrix of the derivatives of
[∑∞

k=1π̂
2
r,k

]1/2
with respect toθ. WB

is asymptotically distributed as a central chi-square random variable with(s−1) degrees
of freedom. All the considerations made in the previous sub-section about the invariance
of the estimators and the first hypothesis of null volatility can be extended to the case of
time-varying volatility.
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4.3 Testing the Hypothesis of Equal Volatility Structure

As said in section 2.3, if two series have the same unconditional volatility and the same
time-varying volatility, it is not possible to conclude that they have the same volatility
structure, because we have tested separately two hypotheses concerning the equality of
nonlinear combinations of the parameters. The test of equality of the volatility structure
was developed by Otranto and Triacca (2007), who extend the idea of equivalence among
ARMA processes, developed by Steece and Wood (1985), to the GARCH case. In this
framework we want to test the hypotheses:

H0 :

γ1 = γ2 = ... = γs,
α1,i = α2,i = ... = αs,i, i = 1, ...p
and
β1,j = β2,j = ... = βs,j , j = 1, ..., q.

(18)

by the Wald statistic
WC = (Bθ̂)′(BΛ̂B′)−1(Bθ̂), (19)

whereq = max(q1, q2, ..., qs), p = max(p1, p2, ...ps), βr,j = 0 for j > qr andαr,i = 0
for i > pr (r = 1, ..., s). The matrixB is built to represent the linear constraints; its form
for each single case is intuitive, whereas its general expression is formally heavy. We
show it in the final Appendix for people interested to computational and programming
aspects.WC follows the central chi-squared distribution with degrees of freedom equal
to the number of constraints (rows ofB).

5 Simulation Studies

In this section we verify the goodness of the clustering algorithm with some simulation
studies. We have performed the simulation experiments with many GARCH data gen-
erating processes (DGPs). To save space we show only the results relative to six DGPs;
the considerations that will be made are valid in general also for the cases not illustrated
here (anyway the results are available on request). The six DGPs are given by (uv indi-
cates the value of the unconditional volatility, whereastvv the value of the time-varying
volatility, using equations (8) and (10) respectively):

• M1: GARCH(1,1) with coefficientsγ = 0.1, α1 = 0.5, β1 = 0.2, uv = 0.214,
tvv = 0.510;

• M2: GARCH(1,1) with coefficientsγ = 0.1, α1 = 0.1, β1 = 0.5, uv = 0.214,
tvv = 0.115;

• M3: ARCH(1) with coefficientsγ = 0.5, α1 = 0.6, uv = 1.25, tvv = 0.6;

• M4: GARCH(1,1) with coefficientsγ = 0.482, α1 = 0.5, β1 = 0.4, uv = 1.25,
tvv = 0.546;
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Table 1: Simulation results: reject percentage (corresponding to sizes 0.01 and 0.05)
applying the test for equal unconditional volatility to clusters composed byk series gen-
erated by the model indicated in the first column and 1 series generated by the model
indicated in the first row.

The series to be added to the cluster is generated by:
the same model M2 M4 M6

Model k 1% 5% 1% 5% 1% 5% 1% 5%
1 0.4 2.3 2.2 5.3 100 100 99.8 99.9

M1 2 0.7 2.1 2.9 6.2 100 100 99.4 99.7
3 0.6 1.6 1.9 4.1 99.8 100 99.5 99.8
4 0.4 2.0 2.0 4.0 99.9 100 99.7 99.8
1 0.0 0.5 98.7 99.8 90.0 96.5 0.3 3.4

M3 2 0.1 0.7 99.9 100 93.7 98.0 0.7 4.0
3 0.0 0.1 99.9 100 91.2 97.3 0.8 2.8
4 0.0 0.7 100 100 88.5 96.7 0.8 2.6
1 8.0 13.5 98.0 99.4 76.7 93.0 4.4 8.8

M5 2 5.8 10.1 100 100 92.9 97.8 2.7 6.5
3 4.6 7.1 100 100 96.1 98.6 2.8 5.1
4 4.0 9.8 99.9 99.9 97.0 98.6 1.7 4.1

• M5: GARCH(2,1) with coefficientsγ = 2, α1 = 0.2, α2 = 0.2, β1 = 0.1,
uv = 3.492, tvv = 0.270;

• M6: GARCH(1,2) with coefficientsγ = 1.692, α1 = 0.4, β1 = 0.1, β2 = 0.2,
uv = 3.492, tvv = 0.410.

The pairs (M1, M2), (M3, M4), (M5, M6) have the same unconditional volatility.M1

andM2 have different time-varying volatility, whereasM5 andM6 have a time vary-
ing volatility slightly different; finallytvv is practically the same forM3 andM4 (the
difference is equal to 0.054).

