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Abstract

This paper compares the accuracy of tail risk forecasts with a focus on includ-
ing realized skewness and kurtosis in ”additive” and ”multiplicative” models. Uti-
lizing a panel of 960 US stocks, we conduct diagnostic tests, employ scoring func-
tions, and implement rolling window forecasting to evaluate the performance of
Value at Risk (VaR) and Expected Shortfall (ES) forecasts. Additionally, we ex-
amine the impact of the window length on forecast accuracy. We propose model
specifications that incorporate realized skewness and kurtosis for enhanced preci-
sion. Our findings provide insights into the importance of considering skewness
and kurtosis in tail risk modeling, contributing to the existing literature and offer-
ing practical implications for risk practitioners and researchers.

Keywords: Value at Risk, CAViaR, Expected Shortfall, Realized Skewness, Real-
ized Kurtosis.
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1 Introduction
Starting approximately thirty years ago, the issue of capital adequacy has received in-
creased attention, with significant impetus given to supervisory and regulatory func-
tions to closely monitor the impact of volatility and interconnectedness on financial in-
stitution portfolios. Modern risk management is based on the principle that increased
risks must be adequately covered with sufficient resources to avoid liquidity crises or de-
faults that could affect other institutions and the financial system as a whole. The con-
sequences of the 2007-2008 financial crisis underscored the need for suitable capital risk
measures exhibiting forecastability over relevant time horizons.

The various recommendations of the Basel Committee on Banking Supervision re-
garding capital risk regulations emphasize that the main parameters of a conditional dis-
tribution of returns to be monitored are some position index, specifically the thresh-
old (Value at Risk, VaR, Jorion, 1997) corresponding to a certain probability in the tail
where losses occur, and the average value of the loss once that threshold has been sur-
passed (Expected Shortfall, ES, Artzner et al., 1999). In this context, without loss of
generality, we assume that the tail in question is the left tail, representing losses in long
positions.

Market activity, characterized by price and volume movements in response to news,
renders the conditional distribution of returns non-constant over time. Consequently,
both Value at Risk (VaR) and Expected Shortfall (ES) become time-varying risk mea-
sures. Moreover, observed persistence in market behavior suggests dynamics that lever-
age valuable past information. From an econometric perspective, it is challenging to
determine which features of past market behavior are relevant for predicting VaR and
ES, as these measures represent conditional quantiles and expectations, respectively, in
the tail of the asset return distribution.

Approaches to address this issue can broadly be categorized into three main groups.
The first category assumes a known parametric distribution for returns, typically a Student-
t distribution, and focuses on the dynamic evolution of the conditional variance of re-
turns. This approach augments the fixed quantile identification with a GARCH process
that models the dependence of conditional variance on recent returns and past estimates.
Parameters are estimated using (Quasi) Maximum Likelihood (QML) methods. At the
opposite end of the spectrum, parametric assumptions about the return distribution
or its dynamics are entirely discarded. So-called historical simulation methods are em-
ployed, where future outcomes are simulated by repeating observed past behaviors.

A third stream adopts an intermediate stance, focusing on the dynamics of the risk
measure of interest while limiting or avoiding reliance on parametric assumptions about
the shape of the conditional return distribution. This semi-parametric approach to fi-
nancial risk modeling is gaining popularity due to its flexibility and often demonstrates
competitive performance compared to more complex parametric models. In what fol-
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lows, we will position ourselves in this stream of literature, addressing, in particular, the
role that higher-order conditional moments, notably skewness and kurtosis, have on the
refinement of predictions, hence highlighting the role of the time-varying evolution of
asymmetry and tail density of the return distribution in sharpening the projections of
VaR and ES.

Our synthesis in this field is to identify two main categories of semi-parametric mod-
eling approaches for tail risk measures. The first is called the “additive” approach, which
utilizes linearized representations of GARCH models, such as in CAViaR models. The
second approach, referred to as the “multiplicative” approach, involves estimating GARCH-
type models via the minimization of a properly defined strictly consistent scoring func-
tion. We consider the recent literature (e.g., Neuberger, 2012; Neuberger and Payne,
2021; Bae and Lee, 2021) on the derivation of realized measures of skewness and kurto-
sis as consistent estimates of the conditional skewness and kurtosis of daily returns. For
our purposes, these additional features of the conditional distributions may be relevant
when included in the specifications. Given that Amaya et al. (2015) provides evidence
that realized skewness and kurtosis are useful when forecasting the cross-section distri-
bution of equity returns, our interest here is to assess whether these benefits extend to
risk forecasting as well.

Although the additive approach has gained popularity, there is still a lack of exten-
sive forecasting comparison between these two methodologies. Hence, we aim to bridge
a gap in the literature by proposing an application that evaluates the accuracy of fore-
casts generated by additive and multiplicative modeling strategies for a panel of 960 US
stocks. To achieve this, we employ various diagnostic tests and scoring functions for
both VaR and ES forecasts. Additionally, we investigate the impact of window length
on forecasting accuracy, a critical issue for practitioners. Short windows tend to mini-
mize bias but increase variability in risk forecasts, while long windows have the opposite
effect: hence, we conduct a rolling window estimation/forecasting exercise and evaluate
the performance of three different window lengths, 500, 1000, and 2000 days.

Our novel model specifications using information on realized higher-order moments
to forecast tail risk measures are both regression quantile time series models for forecast-
ing VaR, as well as bivariate semi-parametric models for joint VaR and ES forecasting:
we are interested in providing specific evidence on the relevance of the realized skew-
ness and kurtosis via Wald-type tests, but also on their contribution in improving the
forecast performance, assessed with standard backtesting procedures. Their predictive
performances are compared to those of competitors that do not include such informa-
tion.

In a nutshell, the evidence on the vast panel of stock indicates that multiplicative
models are preferred to additive ones, and that the extension to higher moments does
not buy a generalized relevant improvement in the outcome. In general, simpler models
are to be preferred to more complex ones.
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The structure of the paper is as follows. In Section 2, we propose our models in Sub-
section 2.1, while the related estimation procedures and some properties of the estimators
are illustrated in Subsection 2.2. In Section 3, we present a recent literature review on re-
alized estimators of skewness and kurtosis of financial returns. Section 4 is dedicated to
the empirical application, while Section 5 concludes.

