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Abstract

The aim of this paper is to analyse the out-of-sample performance of SETAR
models relative to a linear AR and a GARCH model using daily data for the
Euro effective exchange rate. The evaluation is conducted on point, interval and
density forecasts, unconditionally, over the whole forecast period, and
conditional on specific regimes. The results show that overall the GARCH
model is better able to capture the distributional features of the series and to
predict higher-order moments than the SETAR models. However, from the
results there is also a clear indication that the performance of the SETAR
models improves significantly conditional on being on specific regimes.
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1. Introduction

In this study we focus on the dynamic representation of
the euro effective exchange rate and on its short run predictability.
The analysis is conducted in the context of univariate models,
exploiting recent developments of nonlinear time series
econometrics. The models that we adopt to describe the dynamic
behaviour of the euro effective exchange rate series are the self-
exciting threshold autoregressive (SETAR) models, which
represent a stochastic process generated by the alternation of
different regimes. Although there have been many applications of
threshold models to describe the nonlinearities and asymmetries of
exchange rate dynamics (Kréager and Kugler, 1993, Brooks, 1997,
2001), there are still few studies on the forecasting performance of
the models, using historical time series data. Notoriously, the in-
sample advantages of nonlinear models have only rarely provided
better out-of-sample forecasts compared with a random walk or a
simple AR model.

One reason for the poor forecast performance of
nonlinear models lies in the different characteristics of the in-
sample and out-of-sample periods. For example, nonlinearities
may be highly significant in-sample but fail to carry over to the
out-of-sample period (Diebold and Nason, 1990). In a recent
application to the yen/US dollar exchange rate, Boero and
Marrocu (2002b) show clear gains from the SETAR model over
the linear competitor, on MSFEs evaluation of point forecasts, in
sub-samples characterised by stronger non-linearities. On the other
hand, the performance of the SETAR and AR models was
indistinguishable over the sub-samples with weaker degrees of
nonlinearity.

The oft-claimed superiority of the linear models has also
been challenged by a number of recent studies suggesting that the
alleged poor forecasting performance of nonlinear models can be
due to the evaluation and measurement methods adopted. In a
Monte Carlo study, Clements and Smith (2001) show that the
evaluation of the whole forecast density may reveal gains to the
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nonlinear models which are systematically masked in MSFE
comparisons. Boero and Marrocu (2002a, 2002b) confirm this
result in various applications with actual data, and show that when
the nonlinear models are evaluated on interval and density
forecasts, they can exhibit accuracy gains which remain concealed
if the evaluation is based only on MSFE metric. Some gains of the
SETAR models have also been found, even in terms of MSFEs,
when the forecast accuracy is evaluated conditional upon a specific
regime (Tiao and Tsay, 1994, Clements and Smith, 2001, and
Boero and Marrocu, 2002a). An interesting result, common to
these studies, suggests that SETAR models can produce point
forecasts that are superior to those obtained from a linear model,
when the forecast observations belong to the regime with fewer
observations.

In the present study we investigate further the possibility
that the SETAR models are more valuable in terms of forecasting
accuracy when the process is in a particular regime. We do this by
extending the ‘conditional’ evaluation approach to interval and
density forecasts, as well as point forecasts. By using daily data for
the returns of the euro effective exchange rate (euro-EER), the
performance of two and three-regime SETAR models is evaluated
against that of a simple AR and a GARCH model. The evaluation
of the models conditional on the regimes is possible because of the
large number of data points available in our application. Point
forecasts are evaluated by means of MSFEs and the Diebold and
Mariano test. Interval forecasts are assessed by means of the
likelihood ratio tests proposed by Christoffersen (1998), while the
techniques used to evaluate density forecasts are those introduced
by Diebold et al. (1998). For the evaluation of density forecasts we
also use the modified version of the Pearson goodness-of-fit test
and its components, as proposed by Anderson (1994) and recently
discussed in Wallis (2002). These methods provide information on
the nature of departures from the null hypothesis, with respect to
specific characteristics of the distribution of interest - such as
location, scale, skewness and kurtosis — and may offer valuable
support in the evaluation of the models.
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The rest of the paper is organised as follows. In section 2
we present the statistical properties of the data and the results of
the linearity tests. In section 3 we report the results from the
modelling and forecasting exercises. In section 4 we summarise the
results and make some concluding remarks.

2. Linearity tests and models specification

In this study we analyse the dynamic behaviour of the
returns of the daily euro nominal effective exchange rate over the
period 30/1/1990-10/07/02 (3081 observations). The nominal
effective exchange rate for the euro is calculated by the European
Central Bank'.

The log-levels and the returns of the series are depicted in
figure 1. In table la we report the summary of the descriptive
statistics of the returns series for three different periods: the entire
sample period, the estimation period and the forecasting period.
The estimation sample refers to the period 03/01/1990-
30/12/1999 (2439 observations), while the forecasting sample
extends to the period 03/01/2000-10/07/2002 (642 observations).
The splitting of the entire sample between estimation and
forecasting period allows us to withhold around 20% of the total
number of observations in order to evaluate the forecasting
perforgnance of the nonlinear models, as suggested by Granger
(1993)".

The data accord well with the stylised facts of exchange rate
series which emerge from the empirical literature. The returns of
the series are mean-stationary, periods of high volatility and
tranquillity tend to cluster together, the sample moments suggest
fat taildness of the return distribution. Kurtosis is particularly high
in the estimation period. The forecasting period exhibits a larger
variance and less kurtosis.



2.1 Linearity tests

In order to detect nonlinearities in the euro-EER returns we
performed the RESET test and the S, test proposed by
Luukkonen-Saikkonen-Terdsvirta (1988). Both tests are devised for
the null hypothesis of linearity. While the RESET test is devised
for a generic form of misspecification, the S, test is formulated for
a specific alternative hypothesis, i.e. smooth transition
autoregressive (STAR)-type nonlinearity. Luukkonen-Saikkonen-
Terdsvirta, however, show that the S, test has reasonable power
even when the true model is a SETAR one. The RESET test has
been computed in the traditional version and in the modified
version found to be superior by Thursby and Schmidt (1977)°. The
S, test is performed assuming that the variable governing the
transition from one regime to the other is y., with the delay
parameter d in the range [1,6].

Table 1b reports the results of the linearity tests computed
for the whole sample period, the estimation period and the
forecast period. The selected lag order p ranges from 3 to 5 in
order to check for the effects of different dynamic structures. The
tests applied to the entire sample period and to the estimation
period lead to the rejection of the null in a large number of cases,
indicating that there is strong evidence of nonlinear components
for the data. However, when the tests are applied to the forecast
period the evidence based on the RESET tests indicates that
nonlinearities are present with less intensity. The S, test (for d=3),
on the other hand, is highly significant at almost all lags.