The length of each simulated series isT = 750, which is the time span used in the
application on real data shown in the next section. In the estimation of the GARCH
models we have noted that the models with larger number of parameters (in particular
M5) show larger variability in the estimates with respect the low order GARCH. This
result is obvious, but affects the final simulation results.

We have performed several experiments using the simulated data to verify the per-
formance of the Wald test in this framework and to evaluate the quality of the clusters
obtained with the proposed procedure.

5.1 Evaluation of the Size and Power of the Wald Tests

The aim of the first group of experiments is to evaluate the performance of the test
procedures illustrated in section 4. In the first one we hypothesize a first level clustering
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framework. In practice we suppose to have a cluster composed byn (n = 1, ...4) series
generated by the same model (M1, M3 or M5), for which the testing procedure has
verified that they have the same unconditional volatility; we verify if adding a new series
(generated by the same model or byM2, M4, M6) the test procedure will assign correctly
the series to this cluster. The hypotheses are tested at the nominal sizes of 1% and 5%;
for each case we have replicated 1000 simulations. The results are shown in Table 1; it
seems that the test procedure has a good performance, assigning correctly the series to
the clusters, also when they are generated by different GARCH processes, but with equal
unconditional volatility. In the case of ModelM5 we note that the size of the test is not
correctly respected (there is a certain propensity to reject the null hypothesis), probably
due to the wider variability of the estimates; anyway the results seem acceptable. In the
other two cases, the size seems underestimated, with the extreme situations of modelM3

where the null hypothesis is always correctly not rejected in several scenarios at nominal
size of 0.01. Anyway, it is a valid test because the power is very high in all the cases
(also with peaks of 100%).

The second experiment is similar to the first one, but we verify the hypothesis of
equal time-varying volatility by the test procedure shown in section 4.2, hypothesizing
a second level clustering. In this case we hypothesize clusters with equal unconditional
volatility and equal time-varying volatility, so that, when the cluster is formed by series
generated by modelMi (i = 1, 3, 5), the series to be added can be generated by the same
modelMi or by the model with equal unconditional volatility (M2 for i = 1, M4 for
i = 3, M6 for i = 5). The results of this experiment are shown in Table 2 and they seem
to be consistent with the values oftvv of the DGPs. In general, when the series added
to the cluster is generated by the same model, the reject percentage seems sufficiently
similar to the nominal size. When the series added is generated by the other model with
equaluv, the test procedure rejects a very high percentage of cases when the two DGPs
have very differenttvv (M1 andM2); it rejects a percentage similar to the size of the
test in the case of DGPs having equaltvv (M3 andM4); it rejects a small percentage of
cases when the two DGPs have similar (but not equal)tvv (M5 andM6). Obviously, the
percentage of the last case reduces increasing the number of the series generated by the
same modelM5.

The third experiment is aimed at evaluating the performance of the test of equal
volatility structure described in section 4.3. In this case the clustering framework is sim-
ilar to that one of the second experiment, but, dealing with clusters with the sameuv and
tvv, only the case with modelsM3 andM4 was considered. It is important to note that
in this case the number of constraints to be tested is larger than the other two tests, eval-
uating the equality of each coefficients of the DGPs. The test procedure has a practically
perfect performance (Table 3); in this case the presence of a large coefficientβ1 in M4,
which is not present inM3, favors this result. Anyway, also in other experiments with
other DGPs, not illustrated here, the power of the test is very good.

In conclusion, it seems that the use of the Wald test in the clustering procedure is
supported by the simulations. The tendency to reject the null hypothesis arisen in some
particular case seems due to the variability in the estimates of models with a larger
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Table 2: Simulation results: reject percentage (corresponding to sizes 0.01 and 0.05)
applying the test for equal time-varying volatility to clusters composed byk series gen-
erated by the model indicated in the first column and 1 series generated by the model
indicated in the corresponding row.

The series to be added to the cluster is generated by:
the same model other model

Model k 1% 5% 1% 5%
M1 1 1.5 6.0 97.9 99.6

(other 2 0.6 2.9 98.3 99.5
model 3 0.6 2.0 98.1 99.2
M2) 4 0.5 1.1 98.7 99.7
M3 1 1.5 5.9 1.8 8.2

(other 2 0.5 2.8 1.3 5.2
model 3 0.5 2.3 2.1 4.5
M4) 4 0.4 0.8 0.9 3.5
M5 1 2.7 6.7 13.8 30.6

(other 2 1.8 3.9 9.1 25.9
model 3 1.8 2.9 6.6 18.5
M6) 4 1.4 2.5 7.6 16.8

Table 3: Simulation results: reject percentage (corresponding to sizes 0.01 and 0.05)
applying the test for equal volatility structure to clusters composed byk series generated
by the model indicated in the first column and 1 series generated by the model indicated
in the corresponding row.