2 Semi-parametric risk modeling
The literature on semi-parametric risk modeling features a seminal paper by Engle and
Manganelli (2004), who introduced the Conditional Autoregressive Value-at-Risk (CAViaR)
model for forecasting VaR. This model has interesting connections with both quantile
regression and GARCH models, in that the CAViaR model can be viewed as a quan-
tile autoregression with a recursive term. By the same token, a linear GARCH model
of a given order can be represented as a CAViaR model of the same order. Building on
the duality between GARCH and CAViaR, Xiao and Koenker (2009) present an origi-
nal approach to estimating parameters of a GARCH model, proposing to minimize the
typical quantile loss function used in quantile regression models.

Direct semi-parametric modeling of ES is not feasible because, unlike VaR, ES is
not elicitable relative to a given loss function. However, Fissler et al. (2015) have derived
a class of loss functions that are strictly consistent for the pair (VaR, ES), in the sense
that the expected loss is minimized by the true (VaR,ES). Within this framework Taylor
(2020) proposes a class of semi-parametric models for (VaR, ES), augmenting the stan-
dard CAViaR setup with an additional dynamic equation forES, and replacing the usual
quantile loss with a member of the Fissler-Ziegel (FZ) class. In particular, among the
available choices, Taylor (2019) considers a loss, or scoring, function based on the Asym-
metric Laplace quasi-likelihood function, AL for short. Patton et al. (2019) extend the
work by Taylor (2020) in two different directions. First, they consider time-varying semi-
parametric (VaR, ES) models based on the Generalized Autoregressive Score (GAS)
framework (Creal et al., 2013). Second, as done by Xiao and Koenker (2009) for VaR,
they consider directly estimating GARCH models minimizing a specific strictly consis-
tent loss function in the FZ class called FZ0 (owing its denomination to the fact that,
when using this loss to compare two models, it yields loss differentials that are homo-
geneous of degree zero). This property can lead to a higher power in Diebold-Mariano
tests (Diebold and Mariano, 2002).

2.1 The model setup

Let rt be the log-return for the day t, for t = 1, . . . , T , and Qα,t = F−1
r (α|It−1) in-

dicate the conditional α-quantile of rt (level-α Value-at-Risk –VaR), with Fr being the
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cdf of rt; correspondingly, ESα,t = E(rt|rt < Qα,t, It−1) indicates the conditional
α-tail expectation of rt, given past information It−1 (level-α Expected Shortfall – ES).

We let RVt, Skt, and Kut denote, respectively, the conditional variance, skewness,
and kurtosis of daily returns rt as follows

RVt = E0{(rt − µ1t)
2|It−1} = µ2t − µ2

1t,

Skt = E0


(
rt − µ1t

RV
1/2
t

)3

|It−1

 =
µ3t − µ1tµ2t + 2µ3

1t

(µ2t − µ2
1t)

3/2
,

Kut = E0


(
rt − µ1t

RV
1/2
t

)4

|It−1

 =
µ4t − 4µ3tµ1t + 6µ2tµ

2
1t − 3µ4

1t

(µ2t − µ2
1t)

2
,

where µkt = E0(r
k
t |It−1) indicates the k-th conditional noncentered moment under

the true measure. Estimates of these quantities can be readily obtained by replacing the
involved conditional momentsµkt with their estimated counterparts, at least using daily
observations. In Section 3, we will formally address the estimation ofµkt for 1 ≤ k ≤ 4.

We can now present the two alternative modeling frameworks under which VaR
and ES forecasts are generated, denoted as, for ease of reference, the additive and the
multiplicative models, respectively. We simplify the notation by defining vt ≡ Qα,t and
et ≡ ESα,t. Thus, the additive modeling framework can be represented as a regression
model for the 1-step ahead expected α-level of VaR, vt:

rt = vt + ηt,

where the error term ηt is controlling the left tail of the conditional distribution of re-
turns, so that, under correct specification ofvt, the error termηt is such thatF−1

η (α|It−1) =
0.

This is a general framework since several models can be derived as special cases by
varying the dynamic specifications forvt. Noting that a ·̂ is used to indicate an estimate,
r̄ = T−1

∑T
t=1 rt and Ŝk

+

t and Ŝk
−
t , represent negative and positive skewness:

Ŝk
+

1t = Ŝk1t · I{Ŝk1t > 0}, Ŝk
−
1t = −Ŝk1t · I{Ŝk1t < 0},

in what follows, we investigate three specifications.
The first is the simple additive form of the VaR being driven only by the lagged ob-

servation of an estimator of the integrated volatility (R̂Vt−1)1.

add_sim: vt = d0 + d1R̂V
1/2

t−1 + d2vt−1, (1)
1In the absence of jumps, the integrated variance coincides with the quadratic variation that, in turn,

diverges from the conditional variance RVt by a zero mean error, thus motivating our notation (Andersen
et al., 2001). A set of alternative choices for R̂Vt−1 will be presented and discussed in Section 3.
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To account for the potential misspecification inadd_sim, we can resort to the Cornish-
Fisher (CF) expansion (Hill and Davis, 1968), which approximates the quantiles of an
unknown non-Gaussian distribution using the information on sample skewness and
kurtosis to adjust the value of the corresponding Gaussian quantiles. Considering as
an illustration a random variable X ∼ (0, 1), the CF approximation for the α-quantile
of X reads as

XCF
α = zα +

z2α − 1

6
Sk +

z3α − 3zα
2

Ku− 2z3α − 5zα
36

Sk2,

whereSk andKu are the usual moment-based sample skewness and kurtosis coefficients
of X respectively, and zα = Φ−1(α) is the α-quantile of a N(0, 1) random variable.

Therefore, the second model adds realized negative and positive skewnesses (Sk−t−1

and Sk+t−1) and kurtosis (Kut−1) to the add_sim2:

add_skk: vt = d0 + d1R̂V
1/2

t−1 + d2vt−1 +(a1Ŝk
−
t−1 + a2Ŝk

+

t−1 + a3K̂ut−1). (2)

The inclusion of the skewness and kurtosis terms are thus motivated by a data-driven CF
expansion, whose coefficients, as it will be later illustrated, can be estimated in a semi-
parametric fashion by minimizing a strictly consistent loss function.