2.2 Models specification

The forecasting models adopted in this study belong to the
class of threshold autoregressive (TAR) models. These are
compared with a simple AR model and with a GARCH model.
The basic idea of the TAR models is that the behaviour of a
process is described by a finite set of linear autoregressions’. The
appropriate AR model that generates the value of the time series at
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each point in time is determined by the relation of a conditioning
variable to the threshold values. If the conditioning variable is the
dependent variable itself after some delay d (y.,), the model is
known as self-exciting threshold autoregressive (SETAR) model.

The SETAR model is piecewise-linear in the space of the
threshold variable, rather than in time. An interesting feature of
SETAR models is that the stationarity of y, does not require the
model to be stationary in each regime, on the contrary, the limit
cycle behaviour that this class of models is able to describe arises
from the alternation of explosive and contractionary regimes?®.

In this study we choose a two-regime (SETAR-2) and a
three-regime (SETAR-3) SETAR models, which can be
represented as follows:

p(l)
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where e is assumed 11D(0,s*”) and r represent the threshold
values.

The models are estimated, over the period 03/01/1990-
30/12/1999, by following the three-stage procedure suggested by
Tong (1983) for the case of a SETAR-2 (p,, p,; d) model. For given



values of d and r, separate AR models are fitted to the appropriate
subsets of data, the order of each model is chosen according to the
usual AIC criteria. In the second stage r can vary over a set of
possible values while d has to remain fixed, the re-estimation of the
separate AR models allows the determination of the r parameter,
as the one for which AIC(d) attains its minimum value. In stage
three the search over d is carried out by repeating both stage 1 and
stage 2 for d=d,, d, ..., d. The selected value of d is, again, the
value that minimises AIC(d).

The selected specifications are reported in table 2. The models
show clear evidence that the euro-EER returns are strongly
characterised by nonlinearities as the dynamic structure, the
estimated coefficients and the error variance differ across regimes.
In the forecasting exercise discussed in the next sections the
performance of the estimated SETAR models is compared with
that of a restricted AR(3) model and an AR(1)-GARCH(1,1). The
latter turned out to be adequate in capturing the volatility displayed
by the series and is expected to produce better calibrated density
and interval forecasts than the simple AR model. It is of interest to
see how the SETAR model compares with the GARCH model in
predicting higher-order moments.

3. The forecasting exercise

In this section we conduct three different forecasting
exercises intended to evaluate the models on their ability to
produce point forecasts, density and interval forecasts. For each
kind of forecasts the evaluation is conducted over the entire
forecasting sample - unconditional evaluation - and over each regime
of the SETAR models - conditional on regime. So far, regime-
conditional evaluations of nonlinear models have focussed on
point forecasts only (Clements and Smith, 1999, and Boero and
Marrocu, 2002a). In the following analysis we explore whether a
conditional evaluation extended to density and interval forecasts



can add useful information on the relative quality of the forecasts
of the models.

3.1. Point forecasts evaluation

The forecasting sample covers the period 03/01/00-10/07/02;
the models are specified and estimated over the first estimation
period, 03/01/1990-30/12/1999, and the first set of 1 to 5 steps
ahead forecast (h=1, 2,...5) computed. The models are then
estimated recursively keeping the same specification but extending
the sample with one observation each time. In this way 638 point
forecasts are obtained for each forecast horizon. These forecasts
can be considered genuine forecasts as in the specification stage we
completely ignore the information embodied in the forecasting
period. The computation of multi-step-ahead forecasts from
nonlinear models involves the solution of complex analytical
calculations and the use of numerical integration techniques, or
alternatively, the use of simulation methods. In this study the
forecasts are obtained by applying the Monte Carlo method with
regime-specific error variances, so that each point forecast is
obtained as the average over 500 replications (see Clements and
Smith, 1997, 1999)’.

In table 3 we report the MSFEs normalised with respect to the
AR model (panel A) and the GARCH model (panel B). The values
are calculated as the ratio MSFE,/MSFE,; and
MSFE serar/ MSFE garc, SO that a value less than 1 denotes a
better forecast performance of the SETAR model. We have also
applied the Diebold and Mariano (DM) test for equality of
forecasting accuracy, and indicated with stars the cases for which
the MSFEs of the competing models are statistically significantly
different’. From table 3 we can see that when the comparison is
conducted with respect to the AR model (panel A), the assessment
of the models by regime produces more cases in favour of the
SETAR models than those obtained from the evaluation of te
entire forecasting sample. This is particularly evident for the
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SETAR-2 model in regime 2. However, when the rival model is
the AR(1)-GARCH(1,1) the differences between the MSFEs in
terms of the Diebold and Mariano test are in most cases not
significant (panel B).

3.2. Density forecasts evaluation

Previous authors have found that an evaluation based on
density forecasts may reveal greater discrimination over the linear
models than evaluations based on the first moment (Clements and
Smith, 2000, 2001, Boero and Marrocu, 2002a). In this section, we
evaluate the one-step-ahead density forecasts of the models by
applying the methods suggested by Diebold et al. (1998) and
surveyed by Tay and Wallis (2000). We also apply the modified
Pearson goodness-of-fit test and its components, proposed by
Anderson (1994) and recently discussed in Wallis (2002) with
applications to inflation forecasts.

Density forecasts

The evaluation of the density forecasts is based on the
analysis of the probability integral transforms of the actual
realisations of the variables with respect to the forecast densities of
the models. These are defined as z=F(y), where F(.) is the
forecast cumulative distribution function and vy, is the observed
outcome. Thus, z, is the forecast probability of observing an
outcome no greater than that actually realised. If the density
forecasts correspond to the true density, then the sequence of

probability integral transforms {zt}thl is i.i.d. uniform (0,1). To

check whether the sequence of probability integral transforms
departs from the i.i.d. uniform hypothesis, the distributional
properties of the z, series are examined by visual inspection of
plots of the empirical distribution function of the z, series, which
are compared with those of a uniform (0,1). To supplement these
graphical devices, the Kolmogorov-Smirnov test’ can be used on
the sample distribution function of the z, series (see Diebold et al.,
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1999, and Tay and Wallis, 2000). Alternatively, uniformity can be
tested by applying the Pearson chi-squared goodness-of-fit test.
These methods address the unconditional uniformity hypothesis.
The independence part of the i.i.d. uniform (0,1) hypothesis can be
assessed by studying the correlograms of the z, series and of
powers of this series (to establish the existence of dependence in
higher moments) and applying formal tests of autocorrelation.

In our analysis below, we use both the Kolmogorov-
Smirnov test and the Pearson X test, in the modified version
suggested by Anderson (1994), and the Ljung-Box test for

autocorrelation on (z - 2), (z- 2)*, (z-2)°, (z-2)*. Awell

known limitation of this approach is that the effects of a failure of
independence on the distribution of the tests for unconditional
uniformity is unknown®. Moreover, failure of the uniformity
assumption will affect the tests for autocorrelation. The use of
alternative techniques is therefore recommended in practical
applications as they can offer different insights into the relative
quality of the forecasts and help discriminating between rival
models.