The series to be added to the cluster is generated by:
the same model M4

Model k 1% 5% 1% 5%
1 1.3 5.4 100 100

M3 2 0.9 3.3 100 100
3 0.4 2.2 100 100
4 0.7 1.6 100 100
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number of coefficients. Note also that the iterative test procedure implies an increasing
number of equalities under the null hypotheses (12), (16), (18); theoretically this could
cause a decrease in the power of the test. This fact is not verified in our experiments and
the results are consistent with those obtained by Chenowet et al. (2004), who show that,
in presence of large data set, the Wald test verifying the equality of ARMA models (or
the equality of coefficients of different ARMA models) does not suffer from this kind of
problem.

5.2 Evaluation of the Quality of the Clustering Procedure

An important task is to verify if the algorithm proposed is able to create an adequate
subdivision of the universe in homogeneous clusters. For this purpose a number of
cluster validation indexes has been proposed; these indexes express the quality of a given
clustering (see for example Theodoridis and Koutroumbas, 1998, or Jain et al., 1999, for
a review). We consider three indexes which are intuitively plausible and largely diffused
in the clustering literature:

• C index(Hubert and Schultz, 1976); it is calculated as:

C =
S − Smin

Smax − Smin
. (20)

Let us indicate witha the number of all pairs of series where both series are
included in the same cluster;S is the sum of distances between series in thea
pairs; Smin and Smax are the sum of thea smallest distances and the sum of
thea largest distances respectively, considering all possible pairs in the universe
of series. This index falls in the interval[0, 1], assuming small values when the
quality of the clustering is good.

• Davies-Bouldin index(Davies and Bouldin, 1979); it is defined as:

DB =
1
m

m∑

i=1

max
j(j 6=i)

δi + δj

d(ci, cj)
,

wherem is the number of clusters,δr is the average distance of all series in cluster
r to their cluster centercr, d(ci, cj) is the distance between the cluster centersci

andcj . TheDB index falls in the interval[0,∞] and assumes small values when
the quality of the cluster is good.

• Dunn index(Dunn, 1974): it is given by:

D =
dmin

dmax
,

wheredmin is the smallest distance between two series from different clusters and
dmax is the largest distance of two series from the same cluster. TheD index falls
in the interval[0,∞] and assumes large values when the quality of the cluster is
good.
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Table 4: Simulation results: comparison ofCr andCe and synthesis of the distribution of
Ce calculated on clusters of equal unconditional volatility relative ton series generated
by modelsM1-M6 (1000 simulations).

percentages of distribution ofCe

cases withCr = Ce cases withCr > Ce Min Q1 Me Q3 Max
n = 10

1% 61.9 7.9 0.00 0.00 0.01 0.05 0.32
5% 64.9 12.3 0.00 0.00 0.01 0.03 0.32

n = 20
1% 35.8 11.9 0.00 0.01 0.03 0.05 0.17
5% 46.4 16.2 0.00 0.01 0.02 0.04 0.17

n = 30
1% 23.1 15.2 0.00 0.02 0.03 0.04 0.11
5% 33.8 20.3 0.00 0.01 0.02 0.03 0.11

In the following experiments we will use the Euclidean distance in the computation of
the three indexes; moreover, showing results with similar interpretation, we will illustrate
only those relative to theC index which, being limited in the interval[0, 1], can be easily
interpreted.

The aim of the first experiment is to evaluate the quality of the first-level clustering,
based on the Wald test procedure. For this purpose we have generated, for each DGP, 5
series, obtaining a universe of 30 series. Then we have chosen randomly a numbern of
series (n =10, 20, 30) and applied the clustering procedure. Finally we have calculated
the three indexes for the estimated clustering and thereal one; the last one is obtained
inserting in the same cluster the series generated by DGPs with the same unconditional
variance. In this way thereal clustering is a valid benchmark, but it is possible that
the estimated clustering could have a better quality because theuv considered is the
estimated one and not the theoreticaluv of the DGP. In the left part of Table 4 we show
the percentage of cases (on 1000 replications) in which we have obtained the sameC
index for the estimated and the real clustering (call themCe andCr respectively), and
the percentage of cases in which the estimated clustering shows a better quality with
respect to the real one (Cr > Ce). We notice that there is a good percentage of cases
with equal quality forn = 10 (more than 60%) and the share decreases when the size of
the universe increases; on the other side the percentage of cases in which the estimated
clustering is better than the true one increases when the universe increases. Furthermore,
the cases in which the estimated clustering has a smallerC index with respect to the true
one, show in general a high quality. This aspect can be seen in the right part of Table
4, which shows the minimum, the first quartile, the median, the second quartile and
the maximum of the empirical distribution ofCe are shown; we can notice that more
than 75% of cases has aCe index smaller than 0.1 and the maximum is very small.
Furthermore, the maximum value decreases when the size of the universe of the series