The third model further extends the add_skk with an asymmetric impact of the
integrated volatility in correspondence with returns smaller than their average (leverage
effect):

add_lev: vt = d0+d1R̂V
1/2

t−1+d2vt−1+(a1Ŝk
−
t−1+a2Ŝk

+

t−1+a3K̂ut−1)+d3R̂V
1/2

t−1I{rt−1 ≤ r̄}.
(3)

By contrast, a multiplicative modeling framework can be represented in terms of the fol-
lowing nonlinear regression model

rt = vt ηt,

where, under correct specification of vt, ηt is such that F−1
η (α|It−1) = 1.

This framework can also be motivated by a simple location-scale representation of
the returns process

rt = htzt, zt
iid∼ (0, 1),

where the dynamics of h2t = Var(rt|It−1) can be modelled by means of GARCH type
models. Under the iid assumption for zt the 1-step ahead α-level VaR of rt is given by

2In our approach, we focus on the conditional distribution of returns rather than on their uncondi-
tional distribution, as would happen when using the standard CF expansion. Hence, the sample skewness
and kurtosis coefficients are replaced by their realized counterparts that provide point estimates of daily
conditional skewness and kurtosis.
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vt = htzα where zα = F−1
z (α). Thus, the first multiplicative model is for the α-level

1-step ahead VaRis

mlt_sim: vt = ht, h2t = d0 + d1R̂Vt−1 + d2h
2
t|t−1. (4)

When we allow for a time-varying conditional skewness and kurtosis in the returns dis-
tribution, this assumption must be generalized to read

vt = htzα,t,

where the time variation in the conditional error quantile zα,t is driven by the time-
varying conditional skewness and kurtosis values as in the mlt_lev and mlt_skk spec-
ifications introduced below. Thus, within the multiplicative modeling framework, we
consider the following alternative specifications for the α-level 1-step ahead VaR

mlt_skk: vt = ht(a1 Sk
−
t−1+a2 Sk

+
t−1+a3Kut−1), (5)

h2t = d0 + d1R̂Vt−1 + d2h
2
t|t−1, (6)

mlt_lev: vt = ht(a1 Sk
−
t−1+a2 Sk

+
t−1+a3Kut−1), (7)

h2t = d0 + d1R̂Vt−1 + d2h
2
t|t−1 + d3R̂Vt−1I{rt−1 ≤ r̄}. (8)

Multiplicative models closely mirror additive models (1), (2) and (3). The mlt_sim is
similar to (1) and is the simplest specification with only the integrated volatility driving
the dynamics of the scale. Further mlt_skk assumes similar to (2) in the additional
information incorporated in realized skewness and kurtosis that drives the dynamics of
the scale. The most complex model mlt_lev also controls for the leverage in ht in the
same fashion as in the model (3).

For both additive and multiplicative frameworks, the ES can be modeled according
to two different alternative specifications:

ES_sim: et = {1 + exp(b0)}vt, (9)
ES_skk: et = {1 + exp (b0 + b1 Skt−1+b2Kut−1)}vt. (10)

Here ES_sim is the simple specification assuming that theES is a rescaling ofVaR. Tay-
lor (2020) shows that this simple specification provides competitiveVaR forecasts. More
recently, Wang et al. (2023) have extended the framework proposed in Taylor (2020) to
allow for separateVaR andES dynamics as well as for the incorporation of realized mea-
sures.

The more complex ES_skk brings the dynamics of the ES to be also driven by the
skewness and kurtosis, possibly accounting for the misspecification of ES_sim. Differ-
ently from VaR, in this case, we did not split the skewness into negative and positive. By
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construction, both ES_skk and ES_sim specifications avoid the crossing of VaR and
ES forecasts.

In the additive case, neglecting to model theESdynamics leads to a pureVaRmodel.
This case, labeled as ES_no, corresponds to a model specification that is close in spirit to
a Engle and Manganelli (2004) CAViaR type one where some realized estimator of the
integrated variance replaces the volatility measure based on lagged daily returns.

2.2 Estimation

Estimation of the vector θ of unknown parameters describing the models for vt and
et both in the additive and multiplicative models (1)-(10) is done semi-parametrically by
minimizing a strictly consistent scoring rule,

θ̂ = argmin
θ

T∑
t=1

S
(α)
t , (11)

where S(α)
t is a member of the general class presented by Fissler and Ziegel (2015), i.e.

S
(α)
t ≡ S(vt, et|rt;α) = {I(rt ≤ vt)− α}G1(vt)− I(rt ≤ vt)G1(rt) +G2(et){

et − vt + I(rt ≤ vt)
vt − rt

α

}
− ζ2(et) + a(rt).

In the definition of S(α)
t , the functions G1, ζ2, and G2 satisfy the following condi-

tions: G1 is increasing, ζ2 is increasing and convex, and G2 = ζ
′
2. In particular, setting

G1(·) = 0, G2(x) = −1/x, ζ2(x) = − log(−x), a(rt) = 1 − log(1 − α), leads to
the following scoring rule (Taylor, 2020)

AL
(α)
t =

I(rt ≤ vt)rt + vt{α− I(rt ≤ vt)}
αet

+ log(−et)− log(1− α)

=
I(rt ≤ vt)rt + vt{α− I(rt ≤ vt)}

αet
− log

(
1− α

et

)
.

Adding and subtractingαrt to the numerator of the second term on the right-hand side
of the previous equation, we get

AL
(α)
t = − log

(
α− 1

et

)
− (rt − vt){α− I(rt ≤ vt)}

αet
+

rt
et
.

In the simplified expression of AL
(α)
t obtained by Taylor (2020), the last term on the

right-hand side is dropped. This simplification arises from the assumption that the con-
ditional mean of returns is zero, as shown in their equation (19). Notably, it can be
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demonstrated that the negative value of AL(α)
t quantifies the contribution of the t-

observation to a quasi-likelihood function, which is constructed based on the Asym-
metric Laplace distribution (Taylor, 2020).