The modified Pearson goodness-of-it test and its components

The following description draws from Anderson (1994) and
Wallis (2002). The standard expression for the chi-squared
goodness-of-fit test is given by

X2 =8 (n -n/k)?/(n/k)=(k/n)an?-n

where k is the number of equiprobable classes in which the range
of the z, series is divided, n; are the observed frequencies, n the
number of observations (in our case the number of forecasts).
This test has a limiting 7 distribution with k-1 degrees of freedom
under the null hypothesis.

Anderson (1994) proposed a rearrangement of the test,
which can be decomposed in various components to test
departures from specific aspects of the distribution of interest. For
example, shifts in location, shifts in scale, changes in symmetry and
in kurtosis can all be detected from these tests. The rearranged
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test, valid under equiprobable partitions (see Boero, Smith and
Wallis, 2002) is written as:
XP=(x-p)[I-ee/ K (x-p 7/ (n/K)

In this expression, X is a kx1 vector of observed frequencies (x,,
Xy ..., %), Which, under the null hypothesis has mean vector
pu=(n/k, ..., n/k)" and covariance matrix V = (@/k) [l - ee’/K],
where e is a kx1 vector of ones. The asymptotic distribution of the
test rests on the k-variate normality of the multinomial distribution
of the observed frequencies. The test can also be written as

X*=yy /7 (n/K)
where y = A(x-p) is a (k-1) column vector, and A is defined as a
(k-1) x k transformation matrix such that

AA'=1and A'A =l - ee’ /K]

With k=4, one can test departures from three distributional
aspects, namely shifts in location, shifts in scale and changes in
skewness. The A matrix in this case is defined as

R
A= 9 -1 -1
e 5
g -1 1 -1

Here, the first row relates to the location of the distribution, the
second to the scale, and the third to skewness. The elements of the
(3x1) vector y=A(x-) are therefore given respectively by:

oo Yef(Xg + Xp) - (X + Xy)]
Yoo Yo[(Xy + Xp) - (X, + Xo)]
Yoo Yo[(Xy + Xg) - (X, + X,)]

Thus, the total X? test y'y/(n/4) is equal to the sum of the squared
elements of y. The three components of the test, y/(n/4), are

independently distributed as ¢ with one degree of freedom under
the null hypothesis. The first component of this sum is given by:
(L/[(x, + %) = (%3 + X))
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This component detects possible shifts in location, with reference
to the median of the distribution (shifts from the first half of the
distribution to the second half). The second component detects
shifts from the tails to the centre (interquartile range). Finally, the
third component detects possible asymmetries, that is shifts from
the first and third quarters to the second and fourth.

With k=8, one can also focus on the fourth characteristic
related to kurtosis. In this case the A matrix is defined as

o

1 1 1 -1-1-1 -1

1-1-1-1-1 1 1

1-1-1 1 1-1-10
1 -1 1 1-1-1 14
(
u
u
u
u

@ QD

>
1
=

>

&

D> (D> (D> (D>

Here, only the first four rows are related to features of the
distribution that are familiar, therefore the last three rows are
omitted. So, in this case, the total chi-squared goodness-of-fit test,
computed with the standard formula, will not be obtained as the
sum of seven individual components, but will be equal to the sum
of the first four components plus a remaining aggregate
component independently distributed as ¢ with three degrees of
freedom under the null hypothesis.

Model evaluation

The one-step-ahead density forecasts of the -effective
exchange rate returns are obtained under the assumption of
Gaussian errors, with the appropriate regime-specific variances for
the SETAR models. The evaluation of the forecasts is carried out
unconditionally, over the forecast period as a whole, and separately
for each regime. In figure 2 we report some selected plots of the
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empirical distribution function of the z, series against the
theoretical uniform distribution function. We omit the 45° line to
avoid over-crowding the plots. The 95% confidence intervals
along side the hypothetical 45° line are calculated using the critical
values of the Kolmogorov Smirnov test, reported in Lilliefors
(1967, Table 1, p. 400), in the presence of estimated parameters™.
The results from the Pearson X° test and its components,
computed with k=8 partitions, are presented in table 4. In table 5
we report the results of the Ljung-Box test for autocorrelation of
the z, series and its powers.

As we can see from table 4 and figure 2, the GARCH model
seems to produce density forecasts which are unconditionally
correct, as suggested by the overall goodness-of-fit test, by its
individual components, and by the Kolmogorov Smirnov test.
Moreover, the results in table 5 show that the GARCH forecasts
also satisfy the independence part of the joint hypothesis, with the
Ljung-Box test showing no significant dependencies in the first
and higher moments of the z, series. These results for the GARCH
model are robust across the two types of evaluations conducted in
this paper, that is for the entire forecast period and conditional on
the regimes of the SETAR models. It is now interesting to see how
the SETAR density forecasts compare with the GARCH forecasts.

We start by discussing the results for the SETAR model with
2 regimes. As shown by the results in table 4 and figure 2, the
SETAR-2 model fails the unconditional uniformity test in the
evaluation over the entire forecasting sample. However, when the
forecast densities are evaluated separately for each regime, we find
that the forecast performance of the SETAR model is clearly
improved in regime 2, which is the regime with fewer observations
(T=192). For this regime, in fact, we cannot reject the hypothesis
that the forecasts are well calibrated (unconditional uniformity).

The plots of the cdf of the z, series versus the uniform (0,1)
distribution, in figure 2, confirm these results. The empirical cdf of
the SETAR-2 model (figure 2) crosses the bounds in various
regions of the distribution in the entire sample and for the
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observations in regime 1, while the cdf is inside the bounds for the
observations in regime 2. Further information on the nature of
departures from the null hypothesis can be obtained from the
individual test components of the goodness-of-fit test. The results
in table 4 show that the largest contribution for the failure of the
SETAR forecasts over the entire forecast period and for the
observations in regime 1 comes from the second (scale) and fourth
(kurtosis) components. It is interesting to note that there is some
weak evidence of departure from kurtosis also for the forecasts in
regime 2, suggesting that the SETAR-2 density forecasts are not as
well calibrated as the GARCH forecasts in the tails of the
distribution.

In order to complete the evaluation of the density forecasts
of the SETAR model, we now look at the results from the test for
autocorrelation of the z, series and their powers. It is in fact of
interest to see to what extent the SETAR models are able to
capture the dynamics in heteroschedasticity. Table 5 clearly shows
that the density forecasts from the SETAR models violate the
independence assumption, when they are evaluated over the entire
forecast period and conditional on regime 1. Violations occur with
respect to the second and fourth power of the z, transforms.
However, consistently with our findings so far, the quality of the
density forecasts improves for the observations in regime 2, for
which the independence part of the joint i.i.d. uniform hypothesis
is also satisfied.