15



Table 5: Simulation results: comparison ofCr andCe and synthesis of the distribution
of Ce calculated on clusters of equal time-varying volatility relative ton series generated
by pairs of models (1000 simulations).

percentages of distribution ofCe

cases withCr = Ce cases withCr > Ce Min Q1 Me Q3 Max
Series generated byM1 andM2; n = 6

1% 93.8 1.9 0.00 0.00 0.00 0.00 0.32
5% 91.5 3.5 0.00 0.00 0.00 0.00 0.16

Series generated byM1 andM2; n = 10
1% 86.9 2.2 0.00 0.00 0.00 0.00 0.17
5% 84.1 3.8 0.00 0.00 0.00 0.00 0.17

Series generated byM3 andM4; n = 6
1% 2.1 97.2 0.00 0.00 0.00 0.00 0.53
5% 2.0 94.9 0.00 0.00 0.00 0.00 0.61

Series generated byM3 andM4; n = 10
1% 0.00 99.5 0.00 0.00 0.00 0.00 0.47
5% 0.00 98.6 0.00 0.00 0.00 0.00 0.51

Series generated byM5 andM6; n = 6
1% 11.7 73.1 0.00 0.00 0.00 0.00 0.55
5% 12.6 66.5 0.00 0.00 0.00 0.15 0.57

Series generated byM5 andM6; n = 10
1% 1.3 73.9 0.00 0.00 0.00 0.20 0.58
5% 1.8 65.9 0.00 0.00 0.10 0.22 0.54

to be clustered increases.
A similar experiment was conducted to evaluate the quality of the second level clus-

tering. In this instance we have distinguished three cases, each one composed by two
models with the same unconditional variance. As in the previous experiment, 5 series
from each DGP were generated and thenn of them extracted to compose the universe; in
this case we have chosenn = 6 to guarantee the existence of two DGPs in the universe,
andn = 10, using all the series generated. The results of this experiment are synthe-
sized in Table 5. The first case considers series generated byM1 andM2, which possess
two differenttvv, so that the benchmark constituted by thereal clustering groups the
series correctly. The results for this case are quite positive. In fact, in more than 90% of
cases, forn = 6, the estimated clustering has the same quality of the benchmark and its
quality decreases slightly forn = 10. The pair (M3,M4) has an opposite behavior, being
constituted by series with the sameuv andtvv; in more than 95% of cases the empirical
clustering is better than the benchmark. Finally, the case withM5 andM6 shows that
more than 73% of cases have a better quality with respect to the benchmark, considering
a nominal size equal to 1%, and 66% of cases in correspondence of a nominal size of
1%. The distribution ofCe demonstrates the good quality of the estimated clustering,
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Table 6: Simulation results: comparison ofCr andCe and synthesis of the distribution
of Ce calculated on clusters of equal volatility structure relative ton series generated by
modelsM3 andM4 (1000 simulations).

percentages of distribution ofCe

cases ofCr = Ce cases ofCr > Ce Min Q1 Me Q3 Max
n = 6

1% 97.7 1.2 0.00 0.00 0.00 0.00 0.43
5% 89.9 3.6 0.00 0.00 0.00 0.00 0.48

n = 10
1% 96.6 1.3 0.00 0.00 0.00 0.01 0.16
5% 88.8 4.1 0.00 0.00 0.00 0.01 0.30

with few cases in which the index is more than 0.2.
The final simulation experiment was conducted to evaluate the quality of the third

level clustering. Also in this case, having to consider only clusters with equaluv and
equaltvv, we limit the experiment to theM3 andM4 DGPs. The two DGPs are clearly
different and the real clustering is a useful benchmark for the evaluation; in this case a
large percentage of estimated clustering (more tan 96% in correspondence of a nominal
size of 1% and around 90% in correspondence of a nominal size of 5%) shows a quality
equal to the benchmark.