With the same choices for G1, G2, and ζ2 as above, but setting a(rt) = 0, leads to
the zero-degree homogeneous loss used by Patton et al. (2019)

FZ0
(α)
t =

I(rt ≤ vt)rt + vt{α− I(rt ≤ vt)}
αet

+ log(−et)− 1

= −I(rt ≤ vt)(vt − rt)

αet
+

vt
et

+ log(−et)− 1.

Therefore, in the case of the model EM_no, where only the VaR is estimated, the objec-
tive function is given by the quantile loss:

EM
(α)
t = {α− I(rt < vt)} · (rt − vt). (12)

In what follows, models estimated relying on loss functionsAL(α)
t ,FZ0

(α)
t andEM

(α)
t

are labeled as Loss=ALS, Loss=FZ0 and Loss=EM, respectively. Standard errors are
computed using the asymptotic theory developed by Engle and Manganelli (2004), for
pure VaR models, and Patton et al. (2019), for joint VaR-ES models. Technical details
are provided in Section 7.

It is worth noting that optimization in the (11) is a challenging task irrespective of
what function S

(α)
t is chosen, be it either AL(α)

t , FZ0
(α)
t or EM

(α)
t . In particular, the

optimization of these loss functions is typically strongly dependent upon the chosen ini-
tial values. For this reason, we implemented an optimization technique similar to Engle
and Manganelli (2004) which, for ease of reference, we call complete estimation. Namely,
for each model, we evaluated the objective function on n = 5 · 104 uniformly sampled
possible parameter constellations, and among them, we selected the m = 10 parameter
vectors that lead to the smallest objective function values. Selecting each of these m vec-
tors as a starting point, we re-estimated the model m-times iterating between a Nelder-
Mead and a BFGS optimizer until convergence is achieved, and the final estimates are
those delivering the smallest value of the objective function. In a rolling window fore-
casting exercise, one may be advised to follow a parsimonious estimation strategy, by
using the most recent estimates as the starting point for the next estimation round, at
regular intervals.

3 The underlying process and the derived realizedmeasures
Having developed a setup where the theoretical estimators of conditional moments such
as RV, Sk, and Ku are considered within suitable models, we are left with the delicate
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phase to choose which operational counterparts we can count on at daily frequencies,
employing rolling windows and sample statistics. The standard framework starts from
a true underlying continuous log-price following a diffusion process, disregarding, for
example, the presence of structural breaks:

dXt = µ(Xt)dt+ σ(Xt)dWt,

where,Wt represents the standard Brownian motion,µ(Xt) is the drift càdlàg finite vari-
ation process, andσ(Xt) is the time-varying càdlàg volatility function. It is important to
note that σ(Xt) may depend on a separate Brownian motion, which could potentially
be correlated with Wt. This general family encompasses well-known processes such as
the Heston or Bates processes (see Heston (1993); Bates (1996)). In this context, the pa-
rameter t represents the continuous temporal component that spans within and across
days.

The second momentµ2t is known as the integrated variance, an object of paramount
importance to researchers and practitioners. By using the aforementioned process over a
one-day interval [t− 1d, t], the integrated variance can be computed as

∫ t
t−1d σ

2(u)du.
The temporal component then needs to be somehow aggregated to get the daily

estimators for the relevant moments: in this respect, we ground ourselves in the mas-
sive literature that considers the market activity of a day (using the same index t ∈
{1, . . . , T}) between opening and closing to be divided into regularly spaced intervals
i ∈ {0, . . . , N}. We then take the high-frequency log-prices xt,i as the elementary
information, to be converted into rt,i = xt,i − xt,i−1, the corresponding intraday log-
returns, i = 1, . . . , N .

The overwhelming attention of the literature was devoted to the design of consis-
tent estimators of the integrated variance µ2t of the continuous process over a discrete
interval (Andersen et al., 2010), with specific care devoted to departures from the stan-
dard framework (e.g. jumps) or to the nature of observed prices which are affected by
trading mechanisms (so-called market microstructure). There exists a range of options
for researchers and practitioners alike seeking to estimate these quantities accurately and
efficiently. Starting from the realized variance (Andersen and Bollerslev, 1998),

µ̂RV
2t =

N∑
i=1

r2t,i,

other widely used estimators of the integrated volatility are the, proposed in Barndorff-
Nielsen and Shephard (2004) and Andersen et al. (2012), bipower variation µ̂BPV

2t =
π
2

N
N−1

∑N−1
i=1 |rt,i||rt,i+1|, or the upside and downside semivariances

µ̂SV POS
2t =

N∑
i=1

r2t,i · I{rt,i > 0} and µ̂SV NEG
2t =

N∑
i=1

r2t,i · I{rt,i < 0}
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developed in Barndorff-Nielsen et al. (2008) and Bollerslev et al. (2020).
Barring a horse race among the many estimators of µ2t available, we limit ourselves

to a single choice, and our preference goes to the median estimator

µ̂MED
2t =

π

6− 4
√
3 + π

N

N − 2

N−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2,

proposed by Andersen et al. (2012), because of its documented robustness properties.
Several new estimators for higher-order moments have emerged in recent years. While

these estimators do not directly estimate daily skewness or kurtosis, they instead estimate
the integrated third or fourth power of intraday returns or the averaged jump compo-
nent. Empirical evidence suggests that these estimators can be informative in predicting
cross-sectional next week’s stock returns or in forecasting RV at medium- to long-term
horizons, as demonstrated by Mei et al. (2017). The simplest estimator of the integrated
k-order moments was proposed by Amaya et al. (2015), shadowing the relationship be-
tween the realized variance and the integrated volatility (case k = 2).

µ̂ACJV
kt =

N∑
i=1

rkt,i.

Amaya et al. (2015) demonstrate the estimator’s consistency, which asymptotically cap-
tures only the jump component and the average jump size but does not capture skewness
arising from the leverage effect and heavily depends on the sampling frequency. Later Liu
et al. (2014) derived asymptotic properties of the Amaya et al. (2015) estimator and de-
veloped their own measures of realized skewness accounting for market microstructure
noise. Another extension was provided by Choe and Lee (2014), who showed that the
daily third moment is proportional to the quadratic covariation between the squared
return and the return process, and the fourth moment is proportional to the quadratic
variation of the squared return process with some additional cross-terms.