A similar pattern of results can be noticed for the SETAR
model with 3 regimes, confirming that the ability to produce
‘good’ forecasts varies across regimes. The density forecasts of the
SETAR-3 model are unconditionally incorrect, according to the
chi-squared goodness-of-fit test (table 4) computed over the entire
forecasting period, and violate the independence assumption (table
5). However, when the tests are computed conditionally on each
regime, we find that the SETAR-3 model produces density
forecasts which satisfy the joint i.i.d U(0,1) hypothesis for the
observations in regime 1, and are unconditionally well calibrated
(though not independent) in regime 3. The results from the chi-
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squared goodness-of-fit test are, in general, confirmed by the plots
of the empirical distribution function of the z, series, not reported
here for space reasons.

By combining the information in table 4, table 5 and figure
2, overall the GARCH model has shown better able to capture the
distributional aspects of the euro-EER returns. In particular we
have found evidence that the SETAR models fail to capture the
scale and leptokurtosis in the distribution of the series when the
density forecasts are evaluated over the entire forecast period.
However, a regime conditional evaluation of the models has
consistently shown an improved performance of the SETAR
forecasts when the forecast origin is conditioned on specific
regimes. These regimes turned out to be those with fewer
observations.

In the next section we will adopt methods that can be used
to evaluate interval forecasts.

3.3. Interval forecasts evaluation

In this section we extend the forecast comparison by
evaluating the models on their ability to produce interval forecasts.
An interval forecast, or prediction interval, for a variable specifies
the probability that the future outcome will fall within a stated
interval. The lower and upper limits of the interval forecast are
given as the corresponding percentiles. We use central intervals, so
that, for example, the 90 per cent prediction interval is formed by
the 5™ and 95™ percentiles.

Although the evaluation of the entire forecast density is more
general than one based on forecast intervals, the results may be
affected by some regions of the density, which may be of less
concern to the forecast user. For example, financial operators are
mostly concerned with the ability to model and forecast the
behaviour in the tails of the distribution. Evaluation of interval
forecasts enables the forecast user to assess more directly the
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ability of the models to produce correct forecasts, focussing on
levels of coverage of specific interest.

The evaluation of interval forecasts is conducted by means of
the likelihood ratio test of correct conditional coverage as recently
proposed by Christoffersen (1998). The forecasts are assessed, like
in the previous evaluations, over the entire forecast period and by
conditioning upon regimes.

Christoffersen (1998) shows that a correctly conditionally
calibrated interval forecast will provide a hit sequence |, (for t=1,
2, ..., T), with value 1 if the realisation is contained in the forecast
interval, and 0 otherwise, that is distributed i.i.d. Bernoulli, with
the desired success probability p. However, as stressed by
Christoffersen, a simple test for correct unconditional coverage
(LRy) is insufficient in the presence of dynamics in higher-order
moments (conditional heteroscedasticity, for example) because it
does not have power against the alternative that the zeros and ones
are clustered in time-dependent fashion. In order to overcome this
limitation, Christoffersen proposes a test for independence (LR,\p)
which assumes a binary first-order Markov chain for the indicator
function 1. Under the null, the test follows a ¢’ distribution with
one degree of freedom. The joint test of correct conditional
coverage, LR, is obtained as the sum of LR and LR,p, and is
asymptotically ¢ distributed with two degrees of freedom. For a
detailed description of the tests we refer the reader to
Christoffersen (1998).

In this paper we have considered intervals with nominal
coverage, p, in the range [0.95-0.20]. The results are presented in
table 6, where, for each nominal coverage, we report the actual
unconditional coverage (p) and the P-values of the three LR tests™.
Table 6a reports the results for the entire forecast period, while
tables 6b and 6c report the results for the individual regimes.

As expected from our previous findings, the interval
forecasts obtained from the GARCH model are conditionally well
calibrated, at every level of coverage, and in both unconditional
and regime-conditional evaluations. The SETAR models fail the

16



conditional coverage test, when they are evaluated over the entire
forecast period, for all levels of coverage, mostly due to strong
rejection of the unconditional coverage test. The empirical
coverage (the sample frequency p) is in general less than the
nominal coverage, p, that is a smaller number of outcomes are
observed to fall within the stated intervals. This means that the
models overestimate the probability that the variable will fall
within the predicted interval. Thus, over the whole forecast period,
the models produce interval forecasts that are too narrow,
indicating that the variance of the predicted distribution is too
small. These results find confirmation in those reported in table 4,
suggesting a major departure with respect to the scale of the
distribution.

With respect to the test for independence, an interesting
result is that the SETAR-3 model seems more able to produce
forecasts that are independent over the whole forecast period,
while there is more evidence against the independence of the
SETAR-2 forecasts.

Finally, from tables 6b and 6¢c we notice that the SETAR-2
model shows a substantial improvement in regime 2, delivering
interval forecasts with correct conditional coverage for all intervals
considered. Similarly the forecast performance of the SETAR-3 is
improved in regime 1. The forecast intervals in this regime are all
well calibrated, with the exception of te wider intervals in the
range 0.95 - 0.85. This result may be interpreted as failure to
correctly capture the behaviour in the tails of the distribution also
for the observations in regime 1. For this range of intervals, in fact,
p is significantly greater than p, that is fewer observations fall in
the stated intervals, which also implies that more observations
actually fall in the tails than those predicted.

4. Conclusions

In this paper we have studied the out-of-sample forecast
performance of SETAR models in an application to daily returns

17



from the euro effective exchange rate. The SETAR models have
been specified with two and three regimes, and their performance
has been assessed against that of a simple linear AR model and a
GARCH model. The forecast exercise is genuine in the sense that
for the specification and estimation of the models we have ignored
any information contained in the forecasting period.

The models have been assessed, first of all, on their ability
to produce point forecasts, measured by means of MSFEs
accompanied by the Diebold-Mariano test. Then the evaluation of
the models has been extended to interval and density forecasts, to
see whether the SETAR models can accurately predict higher-
order moments.

The evaluation of the models has been conducted not only
on different measurement methods, but also at different levels.
That is, we have looked at the relative performance of the models
on average, over the forecast period as a whole, and also we have
investigated whether the models ae better at predicting future
values when the process is in a particular regime. Evaluations of
SETAR models conditional on regimes have been carried out in
previous research, but on point forecasts only. In this paper we
have moved a step forward by extending the conditional
evaluation to density and interval forecasts.