6 An Example:Classifying the Italian Sectorial Indexes

A typical problem in financial investments is the evaluation of the stocks in terms of
their degree of risk. This is particularly important in asset allocation problems or in the
management of financial funds. The application we illustrate is the classification of the
twenty sectorial indexes of the Italian Mibtel general index. They can be divided in three
main sectors:

FINANCE: Banks (Fba), Finance Holdings (Ffh), Finance Misc. (Ffm), Finance
Services (Ffs), Insurance (Fin), Real Estate (Fre);

INDUSTRIAL: Cars (Ica), Chemicals (Ich), Construction (Ico), Electronics (Iel),
Food (Ifo), Industrial Misc. (Iim), Minerals Metals (Imm), Paper (Ipa), Plant Machine
(Ipm), Textile Clothing (Itc);

SERVICE: Distribution (Sdi), Media (Sme), Public Utility (Spu), Transport Tourism
(Stt).

These series were studied by Billio et al. (2006), who deduce similar correlation
dynamics within the main sectors. Anyway similar correlation dynamics do not imply
similar degrees of risk. For this purpose we apply our procedure, adopting the widely
accepted idea that the risk can be represented by the volatility of the series (see, for
example, Arnott and Fabozzi, 1988), modeled by GARCH processes. We consider the
returns of the series from 23 March 2004 to 27 February 2007 (daily data, 750 obser-
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vations; source: Yahoo finance) and estimate a different (1)-(2) model for each one,
selecting the order of each GARCH by the AIC criterion. We have also used the BIC
criterion and, of course, the models are more parsimonious; anyway, the final results in
terms of clustering are similar.

Tables 7-9 show the estimates of the twenty GARCH models, sorted by the three
main sectors. Note that for nine of the twenty series the AIC criterion selects the
GARCH(1,3) model. Many parameters are not significantly different from zero; we
have erased, in the estimation procedure, those identically equal to zero, which cause
problems in the computation of standard errors. In the same tables we show the esti-
mates of the unconditional volatility and the time-varying volatility, obtained by (8) and
(10) respectively. The index with largestuv is Ffm, which is composed by a mixture
of financial products. The other indexes with unconditional volatility greater than 1 are
the financial services (in the finance sector) and paper and cars (in the industrial sector).
In the service sector, Sdi has an unconditional volatility which is around twice the un-
conditional volatility of the other indexes belonging to the same sector, but it is less than
one. The time-varying volatility shows a limited range between 0.109 (papers) and 0.341
(public utility services). It is interesting to notice that there is a low correlation between
the constant and the time-varying volatilities (the correlation coefficient is equal to 0.21)
because they express two different characteristics of the volatility. The unconditional
volatility can be viewed as the expected global risk of the series and depends on the na-
ture of the financial series studied. On the other side the time-varying volatility captures
only the movements of the volatility along the time and depends on the turmoil and quiet
periods which alternate; the similarity of this kind of volatility among the twenty series
is a consequence of the similar movements of the financial time series, which react in a
similar way to shocks and other transmission mechanisms, such as spillover and conta-
gion effects (see, for example, Forbes and Rigobon, 2002, Gallo and Otranto, 2007a and
2007b).

To apply the clustering procedure proposed we order the indexes in terms of increas-
ing unconditional volatility. In Table 10 we show the null hypotheses verified and the
corresponding p-values to obtain the clusters. Fin is the index with the smallest uncondi-
tional volatility and we verify if it is not significantly different from a constant volatility
equal to zero, which represents our initial benchmark (hypothesis (15)). Considering a
nominal size equal to 0.01, we reject the null, so that Fin is the new benchmark. The new
null hypothesis consists of the equality of unconditional volatility between Fin and Ico
(the successive series with minimum unconditional volatility). We do not reject this hy-
pothesis and continue adding a new series (Fre). We go on until the null (12) is rejected;
this happens when the series Spu is added to the null hypothesis. In this case we close
the first cluster and Spu is the new benchmark for the second cluster. Then we restart
the procedure with the new benchmark and the remaining series. Finally, we obtain four
clusters: cluster 1 contains the series with the smallest unconditional volatility (but dif-
ferent from zero), whereas cluster 4 is that one with maximum unconditional volatility.
The classification is illustrated in Table 11; we will comment the results at the end of
this section.
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Table 7: Estimates of GARCH models for the returns of the Italian financial indexes,
unconditional volatility (uv) and time-varying volatility (tvv); standard errors in paren-
theses.