Based on some preliminary analysis, our choice for the realized skewness and kurtosis
falls on the estimators by Neuberger (2012) and Neuberger and Payne (2021):

µ̂NP
3t =

1

τ

τ−1∑
j=0

N∑
i=1

(
r3t−j,i + 3y∗t−j,i−1r

2
t,i

)
,

µ̂NP
4t =

1

τ

τ−1∑
j=0

N∑
i=1

(
r4t−j,i + 4y∗t−j,i−1r

3
t−j,i + 6z∗t−j,i−1r

2
t−j,i

)
,

where y∗t,i−1 = 1
N

∑N
j=1(xt,i−1 − xt,i−j) and z∗t,i−1 = 1

N

∑N
j=1(xt,i−1 − xt,i−j)

2

measure local (daily) trends in simple and squared log-prices. Similar to Choe and Lee
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(2014), they assume that the conditional mean of the returns is zero. Also, in what fol-
lows, we choose τ = 5.

We note that the estimators for realized skewness and kurtosis sometimes produce
outliers that can significantly affect the performance of VaR and ES models. To address
this issue, we applied a filter that removes estimated skewness and kurtosis values falling
outside the ranges of (−15; 15) and (0; 20), respectively. Outliers excluded from our
analysis are then smoothed out using interpolation techniques accounting for autocor-
relation.

4 Empirical evidence

4.1 Data and forecasting design

In this section, we present the results of our setup to a very large panel of 960 U.S. stocks
traded on the New York Stock Exchange (NYSE), included in the S&P500 index at var-
ious times over the considered period. The list of stocks can be found in Web Appendix
List of Tickers. The original dataset for each stock consists of intra-daily prices adjusted
for stock splits and dividends sampled every 5 minutes. We focus only on regular trading
hours, from 9:30 am to 4:00 pm, resulting in 78 observations for each trading day. The
stocks have different timespans, starting within a range between 1998-01-02 and 2016-10-
11, and ending between 1998-01-09 and 2017-02-09. Furthermore, to ensure an adequate
sample size, we limit our analysis to assets with a continuous record of at least 500 daily
observations. This reduces the cross-sectional size of our sample to 823 assets (marked in
the Web Appendix List of Tickers in italics).

Our empirical strategy consists of two main steps. In the first, we conduct a full-
sample analysis to assess the performance of various models in fitting VaR and ES. In
the second step, we focus on the out-of-sample forecasting performance using a rolling
window approach. We consider three estimation windows: 500, 1000, and 2000 days.
For the out-of-sample analysis, we include assets with a continuous record of daily pric-
ing observations from the start date of our sample to its end, 2017-02-09. In this case, we
were able to obtain one-step ahead predictions for the dates 2000-01-04 – 2017-02-09,
for w = 500, 2002-01-03 – 2017-02-09 for w = 1000, and 2005-12-21 – 2017-02-09 for
w = 2000. 406 of the original 960 stocks meet this criterion and are included in the
out-of-sample analysis (marked in boldface in the Web Appendix List of Tickers).

The model universe considered for both the full-sample and out-of-sample analysis
includes all the specifications presented in Section 2. As discussed, each of these is cou-
pled with three different ES specifications, ES_sim, ES_sk, and ES_no, for a total of 18
different models. Implementing the procedures discussed in Section 2.2, each model is
estimated for three different risk levels, α ∈ {0.01, 0.025, 0.05}.
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4.2 Analysis of the in- and out-of-sample losses and coverage

Before delving into the assessment of the model performances through the various tests
conducted on the extensive dataset, it is first useful to visually assess their in- and out-
of-sample coverage. Figure D.1 presents a comprehensive overview of the aggregated in-
formation across all datasets, three coverage levels, and all models for in-sample perfor-
mance. Each model is estimated for every dataset, and the in-sample empirical cover-
age (α̂) is calculated. The models are represented by row blocks in the figure, with cor-
responding names on the y-axis, such as “VaR=m_lev, ES=no, Loss=EM”. Within
each block, three box plots display the coverage for all datasets, with blue indicating
α = 0.01, green representing α = 0.025, and red representing α = 0.05. These
levels are also depicted by vertical dashed lines. All the models exhibit similar behavior
and, on average, achieve the desired coverage level, albeit with slight variations. Simpler
models generally exhibit less variability. Some cases encountered convergence difficul-
ties, leading to the inability to estimate certain models. The right panel of Figure D.1
shows the fraction of such problematic cases, consistently below 3%.

A similar analysis has been conducted for out-of-sample coverage, utilizing three
different window sizes of 500, 1000, and 2000 days. Aggregated results are presented
in Figure D.2. In addition to the three colors representing coverage levels (α = 0.01,
α = 0.025, and α = 0.05), varying color intensities indicate window size (lightest
shade = 2000 days; darkest = 500 days).3 The out-of-sample results reveal a less favorable
situation than the in-sample, as all models tend to overestimate the coverage on average,
less severely so with a wider rolling window. Surprisingly, the variance also increases in
this scenario. This can be attributed to longer intervals containing more diverse data
from potentially different underlying models, thus imperfectly capturing future behav-
ior. Despite these nuances, all models demonstrate similar behavior based on simple
visual inspection. Additionally, Figure D.3 provides aggregated loss information. It is
evident that both the values and spreads of the loss function decrease with larger sample
sizes.

4.3 Evaluation metrics

Following the practice by researchers and risk managers, the in- and out-of-sample per-
formances of the dynamic models4 for VaR and ES presented in Section 2 are firstly as-

3Fewer models are considered in the out-of-sample analysis, excluding ”ES=SkKu” due to computa-
tional complexity and ”Loss=FZ0” due to its similar behavior to ”Loss=ALS”.