By evaluating the SETAR models over the entire
forecasting sample we have found that none of the models was
able to produce ‘good’ density and interval forecasts in general,
while the density and interval forecasts produced by the GARCH
model were correctly conditionally calibrated at each level of the
evaluation study. The correct calibration or not of the various
regions of the density has been illustrated by cumulative
probability plots of the probability integral transforms against the
uniform (0,1), and also assessed by the X* goodness-of-fit test and
its individual components. The decomposition of the goodness-of-
fit test into individual components has enabled us to explore
possible drections of departures more closely, indicating major
departures for the SETAR models with respect to scale and
kurtosis.
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The assessment of the models conditional on regimes has
indicated a significant improvement in the quality of the SETAR
forecasts in correspondence of specific regimes. In particular, the
SETAR specification with two regimes has shown a good
performance in terms of point, intervals and density forecasts
when the process was in regime 2. On the other hand, the three-
regime SETAR has not shown any improvement in terms of point
forecasts, while it has delivered better interval and density forecasts
in regime 1. In all evaluations, the improved performance of the
SETAR models has occurred conditional on the regimes with a
relatively small number of observations. This is in line with
suggestions from previous studies.

To conclude, the GARCH model has shown more able to
capture the distributional features of the euro effective exchange
rate returns and to predict higher-order moments than the SETAR
models. However, both SETAR models have shown a substantially
improved forecast performance when the forecast origin was
conditioned on some specific regimes.

19



References

ANDERSON, G. (1994), “Simple tests of distributional form”,
Journal of Econometrics, 62, 265-276.

BOERO, G. and E. MARROCU (2002A), “The performance of non-
linear exchange rate models: a forecasting comparison”,
Journal of Forecasting, 21, 513-542.

BOERO, G. and E. MARROCU (2002B), “Evaluating non-linear
models on point and interval forecasts: an application with
exchange rate returns”, Contributi di Ricerca CRENoS -
Universita degli Studi di Cagliari - 01/10.

BOERO, G., J.P. SMITH and K.F. WALLIS (2002), “The properties of
some Goodness-of-fit tests”, Warwick Economic Research
Papers, no. 653, University of Warwick.

BROOKS, C. (1997), “Linear and nonlinear (non-) predictability of
high-frequency exchange rates”, Journal of Forecasting, 16, 125-
145,

BROOKS, C. (2001), “A double threshold GARCH model for the
French/German Mark exchange rate”, Journal of Forecasting, 20,
135-143.

CHRISTOFFERSEN, P. (1998), “Evaluating interval forecasts”,
International Economic Review, 841-862.

CLEMENTS, M. P. and J.P. SMITH (1997), “The Performance of
Alternative Forecasting Methods for SETAR Models”,
International Journal of Forecasting, 13, 463-75.

CLEMENTS, M. P. and J.P. SMITH (1999), “A Monte Carlo Study of
the Forecasting Performance of Empirical SETAR Models”,
Journal of Applied Econometrics, 14, 123-41.

CLEMENTS, M. P. and JP. SMITH (2000), “Evaluating the Forecast
densities of linear and non-linear models: applications to

20



output growth and unemployment”, Journal of Forecasting, 19,
255-276.

CLEMENTS, M. P. and J.P. SMITH (2001), “Evaluating forecasts
from SETAR models of exchange rates”, Journal of International
Money and Finance, 20, 133-148.

DIEBOLD, F.X. and R.S. MARIANO (1995), “Comparing predictive
accuracy” Journal of Business and Economic Statistics, 13, 253-263.

DIEBOLD, F.X. AND J.A. NASON (1990), “Nonparametric exchange
rate prediction?” Journal of International Economics, 28, 315-
332.

DIEBOLD, F.X., T.A. GUNTHER and A.S. TAY (1998), “Evaluating
density forecasts with applications to financial risk
management”, International Economic Review, 39, 4, 863-883.

EUROPEAN CENTRAL BANK, Statistics,
http://www.ecb.int/stats/eer/eer.shtml

GRANGERC.W.J. (1993), Strategies for modelling nonlinear time-
series relationships. The Economic Record, 69, 233-238.

GRANGER, CW.J. and T. TERASVIRTA (1993), Modelling Nonlinear
Economic Relationships, Oxford University Press, Oxford.

HARVEY, D., LEYBOUNE, S. AND NEWBOLD, P. (1997), Testing the
equality of prediction mean squared errors, International Journal
of Forecasting, 13, 281-291.

KRAGER, H. and P. KUGLER (1993), “Nonlinearities in foreign
exchange markets: a different perspective”, Journal of
International Money and Finance, 12, 195-208.

LILLIEFORS, H.W., (1967), “On the Kolmogorov-Smirnov Test for
Normality with Mean and Variance Unknown”, Journal of the
American Statistical Association, 62, 399-402.

21



LUUKKONEN, R., P. SAIKKONEN and T. TERASVIRTA (1988),
“Testing linearity in univariate time series models”,
Scandinavian Journal of Statistics, 15, 161-175.

TAY, AS. and KF. WALLIS (2000), “Density Forecasting: a
Survey”, Journal of Forecasting, 19, 235-254.

TERASVIRTA, T. (1994), “Specification, estimation and evaluation
of smooth transition autoregressive models™; Journal of the
American Statistical Association, 89, 208-218.

THURSBY, J.G, SCHMIDT P. (1977), Some properties of tests for the
specification error in a linear regression model. Journal of the
American Statistical Association 72, 635-41.

T1AO, G.C. and R.S. TsAY (1994), “Some advances in non-linear
and adaptive modelling in time series”, Journal of Forecasting, 13,
109-131.

TONG, H. (1983), Threshold models in nonlinear time series analysis, New
York, Springer-Verlag.

WaALLIs, KF. (2002), “Chi-squared Tests of Interval and Density
Forecasts, and the Bank of England’s Fan Charts”,
International Journal of Forecasting, forthcoming.

22



TABLE 1A DESCRIPTIVE STATISTICS

TABLESAND FIGURES

Entire sample

03/01/90-10/07/02

Estimation sample

03/01/90-30/12/99

Forecasting sample

03/01/00-10/07/02

T=3081 T=2439 T=642
Mean -0.0001 -0.0001 0.0000
Median -0.0001 -0.0001 0.0000
Maximum 0.0289 0.0214 0.0289
Minimum -0.0382 -0.0382 -0.0179
Std. Dev. 0.0041 0.0037 0.0053
Skewness -0.0703 -0.4387 0.3933
Kurtosis 7.6953 9.3357 45813
Jarque-Bera 2832.6670 4157.5370 83.4425
Probability 0.0000 0.0000 0.0000
Observations 3081 2439 642
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TABLE 1B LINEARITY TESTS - P-VALUES