µ γ α1 α2 β1 β2 β3 uv tvv

Fba 0.101 0.082 0.148 0.526 0.150 0.277 0.185
(0.024) (0.032) (0.050) (0.374) (0.043) (0.002) (0.002)

Ffh 0.147 0.099 0.293 0.265 0.294 0.276 0.325
(0.025) (0.026) (0.057) (0.092) (0.092) (0.002) (0.003)

Ffm 0.081 1.726 0.250 0.154 0.236 0.046 3.509 0.304
(0.073) (0.331) (0.059) (0.042) (0.155) (0.108) (0.264) (0.003)

Ffs 0.137 0.415 0.258 0.316 0.089 0.177 1.185 0.275
(0.051) (0.107) (0.055) (0.160) (0.200) (0.137) (0.029) (0.003)

Fin 0.075 0.056 0.154 0.438 0.302 0.236 0.197
(0.024) (0.021) (0.049) (0.148) (0.129) (0.002) (0.002)

Fre 0.155 0.081 0.210 0.181 0.490 0.272 0.243
(0.026) (0.023) (0.043) (0.153) (0.159) (0.002) (0.002)

Table 8: Estimates of GARCH models for the returns of the Italian industrial indexes,
unconditional volatility (uv) and time-varying volatility (tvv); standard errors in paren-
theses.

µ γ α1 α3 β1 β2 β3 uv tvv

Ica 0.141 0.522 0.285 0.188 0.242 1.142 0.300
(0.044) (0.146) (0.059) (0.088) (0.109) (0.028) (0.003)

Ich 0.049 0.158 0.139 0.603 0.435 0.175
(0.027) (0.069) (0.038) (0.129) (0.004) (0.002)

Ico 0.137 0.055 0.129 0.040 0.768 0.260 0.243
(0.027) (0.027) (0.035) (0.066) (0.095) (0.003) (0.003)

Iel 0.099 0.174 0.138 0.282 0.288 0.443 0.154
(0.028) (0.059) (0.045) (0.183) (0.171) (0.003) (0.002)

Ifo 0.130 0.158 0.143 0.255 0.438 0.562 0.173
(0.033) (0.049) (0.045) (0.127) (0.113) (0.005) (0.002)

Iim 0.044 0.116 0.101 0.793 0.596 0.167
(0.036) (0.038) (0.028) (0.051) (0.007) (0.001)

Imm 0.058 0.102 0.076 0.794 0.519 0.125
(0.032) (0.046) (0.030) (0.074) (0.008) (0.002)

Ipa -0.003 0.417 0.097 0.507 0.182 1.422 0.109
(0.221) (0.295) (0.049) (0.367) (0.342) (0.029) (0.002)

Ipm 0.150 0.187 0.169 0.724 0.753 0.246
(0.042) (0.053) (0.042) (0.059) (0.011) (0.002)

Itc 0.109 0.130 0.201 0.244 0.123 0.242 0.380 0.213
(0.028) (0.041) (0.047) (0.227) (0.186) (0.116) (0.003) (0.002)
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Table 9: Estimates of GARCH models for the returns of the Italian service indexes,
unconditional volatility (uv) and time-varying volatility (tvv); standard errors in paren-
theses.

µ γ α1 α2 α3 β1 β2 β3 u.v tvv

Sdi 0.055 0.250 0.181 0.543 0.071 0.731 0.221
(0.038) (0.107) (0.056) (0.169) (0.147) (0.027) (0.003)

Sme 0.048 0.150 0.081 0.161 0.237 0.269 0.362 0.173
(0.026) (0.063) (0.042) (0.054) (0.143) (0.140) (0.004) (0.003)

Spu 0.072 0.231 0.314 0.117 0.062 0.456 0.341
(0.022) (0.027) (0.067) (0.052) (0.050) (0.004) (0.004)

Stt 0.085 0.103 0.228 0.620 0.316 0.290
(0.026) (0.035) (0.053) (0.087) (0.003) (0.003)

Table 10: Test procedure to verify the equality of unconditional volatilities: null hypoth-
esis (H0) and corresponding p-value .

H0 p− value

Fin=0 0.000
Fin=Ico 0.724
Fin=Ico=Fre 0.830
Fin=Ico=Fre=Ffh 0.912
Fin=Ico=Fre=Ffh=Fba 0.957
Fin=Ico=Fre=Ffh=Fba=Stt 0.914
Fin=Ico=Fre=Ffh=Fba=Stt=Sme 0.784
Fin=Ico=Fre=Ffh=Fba=Stt=Sme=Itc 0.505
Fin=Ico=Fre=Ffh=Fba=Stt=Sme=Itc=Ich 0.186
Fin=Ico=Fre=Ffh=Fba=Stt=Sme=Itc=Ich=Iel 0.028
Fin=Ico=Fre=Ffh=Fba=Stt=Sme=Itc=Ich=Iel=Spu 0.008
Spu=Imm 0.556
Spu=Imm=Ifo 0.540
Spu=Imm=Ifo=Iim 0.544
Spu=Imm=Ifo=Iim=Sdi 0.451
Spu=Imm=Ifo=Iim=Sdi=Ipm 0.181
Spu=Imm=Ifo=Iim=Sdi=Ipm=Ica 0.004
Ica=Ffs 0.857
Ica=Ffs=Ipa 0.459
Ica=Ffs=Ipa=Ffm 0.000
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Table 11: Classification in clusters of equal unconditional volatility and equal time-
varying volatility. The series between bars form sub-clusters with equal volatility struc-
ture.