4It should be noted that performing a complete estimation for all rolling windows in the out-of-sample
exercise has been highly time-consuming. As a result, we perform a full estimation for the initial window
and subsequently at 500-day time intervals, and, instead of repeating the complete estimation process for
each subsequent window, we update the parameters at regular intervals. To accomplish this, we perform
parameter optimization every 50 observations, starting from the results obtained in the previous step. This
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sessed using some diagnostic tests, whose technical details are summarized in Appendix
B.2-B.6 for the reader’s convenience.

To assess the in-sample VaR estimation performance, we consider the in-sample
Dynamic Quantile (DQ) test by Engle and Manganelli (2004). In particular, we con-
sider the test in its conditional coverage and independence versions as described in Du-
mitrescu et al. (2012). The asymptotic theory for these tests was originally derived by
Engle and Manganelli (2004) for the pure CAViaR models. Therefore, the results pre-
sented hereafter refer to the ES_no case only, involving CAViaR models estimated by
minimizing the aggregated quantile loss.

While the in-sample DQ test assesses the goodness-of-fit of CAViaR models, its out-
of-sample counterpart can be seen as a general test for evaluating the statistical properties
of a set ofVaR forecasts, regardless of the model. This includes testing for unbiasedness,
independent hits, and the independence of quantile estimates, as outlined by Engle and
Manganelli (2004). In our case, the out-of-sample DQ (OOS-DQ) test can effectively
evaluate the properties of theVaR forecasts generated by joint dynamicVaR-ESmodels.

Further, we jointly assess the statistical accuracy of VaR and ES estimates, both in
and out-of-sample, employing two regression-based testing procedures, i.e., the regression-
based calibration tests by Patton et al. (2019), henceforth PZC, and the ESR test by Bayer
and Dimitriadis (2022). The former includes separate calibration tests for VaR and ES
while the latter test is specific for ES diagnostics. Moreover, the PZC tests are based on
OLS auxiliary regression equations where the standardized generalized residuals (as in
Patton et al., 2019) are regressed on their past values as well as on VaR and ES forecasts,
respectively.

The ESR approach, instead, is based on three separate test statistics: the Auxiliary,
the Strict and the Strict Intercept Backtest, which can be seen as an extension of Mincer-
Zarnowitz regression to a semi-parametric setting, relying on the minimization of the
consistent loss functions proposed by Fissler and Ziegel (2015). The Auxiliary and Strict
test statistics are computed regressing returns on the ES forecasts and test the ES coef-
ficients for joint (0, 1) values. Specifically, the Auxiliary test requires an auxiliary VaR
forecast, while the Strict Intercept tests whether the expected shortfall of the forecast
error (rt − ESt) is zero.5

Finally, the out-of-sample forecasting accuracy of each model is assessed by compar-
ing the average values of the FZ0 loss achieved over the forecasting period.

parameter updating allows us to refine the estimation without repeating the entire process. In all other
rolling windows, we maintain the parameters obtained from the previous window.

5Bayer and Dimitriadis (2022) also consider a one-sided version of the Strict Intercept that is particularly
useful for regulatory evaluations. Since our main interest is simply in the assessment of forecasting accuracy,
in this paper we only consider the two-sided version of the test.
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4.4 Testing the properties of the risk estimates

In this section, we analyze the properties of the in-sample risk estimates over the full-
sample for the set of 823 assets, postponing to a later subsection the generation of out-of-
sample risk forecasts. Also, for the sake of brevity, we only discuss results for α = 0.01,
while the results for α = 0.025 and α = 0.05 are contained in the Web Appendix
Tables W.1 and W.2.

The In-sample DQ section of Table C.1 reports the results of the in-sample DQ test
in its conditional coverage (CC −DQIS) and independence (ID −DQIS) versions,
respectively. For each model, the table provides the non-rejection frequency at the 5%
significance level. Higher values in the table indicate better performance, as they corre-
spond to models less frequently rejected by the tests.

Although theCC−DQIS provides a comprehensive evaluation of the risk estima-
tion performance, it has a portmanteau nature, which overlooks the clustering features
of the hit series and neglects their coverage properties. By contrast, the ID − DQIS

test offers a complementary perspective to the previous test, since it focuses explicitly
on clustering. Combining the information from both tests makes it possible to gain
deeper insight into the reasons behind any model underperformance. The test findings
forα = 0.01 (similar results hold for the other risk levels) can be summarized as follows:

CC−DQIS : multiplicative models outperform their additive counterparts with
the mlt_lev resulting the best model at all risk levels. This model is not rejected
at the 5% level in approximately 70% of cases, closely followed by the mlt_skk.
The mlt_sim yields slightly lower rates than models incorporating information
on realized skewness and kurtosis. The non-rejection frequency of additive mod-
els is much lower, being on average close to 20%, with the highest rate being
recorded for the add_sim model.

ID−DQIS : multiplicative and additive models are characterized by similar per-
formances, suggesting that the high rejection rate of the latter class is mostly due
to lack of coverage rather than to hit clustering.

Second, to appreciate the contribution of the additional information in the form of
realized skewness and kurtosis in the skk models, in the Wald test section of Table C.1
we assess the significance of the skewness and kurtosis coefficients involved in the VaR
and ES dynamics, respectively. Specifically, we test the null a1 = a2 = a3 = 0, for
VaR, and b1 = b2 = 0, for ES, against a two-sided alternative.

Again, the test results in terms of empirical non-rejection frequencies are summa-
rized over the panel of assets considered. For the plain CAViaR models, the null a1 =
a2 = a3 = 0 is almost always rejected at the usual 5% significance level, for all risk levels
considered. Differently, for jointVaR-ESmodels, the non-rejection frequency increases
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with the risk levelα. Namely, the percentage of non-rejections is close to 0 forα = 0.01
but it increases to values up to ≈ 40% for α = 0.05. The discrepancy between non-
rejection frequencies for pure VaR and joint VaR-ES models is likely to be due to the
fact that, for each class of models, testing is based on a different asymptotic distribution:
we rely on the theory derived by Engle and Manganelli (2004), for the EM loss, and on
Patton et al. (2019), for ALS and FZ0. The test results are only marginally affected by the
choice of the joint loss, AL or FZ0, used for estimation.