Entire sample

Estimation sample

Forecasting sample

03/01/90-10/07/02 03/01/90-30/12/99 03/01/00-10/07/02
n=3081 n=2439 n=642

3 4 5 3 4 5 3 4 5
RESET, h=2 00024 [00230 [00401 |[03952 |04142 | 0.0804 02523 | 0.0%27 |0.1796
RESET, h=3 0.0085 |[0.0528 [0.0089 |[0.0002 |0.0002 | 0.0006 04965 | 0.1007 | 0.4062
RESET, h=4 00227 [01174 [0.0229 |[o0.0001 |0.0001 | 0.0011 06333 | 02043 | 0.2057
Mod. RESET, h=2 0.0006 |00016 |0.0036 |0.0250 [0.0232 [ 0.0306 0.0836 | 01128 | 0.1209
Mod. RESET, h=3 0.0003 |0.0011 |00007 |00012 |0.0016 |0.0003 0.0933 | 01467 |0.1534
Mod. RESET, h=4 0.0002 [0.0011 [0.0009 00001 |0.0004 | 0.0001 02521 | 0.3996 | 0.4067
S =1 01440 [02586 |[0.2428 |[04585 |0.4496 |0.6018 0.4443 | 05831 | 0.6338
S =2 00015 [0.0000 [0.0002 |[0.0004 |0.0000 | 0.0000 04949 | 01197 | 0.1944
= 0.0001 [0.0000 [0.0002 [o0.0004 |0.0013 |[0.0003 00123 | 0.0243 | 0.0223
So =4 05433 [06992 |[04608 |[0.0134 |0.0143 | 0.0247 03077 | 02499 |0.1145
Sp =5 0.0454 [01218 |[0.0883 |[0.0059 |00014 | 0.0021 0.0872 |o0.1268 |0.1872
Sa =6 00433 [01039 [00083 |[00601 |0.1136 | 0.0402 00129 | 0.0485 | 0.0562

p denotes the lag order under the null hypothesis of linearity
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TABLE 2 SETAR MODELS SPECIFICATION

SETAR-2 SETAR-3
Coeff. t-value Coeff. t-value
fo® -0.0001 -1.000 -0.0012 -3.0000
@ 0.0517 2.3716 -0.1446 -2.0569
f,0 0.0402 1.8962
REGIME 1
40 -0.0685 -3.1136
st 0.0035 0.0044
T 1930 455
fo@ 0.0000 0.0000 0.0000 0.0000
1 -0.0869 -1.7345
REGIME 2
s 0.0045 0.0034
T® 497 1539
fo® -0.0001 -0.2000
.3 0.0134 0.1553
o 0.1009 2.3037
REGIME 3
40 -0.1099 -2.1381
s® 0.0042
TO 440
s(model) 0.0037 0.0037
d 4 1
MODEL n 0.00248 -0.00279
p) - 0.00277
AIC -11.206 -11.208

For the SETAR-2 model the transition variable is represented by y:.s while the threshold is
selected to be 0.00248; in regime 1 the series is described by an AR(3) process, while in regime 2
it follows an AR(1) process.

For the SETAR-3 model the transition variable is represented by y:.1 while the thresholds values
are approximately symmetric and equal to -0.00279 and 0.00277; in regime 1 the series is
described by an AR(1) process, in regime 2 it is approximated just by a constant, while in regime 3
it follows an AR(3) process.
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TABLE 3A FORECASTING PERFORMANCE - NORMALIZED MSFE

Number of steps-ahead
1 2 3 4 5
(MSFE setar/MSFEAR) A
SETAR-2 | Entire sample, T=638 1.0025 1.0011 0.9948 0.9982 0.9991
Regime 1 1.0097** 1.0065* 1.0015 1.0021 0.9991
T 446 446 446 446 638
Regime 2 0.9842 0.9875 0.9779*  0.9884** na
T, 192 192 192 192 0
SETAR-3 | Entire sample, T=638 1.0079 0.9984 0.9962 0.9989 0.9986
Regime 1 1.0077 na 1.0021 0.9949 1.0022
T 186 0 128 165 158
Regime 2 0.9921 0.9984 0.9939 0.9987 0.9951
T 271 638 366 320 321
Regime 3 1.0244** na 0.9985 1.0055 0.9995
Ts 181 0 144 153 159
(MSFE serar/MSFE surci) B
SETAR-2 | Entire sample, T=638 1.0014 1.0059 0.9998 0.9984 0.9993
Regime 1 1.0016 1.0049 1.0001 1.0016 0.9993
T 446 446 446 446 638
Regime 2 1.0008 1.0085 0.9990 0.9903 na
T, 192 192 192 192 0
SETAR-3 | Entire sample, T=638 1.0068 1.0031 1.0012 0.9991 0.9987
Regime 1 0.9966 na 10118 0.9960 1.0016
T 186 0 128 165 158
Regime 2 1.0020 1.0031 0.9980 0.9974 0.9952
T 271 638 366 320 321
Regime 3 1.0212 na 1.0020 1.0085 1.0009
Ts 181 0 144 153 159

* ** denotes significance of the Diebold-Mariano test at 10% and 5%

“na” refers to the cases for which the MSFE can not be computed as the relevant model does not
produce any forecast for that particular regime/horizon.




TABLE 4 FORECASTING PERFORMANCE - 2 GOODNESS-OF-FIT TESTS -
P-VALUES IN ITALICS (ANDERSON-WALLIS DECOMPOSITION, K=8)

Models location scale skewness | kurtosis total

Entire sample | GARCH 0.401 0.759 1.605 0.056 5.461
(T=638) 0.526 0.384 0.205 0.812 0.604
SETAR-2 | 0.100 14.445 0.157 6.828 26.301

0.751 0.000 0.692 0.009 0.000

SETAR-3 | 0.006 11.060 0.000 5.643 20.708

0.937 0.001 1.000 0.018 0.004

Regimel GARCH 0.000 0.897 0.439 0.143 3.040
(T1=446) 1.000 0.344 0.507 0.705 0.881
SETAR-2 | 0.036 19.812 0.000 3.955 32.601

SETAR-2 0.850 0.000 1.000 0.047 0.000
Regime2 GARCH 1.333 0.021 1.688 0.021 10417
(T2=192) 0.248 0.885 0.194 0.885 0.166
SETAR-2 | 0.083 0.021 0.521 3.000 10.667

0.773 0.885 0.470 0.083 0.154

Regimel GARCH 2.602 0.538 0.194 0.086 3677
(T1=186) 0.107 0.463 0.660 0.769 0.816
SETAR-3 | 0.052 0.052 0.468 1671 5.081

0.820 0.820 0.494 0.196 0.650

SETAR-3| Regime2 GARCH 0.624 0.446 0.446 0.033 5.044
(T,=271) 0.430 0.504 0.504 0.855 0.655
SETAR-3 | 0.299 11.162 0.446 3.546 17.148

0.585 0.001 0.504 0.060 0.016

Regime3 GARCH 1.994 2436 1.243 0.934 8.392
(T5=181) 0.158 0.119 0.265 0.334 0.299
SETAR-3 1.243 2.923 0.138 0.934 9.807