CLUSTER 1
|Fba Fin Itc Iel Ffh Sme| |Fre Stt| |Ich Ico|

CLUSTER 2
|Iim Sdi Ipm Imm| Ifo Spu

CLUSTER 3
|Ffs Ica| Ipa

CLUSTER 4
Ffm

The second level classification can be made considering the time-varying volatility.
For each cluster we consider as initial benchmark that one with minimum time-varying
volatility (Iel for cluster 1, Imm for cluster 2, Ipa for cluster 3); then we verify the
null hypothesis of equal time-varying volatility (16), adding series with increasingtvv
(similarly to the previous analysis relative to the unconditional volatility). In this case
the second level clustering is equal to the first level, in the sense that all the series having
equaluv have also equaltvv.

Finally, we verify if, within the four clusters, the series have equal volatility struc-
ture, to provide the third level classification. Applying the procedure based on the p-
value and described in section 3, we obtain the final classification showed in Table 11,
where the series with equal volatility structure are included between bars, providing a
deeper subdivision in sub-groups.

In conclusion, Table 11 shows that the twenty series of the Italian sector indexes can
be grouped in four homogeneous clusters, with similar unconditional and time-varying
volatilities. The first kind of volatility is that one which discriminates the series, whereas
the time-varying volatility seems similar in the full data set. It is likely that, being series
relative to the same country, the degree of risk is different, but the dynamics is very sim-
ilar. The first group contains ten of the twenty series, characterized by an unconditional
volatility included between 0.2 and 0.45. Three GARCH DGPs seem to have generated
these ten series: six series (Fba, Fin, Itc, Iel, Ffh, Sme) are generated by a GARCH(1,3)
process, with constantγ around 0.1, the coefficientα1 between 0.1 and 0.2, the coeffi-
cientβ2 andβ3 not significantly different from zero. In practice these series could be
considered as generated by a GARCH(1,1) process. In the same first (and second) level
cluster two series (Fre and Stt) are generated by a GARCH(1,2) process, withγ ' 0.1,
α1 ' 0.2, β1 equal to zero andβ2 large (around 0.5), and two series (Ich and Ico) by a
GARCH(1,1) model with coefficientα1 ' 0.1 and a largeβ1 (the coefficientsα2 and
α3 relative to the series Ico are not significantly different from zero).

The second cluster includes the series of industrial and service sectors with uncon-
ditional volatility between 0.45 and 0.75. Two series (Ifo and Spu) are generated respec-
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tively by a GARCH(1,3) process, with largeβ1 andβ3 coefficients, and an ARCH(3)
process, and four series (Iim, Sdi, Ipm and Imm) generated by the same model, a
GARCH(1,1) with large coefficientβ1 (around 0.7).

The third cluster is formed by the series with unconditional volatility around 1.2;
two series (Ffs and Ica) are generated by a GARCH(1,3) model withγ around 0.5,α1

coefficient around 0.27 and smallβ coefficients; the remaining series (Ipa) is generated
by a GARCH(1,2) model, different from that one of cluster 2 for the presence of larger
γ andβ1, and smallerα1 andβ2.

Finally, cluster 4 contains only the series Ffm, which has an unconditional volatility
more than twice that one of Ipa, which is the series with highest constant volatility in
cluster 3. The series Ffm is generated by a GARCH(2,3) process with largeγ andα
coefficients.

If we use the clustering generated by the test procedure considering a nominal size
for the tests equal to 0.05, the results are very similar: the only difference is that Iel
belongs to the second cluster and not to the first. In this case, the choice could be based
on the quality index illustrated in section 5. The clustering at 1% nominal size provides
the following indexes:

C = 0.016, DB = 0.324, D = 0.043,

whereas the clustering at 5% nominal size will provide:

C = 0.020, DB = 0.352, D = 0.027.

All the three indexes indicate the (slightly) better performance of the first clustering;
moreover, the very low value of indexC confirms the high quality of the subdivision
obtained.

7 Final Remarks

In this paper we have proposed a clustering algorithm to group heteroskedastic time
series with similar volatility patterns, based on a particular decomposition of the squared
disturbances of the series. A natural field of application of this procedure is the clustering
of financial time series based on their volatility structure.