Moving to the analysis of ES dynamics, we find that the non-rejection frequencies
of the null b1 = b2 = 0 are substantially higher than the values observed for VaR
parameters and are clearly affected by the risk level. Namely, they approximately lie in the
range 49%-61%, for α = 0.01, 55%-72%, for α = 0.025, and 62%-79%, for α = 0.05.
Results are very close for models based on ALS and FZ0 losses. Overall, we conclude
that the inclusion of realized skewness and kurtosis measures in the ES equation is less
strongly supported than for the VaR.

Next, we focus on the in-sample PZC and ESR calibration tests. First, the Calibra-
tion test section of Table C.1 for α = 0.01 (see Web Appendix Tables W.1 and W.2 for
α = 0.025 and α = 0.05) reports the results of the former tests for VaR and ES. The
main findings arising from the table can be summarized as follows:

• for α ≥ 0.025 (Tables W.1 and W.2), all models yield remarkably good non-
rejection frequencies, with values ranging from 72% to 94%.

• For both VaR and ES, we record a decay of the non-rejection frequency at the
0.01 risk level (Table C.1). This is particularly relevant for VaR since α = 0.01 is
the mandatory level indicated by the Basel Committee.

• Models based on ALS and FZ0 losses return very close performances.

• Comparing simpler models (*_sim) with more complicated specifications (*_skk
and *_lev), we find that there is no clear winner but the ranking depends on the
functional form and risk level.

Finally, to assess the ”calibration” of ES forecasts, the ES calibration test section in
Table C.1 for α = 0.01 (see Web Appendix Tables W.1 and W.2 for α = 0.025 and
α = 0.05) reports the non-rejection frequencies of the three ESR tests proposed by
Bayer and Dimitriadis (2022)6. It is worth noting that due to numerical problems in the
computation of the test statistic, this could not be computed for some of the assets in
our panel, in addition to those that had been previously excluded due to convergence
issues in the estimation of the reference risk models: the number of valid assets for each

6The tests were implemented using the esback R-library provided by the same authors, freely available
from CRAN at the URL: https://cran.r-project.org/web/packages/esback/index.html
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configuration, determined by a combination of available models and risk levels, ranges
from a minimum of 644 to a maximum of 796 assets out of 823.

Compared to the calibration test by Patton et al. (2019), the ESR reveals a much
lower discriminatory power returning non-rejection frequencies very close to unity for
all models and risk levels. Again, we do not report any apparent differences in model
performances based on the ALS and FZ0 losses.

4.5 Out-of-sample forecasting comparison

This section presents the results of the out-of-sample forecasting analysis. First, the per-
formance of the models under analysis is assessed by computing the following test statis-
tics and diagnostics over the out-of-sample period

• DQ tests for independence and conditional coverage

• VaR and ES calibration tests by Patton et al. (2019)

• ESR tests for ES calibration by Bayer and Dimitriadis (2022).

As in the previous section, test results across the whole panel of assets are summarized in
terms of empirical non-rejection frequencies. Also, we only discuss results forα = 0.01
in Table C.2 while results for α = 0.025 and α = 0.05 have been reported in the Web
Appendix Tables W.3 and W.4.

Similarly to what was observed in the full sample analysis, in a limited number of
cases it has not been possible to calculate the p-values of ESR tests due to failures in the
estimation of the auxiliary regression model underlying the test. Overall, depending on
risk level, specific test of interest, and sample size, the available number of stocks has been
found to range between 371 and 406 out of 406 potentially available stocks.

The findings of the analysis can be succinctly summarized as:

• DQ tests: the non-rejection frequencies are very low for the shortest estimation
window T = 500 but they tend to increase with the sample size although, even
for T = 2000, they barely exceed 40%, for independence tests, only in a few iso-
lated cases. Overall some stylized facts arise. PlainVaRmodels on average perform
better than jointVaR-ESmodels while the inclusion of information on skewness
and kurtosis does not bring any evident advantages.

• VaR calibration tests: the performances are very poor for the shortest sample size
T = 500 but tend to improve as T increases. The model performances also de-
pend on the value of the risk levelαwith the best results obtained forα = 0.025.
In terms of model specifications, add_sim and mlt_sim yield the highest non-
rejection frequencies that exceed 70% for T=2000 and α = 0.025 when the EM
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loss is used. When comparing plain VaR and joint VaR-ES models, there are no
clear performance gaps.

• ES calibration tests: the results are qualitatively not different from what was ob-
served for the VaR tests. Hence, similar considerations hold.

• ESR tests: the performance of the “strict” and “auxiliary” tests improves as the
sample size increases although the performance gap across different sample sizes
is less evident than for the other regression-based VaR and ES calibration tests.
As above, even in this case, we record the best performances for the add_sim and
mlt_simmodels reaching, in some cases, non-rejection frequencies close to80%.
As far as the “strict intercept test” is concerned, the differences across different
models and sample sizes are much less evident and the non-rejection frequency is
> 80% in all instances. Again, the information on realized skewness and kurtosis
does not appear to lead to improvements in terms of forecasting performances.

Finally, we assess and compare the forecasting accuracy of the different models based
on the out-of-sample values of the following strictly consistent scoring functions: quan-
tile loss (E) for VaR and AL-score for joint VaR and ES forecasting (ALS). In terms
of median loss (Table C.3), the multiplicative model without skewness and kurtosis in-
formation (mlt sim) achieves the minimum loss value in most cases for both quantile
and ALS scoring functions. It is only slightly outperformed by its additive counterpart
(add sim) in one instance for pure VaR models and in two instances for joint forecasts
of VaR and ES. A similar trend is observed when considering average ranks (Table C.4).
The mlt sim model consistently delivers the minimum average rank, except in the case
of joint VaR and ES forecasts at the 0.05 level and for T = 1000, where it ranks sec-
ond, closely following the add sim model that also does not use skewness and kurtosis
information.