0.265 0.087 0.710 0.334 0.200
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TABLE 5 P-VALUES OF THE LIUNG-BOX Q STATISTICS
FOR SERIAL CORRELATION (FIRST SIX AUTOCORRELATIONS)

Moments
(z- 2) (z- 2)? (z- 2)° (z- 2)*
Entire sample  |GARCH 0.258 0.588 0.187 0.402
SETAR-2 0472 0.000 0.191 0.000
SETAR-3 0.394 0.000 0125 0.000
Regime 1 GARCH 0.424 0.998 0.411 0.989
SETAR-2 0.382 0.000 0177 0.000
Regime 2 GARCH 0.253 0.354 0.089 0.594
SETAR-2 0.493 0.323 0.327 0.434
Regime 1 GARCH 0438 0325 0.707 0391
SETAR-3 0.337 0276 0342 0.690
Regime 2 GARCH 0.244 0.386 0.775 0.495
SETAR-3 0.190 0.000 0.705 0.000
Regime 3 GARCH 0.387 0.772 0496 0425
SETAR-3 0.290 0.002 0429 0.003

28



TABLE 6A FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — ENTIRE FORECAST PERIOD

GARCH SETAR-2 SETAR-3

p p LRuc LRino LRcc p LRuc LRino LRcc p LRuc LRino LRcc
0.95 0.944 0.465 - - 0.857 0.000 1.000 0.000 0.868 0.000 0.706 0.000
0.90 0.897 0.773 0.071 0.189 0.803 0.000 0.447 0.000 0813 0.000 0.747 0.000
0.85 0.845 0.716 0.294 0539 0.749 0.000 0.156 0.000 0.763 0.000 0.485 0.000
0.80 0.807 0.647 0.217 0421 0.710 0.000 0.007 0.000 0.715 0.000 0.247 0.000
0.75 0.751 0.963 0.782 0.961 0.666 0.000 0.003 0.000 0.676 0.000 0.226 0.000
0.70 0.697 0.890 0.637 0.886 0.610 0.000 0.023 0.000 0.627 0.000 0.990 0.000
0.65 0.647 0.888 0.541 0.822 0.560 0.000 0.107 0.000 0575 0.000 0.178 0.000
0.60 0.585 0.429 0.489 0.576 0.530 0.000 0.364 0.001 0527 0.000 0.076 0.000
055 0538 0.530 0.564 0.695 0.476 0.000 0538 0.001 0.489 0.002 0.012 0.000
050 0.483 0.384 0.685 0.630 0.425 0.000 0.071 0.000 0434 0.001 0.052 0.001
0.45 0.442 0.685 0.289 0.525 0.379 0.000 0211 0.001 0.395 0.005 0.296 0.011
0.40 0.389 0.560 0.192 0.360 0.339 0.001 0.469 0.005 0.350 0.009 0.358 0.021
0.35 0.351 0.954 0.426 0.727 0.299 0.007 0.024 0.002 0.287 0.001 0.196 0.001
0.30 0.299 0972 0.187 0418 0.268 0.075 0.004 0.003 0.257 0.016 0.099 0.014
0.25 0.246 0.819 0.240 0.488 0218 0.057 0.025 0.013 0223 0.105 0.720 0.252
0.20 0.199 0.953 0.341 0.634 0.166 0.029 0.124 0.028 0172 0.076 0.549 0.173

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of significance
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TABLE 6B FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — CONDITIONING ON REGIMES OF THE SETAR-2 MODEL
REGIME 1  T,=446 REGIME 2 T,=192

GARCH SETAR-2 GARCH SETAR-2

p p LRuic LRmno  LRec p LRuic LRmno  LRec p LRuic LRmno  LRcc p LRuc LRinp LRcc
095| 0944 0565 0704 0.788 | 0832 0.000 0.268 0.000 | 0.943 0.650 0.649 0.814 0.916 0.052 0.166 0.058
090| 0890 0494 0773 0759 | 0774 0.000 0277 0.000 | 0911 059 0676 0.793 0.869 0.180 0.297 0.237
085| 0836 0424 0734 0686 | 0.722 0.000 0.083 0.000 | 0.865 0.566 0.735 0.801 0.812 0.159 0.572 0.316
0.80| 0794 0741 0.767 0906 | 0.679 0.000 0.001 0.000 | 0.839 0.170 0.254 0.204 0.780 0.521 0.254 0.425
0.75| 0738 0550 0665 0.761 | 0.646 0.000 0.002 0.000 | 0.781 0.310 0.749 0.568 0.712 0.251 0.954 0.516
070| 0.684 0459 0612 0668 | 0590 0.000 0.001 0.000 | 0.729 0373 0954 0672 0.660 0.193 0.427 0.313
065| 0630 0379 0328 0421 | 0538 0.000 0.016 0.000 | 0.688 0.272 0.959 0.546 0.613 0.243 0.351 0.328
060| 0581 0407 0910 0.705 | 0504 0.000 0.142 0.000 | 0594 0.860 0.965 0.984 0.592 0.755 0.706 0.887
055| 0536 0549 0973 0835 | 0453 0.000 0.062 0.000 | 0542 0817 0874 0.961 0.534 0.606 0.985 0.875
050| 0478 0344 0697 0592 | 0395 0.000 0.008 0.000 | 0495 0.885 0827 0.966 0.497 0.900 0.943 0.990
045| 0433 0463 0407 0542 | 0357 0.000 0.059 0.000 | 0464 0.706 0.999 0.931 0.435 0.624 0437 0.656
040| 0381 0416 0540 0595 | 0321 0.001 0275 0.001 | 0406 0.860 0.868 0971 0.382 0.576 0.882 0.846
035| 0341 0683 0820 0897 | 0276 0.001 0.020 0.000 | 0375 0470 0.703 0.716 0.356 0914 0.321 0.607
030| 0278 0308 0298 0346 | 0249 0016 0.011 0.002 | 0349 0.144 0.366 0.229 0.314 0.709 0.408 0.663
025| 0229 0294 0222 0273 | 0193 0.004 0.060 0.003 | 0.286 0.251 0.609 0.453 0.277 0411 0.356 0.465
020| 0182 0326 0105 0165 | 0150 0.007 0.738 0.023 | 0.240 0.180 0.395 0.284 0.204 0.919 0.067 0.186

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of significance
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TABLE 6C FORECAST INTERVAL EVALUATION FOR 1-STEP-AHEAD HORIZON — CONDITIONING ON REGIMES OF THE SETAR-3 MODEL

REGIME 1 T:=186

REGIME 2 T,=271

REGIME 3 T;=181

p

p

GARCH SETAR-3

LRuc LRn LRec| p  LRuc LR
D D

LRcc

p

GARCH SETAR-3

LRuc LRNn LRec| P LRuc LR
) D

LRcc

p

GARCH
LRuc LRiN LRcc

SETAR-3

p  LRuc

LRin LRcc
D

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
055
0.50
0.45
0.40
035
0.30
0.25
0.20