A first classification level is based only on the unconditional volatility, which can be
interpreted as the expected constant risk of the returns; the second classification level is
based on the unconditional and time-varying volatility, which depends also on the history
of the time series; finally a third level is based on the full volatility structure. The three
levels have an increasing degree of deepness, implying a more accuracy in the detection
of the similar characteristics. On the other side, a deeper classification could provide a
large number of clusters, often composed by only one series, so the choice of the level
depends on the type of classification we need. Anyway, in our application, the first and
second level clustering provide the same clustering, and the third level provides useful
information about the DGPs without an excessive splitting.
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The first level could be useful in fund management because the series will be grouped
taking into account their expected risk, excluding from the analysis all the historical fac-
tors that have caused some shocks. In this case another useful information could derive
by the minimum expected risk, given by the first term in the right part of equation (7).
The second level classifications could be more useful in the historical analysis, for exam-
ple to evaluate if the reactions to turmoil periods are similar or not. The third level clas-
sification seems important when the user is interested in the differences in the GARCH
estimated models, without having to study and compare the estimated parameters across
all the series.

We have used the GARCH(p,q) models to represent the volatility of the series and we
have developed the approach deriving the models underlying the squared disturbances;
in particular, in the application proposed, the squared disturbances are equivalent to the
squared returns and have the advantage to not calculate a proxy to represent the volatility.
Anyway, we could consider, instead of squared returns, the absolute returns, the range
or other proxies of the volatility, maintaining the flavor of the procedure. For example,
we can model the range in terms of VAR (as in Gallo and Otranto, 2007a and 2007b)
and obtain the correspondingAR(∞) representation; the steps of the procedure are the
same.

As said in section 4, our approach works in a univariate framework; this is made be-
cause the extension to the multivariate case will be unfeasible when we deal with a large
number of series. Anyway, if we suppose a multivariate frameworkà la Engle (2002)
the results will be the same; in fact, if we assume a Dynamic Conditional Correlation
structure withn GARCH models for the volatility part, the likelihood can be split in two
parts: one relative to the volatility part and one relative to the correlation part. In our
approach we are interested only on the first part, which can be estimated maximizingn
separate likelihoods relative to then univariate GARCH models (Engle, 2002). Further-
more, the covariance matrix of the ML estimators of the GARCH parameters is a block
diagonal matrix with elements of each block obtained by the Bollerslev and Wooldridge
(1992) robust covariance matrix of each GARCH model (Engle and Sheppard, 2001),
which corresponds to the matrix̂Λ used in section 4.
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Appendix A: General Formulation of C in (19)

Let p∗r = max(pr−1, pr) andq∗r = max(qr−1, qr) (r = 2, ...k). Furthermore letIh the
h× h identity matrix and0v,z thev × z matrix with all the elements equal to zero. Let
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us define:

Ap∗r =





[
Ipr−1

0p∗r−pr−1,pr−1

]
if p∗r > pr−1

Ipr−1 if p∗r = pr−1

,

A−
p∗r =





[ −Ipr

0p∗r−pr,pr

]
if p∗r > pr

Ipr if p∗r = pr

,

Bq∗r =





[
Iqr−1

0q∗r−qr−1,qr−1

]
if q∗r > qr−1

Iqr−1 if q∗r = qr−1

,

and

B−
q∗r =





[ −Iqr

0q∗r−qr,qr

]
if q∗r > qr

Iqr if q∗r = qr

then the matrixC is given by:




1 01,p1 01,q1 −1 01,p2 01,q2 · · · 0 01,pk−1 01,qk−1 0 01,pk
01,qk

0p∗2 ,1 Ap∗2
0p∗2 ,q1

0p∗2 ,1 A−
p∗2

0p∗2 ,q2
· · · 0p∗2 ,1 0p∗2 ,pk−1

0p∗2 ,qk−1
0p∗2 ,1 0p∗2 ,pk

0p∗2 ,qk

0q∗2 ,1 0q∗2 ,p1
Bq∗2

0q∗2 ,1 0q∗2 ,p2
B−

q∗2
· · · 0q∗2 ,1 0q∗2 ,pk−1

0q∗2 ,qk−1
0q∗2 ,1 0q∗2 ,pk

0q∗2 ,qk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.
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.
0 01,p1 01,q1 0 01,p2 01,q2 · · · 1 01,pk−1 01,qk−1 −1 01,pk

01,qk

0p∗
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k
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k
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k
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k
,q2

· · · 0p∗
k
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k
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k
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k
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Bq∗

k
0q∗

k
,1 0q∗

k
,pk

B−
q∗
k




The statistic (19) follows the chi-square distribution with[s − 1 +
∑s

r=2(p
∗
r + q∗r )]

degrees of freedom.
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