0.925
0.876
0.833
0.796
0.763
0.731
0.688
0.608
0570
0.527
0.484
0.430
0.382
0333
0.274
0.220

0140 -- - [0.887 0.001 0.662
0.298 0.160 0.217(0.823 0.001 0.955
0.530 0518 0.666 (0.774 0.006 0.822
0.884 0.930 0.986 (0.747 0.081 0.683
0.670 0.850 0.897(0.704 0.158 0.355
0.348 0.582 0.554(0.667 0.326 0.465
0.271 0.537 0.451(0.634 0.657 0.751
0.834 0.952 0.976 0597 0.928 0.760
0.585 0.859 0.848(0.538 0.735 0.660
0.463 0.856 0.752(0.484 0.660 0.930
0.354 0.836 0.637(0.446 0.918 0.814
0.404 0.802 0.684(0.382 0.610 0.724
0.368 0.506 0.534(0.306 0.208 0.796
0.326 0.883 0.611(0.280 0.540 0.808
0451 0.771 0.721(0.253 0.933 0.611
0.491 0.708 0.736(0.215 0.611 0.130

0.003
0.006
0.023
0.201
0.240
0.473
0.861
0.951
0.857
0.904
0.968
0.825
0.438
0.805
0.875
0.279

0.948
0.889
0.834
0.812
0.745
0.686
0.624
0572
0.535
0.480
0.443
0.395
0.347
0.295
0.251
0.207

0901 - - 10.838 0.000 0.426
0.563 0.835 0.828|0.790 0.000 0.478
0.466 0.825 0.748|0.738 0.000 0.301
0.624 0509 0.713(0.686 0.000 0.317
0.861 0.599 0.857(0.661 0.001 0.280
0.625 0.434 0.653(0.601 0.001 0.417
0.365 0.062 0.116{0.531 0.000 0.161
0.348 0.065 0.117(0.483 0.000 0.230
0.621 0.289 0.504|0.443 0.000 0.603
0.504 0.885 0.792(0.399 0.001 0.478
0.812 0511 0.783(0.369 0.007 0.197
0.862 0.243 0.498(0.339 0.040 0.128
0.914 0.733 0.938|0.280 0.015 0.050
0.863 0.505 0.789]0.251 0.073 0.030
0.972 0548 0.834|0.214 0.164 0.367
0.785 0.385 0.661(0.159 0.080 0.170

0.000
0.000
0.000
0.000
0.003
0.002
0.000
0.000
0.002
0.003
0.011
0.038
0.007
0.019
0.253
0.084

0.956
0.928
0.873
0.812
0.746
0.680
0.641
0580
0.508
0.442
0.398
0.337
0.326
0.271
0210
0.166

0.715
0.186
0.377
0.680
0.898
0.551
0.797
0.586
0.260
0.118
0.156
0.081
0.495
0.385
0.205
0.238

0511
0.478
0.766
0.414
0.492
0.919
0.884
0.788
0.263
0.440
0.823
0.612
0.353
0.583

0.546
0.715
0.949
0.600
0.764
0.858
0525
0.284
0.196
0.161
0.773
0.603
0.291
0.429

0.895 0.003
0.840 0.012
0.790 0.031
0.724 0.014
0.669 0.014
0.624 0.030
0.580 0.052
0.519 0.028
0.508 0.260
0.436 0.087
0.381 0.061
0.331 0.057
0.276 0.034
0.243 0.088
0.204 0.148
0.149 0.076

0.996 0.012
0.220 0.020
0.086 0.022
0.211 0.022
0.434 0.036
0.071 0.018
0.185 0.063
0.054 0.014
0.101 0.139
0.040 0.028
0.215 0.080
0.654 0.148
0.819 0.103
0.835 0.229
0.858 0.345
0.276 0.115

p indicates the nominal coverage, p indicates the actual unconditional coverage; numbers in bold represent rejections at 5% level of significance
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FIGURE 1

EURO EFFECTIVE EXCHANGE RATE

(03/01/90-10/07/02
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FIGURE 2
DENSITY FORECASTS-SETAR-2 vS GARCH
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FIGURE 2 (CONT.ED)
DENSITY FORECASTS-SETAR-2 vS GARCH
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NOTES

! See the European Central Bank website
(http://www.ech.int/stats/eer/eer.shtml) for a technical comment on the
method adopted to construct the series of the Euro nominal effective
exchangerate.

2 We have carried out the forecasting evaluation exercise allowing for
different divisions of the estimation and forecasting periods, and found
qualitatively similar results in terms of the relative performance of the rival
models (the results are available from the authors upon request).

% In the traditional form, the RESET test is computed by running a linear
autoregression of order p, followed by an auxiliary regression in which
powers of the fitted values obtained in the first stage are included along with
the initial regressors. The modified RESET test requires that all the initial
regressors enter linearly and up to a certain power h in the auxiliary
regression; Thursby and Schimdt suggest using h=4. The Lagrange
Multiplier form (Granger and Terasvirta, 1993) of the test is adopted in this
study, thus the test is distributed as a ¢? with up to 3p degrees of freedom for
the modified version.

4 The auxiliary regression for the LM S test is computed as follows:

~ J & & J
e =by+a by +taAxXy.YataAy iyt-iytz-d +a kiyt-iytsid where g are the
i= i= i=1 i=

estimated residuals from a linear regression of order p. Under the null
hypothesis the test has a ¢ distribution with 3p degrees of freedom.

> For acomplete discussion of this class of models see Tong (1983).

® A variant of the TAR model can be obtained if the parameters are allowed
to change smoothly over time, the resulting model is called a Smooth
Transition Autoregressive (STAR) model (see Granger and Terasvirta, 1993,
and Terasvirta, 1994).

" As suggested by one referee, we have also calculated the forecasts by
bootstrapping the estimated regime-specific residuals. However, the multi-
step-ahead forecasts did not show any significant difference across the two
alternative methods.

8 Wealso performed the modified version of the DM test proposed by Harvey
et al. (1997), which corrects for the oversize shortcomings of the original DM
tests in small samples and for h>1. The results, not reported here, do not
differ appreciably from those presented in table 3.

® The maximum absolute difference between the empirical distribution
function and the distribution function under the null hypothesis of
uniformity.
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19 For a preliminary study of the size and power of alternative tests see
Noceti, Smith and Hodges, “An evauation of tests of distributional
forecasts’, Discussion paper FORC, University of Warwick, 2000, no. 102.
" The formula reported in Lilliefors (1967) for T>30, level of significance
0.05, is given by 0.886/+fT . The standard critical values of the Kolmogorov-
Smirnov test are probably a conservative estimate of the ‘correct’ critical
values when certain parameters of the distribution must be estimated from the
sample.

12 Al the tests have been performed with Eviews codes, available from the
authors upon request.

36