In conclusion, the key insights from the assessment of forecasting performance can
be summarized as follows:

• Incorporating information on realized skewness and kurtosis does not enhance
forecasting accuracy;

• Simpler models are preferable to more complex ones, as the latter are more vul-
nerable to computational issues;

• The multiplicative specification is generally preferable to the more popular addi-
tive approach.
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5 Concluding remarks
In this paper, we have presented a forecasting comparison of several semi-parametric risk
forecasting models. Our work presents some important elements of novelty and poten-
tial interest for practitioners and researchers alike. First, the comparison is based on an
unusually large set of 823 stocks: to the best of our knowledge, there are no other con-
tributions relying on such a large dataset in the tail-risk forecasting literature. Also, the
availability of such a rich data environment has a positive impact on the reliability of the
regularities that emerge from the empirical analysis, giving them a good degree of exter-
nal validity. Second, we assess the potential contribution coming from considering infor-
mation on some recently proposed realized skewness and kurtosis measures. Third, we
provide deeper insight into the selection of the functional form of the semi-parametric
model used to generate forecasts.

The results of our analysis clearly indicate that, at the forecasting stage, simple mod-
els should be preferred to more complicated ones with a preference for multiplicative
GARCH-type specifications. Realized skewness and kurtosis measures do not appar-
ently provide valuable information for improving the accuracy of tail risk forecasts even
if in most cases, their coefficients turn out to be significant in the full-sample analysis. By
the same token, they may prove useful in generating improved density forecasts, a task
that we leave for future research.

When we shift the focus to the functional form of the dynamic risk model, an inter-
esting and original finding from our extensive empirical investigation is that the standard
CaViaR-like additive model specification outperformed by the less commonly used (in
a semi-parametric framework) GARCH-like multiplicative parameterization.
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Appendix A: Asymptotic distribution of the estimators

A.1 Standard errors estimation for pure VaRmodels

The theoretical results presented in this section are based on Engle and Manganelli (2004)
and assumptions therein. It is worth noting that, although Engle and Manganelli (2004)
focuses on additive CAViaR models, their framework readily applies to the multiplica-
tive VaR models class. In the following, we assume that the return process rt has condi-
tional α-quantile given by vt(θ0). The estimated VaR, vt(θ̂

(v)
), is obtained by replac-

ing θ0 with the minimizer of the aggregated quantile loss function. Applying the results
in Section 4 of Engle and Manganelli (2004), θ̂

(v)
can be shown to be consistent and

asymptotically normal. In particular, we have

√
TA

−1/2
T DT (θ̂

(v) − θ0)
d→ MVN(0, I) as T → ∞,

where

AT = E

[
T−1α(1− α)

T∑
t=1

∇′
vt(θ

(v)
0 )∇vt(θ

(v)
0 )

]
,

DT = E

[
T−1

T∑
t=1

ht(0|It−1)∇
′
vt(θ

(v)
0 )∇vt(θ

(v)
0 )

]
,

andht(0|It−1) is the conditional density ofηt = rt−vt evaluated at 0 and∇vt(θ
(v)) =

∂vt(θ
(v))/∂θ(v). Consistent estimates of AT and DT can be then obtained as follows

ÂT = T−1α(1− α)∇⊤v(θ
(v)
0 )∇(vθ

(v)
0 ),

where ∇v(θ0) is the (T × p) matrix whose t-th row is ∇⊤vt(θ
(v)
0 ), and

D̂T = (2T ĉT )
−1

T∑
t=1

I(|rt − vt(θ̂
(v)

)|< ĉT )∇′vt(θ̂
(v)

)∇vt(θ̂
(v)

).

Analytical expressions for the elements of ∇vt(θ̂
(v)

) have been derived and reported in
Web Appendix Derivatives. Following Engle and Manganelli (2004), the bandwidth ĉT
is set as: ĉT = 40, for α = 0.01, ĉT = 60, for α = 0.05. For the case 0.01 < α <
0.05, which is not considered in the paper by Engle and Manganelli (2004), we estimate
the bandwidth by linear interpolation. So the final estimated asymptotic variance and
covariance matrix of θ̂ is computed as Σ̂θ̂ = 1

T (α) (1−α)D̂−1
T ÂT D̂−1

T and estimated

standard errors are computed as ŝe(θ̂) =
√
diag

(
Σ̂−1

θ̂

)
.
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Letting a ⊂ θ, the above results can be used to test a = 0. Note that we can write
Rθ = a where

R =

(
0n−2,n

02,n I2

)
0m,n indicate a (m× n) matrix of zeroes and In be a (n× n) identity matrix. Relying
on the asymptotic normality of θ̂, it can then be shown that, under the null Rθ = 0,
(Rθ̂)⊤(RV̂TR

⊤)−1(Rθ̂) →
d
χ2
2, as T → ∞.

Standard errors for joint VaR-ESmodels

Patton et al. (2019) prove consistency and asymptotic normality for the estimator θ̂
(j)

.
The theoretical results presented in this section rely on the theory developed in Patton
et al. (2019) and assumptions therein. In the presentation of the following results, we
assume that the return process rt has theoretical α-level VaR and ES given by vt(θ

(j)
0 )

and et(θ
(j)
0 ), respectively. The estimated VaR and ES, vt(θ̂

(j)
) and et(θ̂

(j)
), are ob-

tained by replacing θ(j) with the minimizer of the strictly consistent loss function used
for estimation. It is worth noting that, although the results in Patton et al. (2019) are de-
rived for estimators based on the FZ0 loss function, they can be immediately extended
to estimators obtained by minimizing different loss functions, such as the ALS.

In particular, the asymptotic distribution of θ̂
(j)

is given by
√
TA

−1/2
0 D0(θ̂

(j) − θ
(j)
0 )

d→ MVN(0, I) as T → ∞.

Consistent estimates of A0 and D0 can be obtained as follows

ÂT = T−1
T∑
t=1

λt(θ̂
(j)

)λ⊤
t (θ̂

(j)
) (13)

D̂T = T−1
T∑
t=1

{
1

2cT
I(|rt − vt|< cT )

∇⊤et(θ̂
(j)

)∇vt(θ̂
(j)

)

−αet(θ̂
(j)

)
+

∇⊤et(θ̂
(j)

)∇et(θ̂
(j)

)

e2t (θ̂
(j)

)

}
(14)

where the bandwidth cT is set equal to T−1/3, as suggested by Patton et al. (2019) and
λt(θ

(j)) = ∂L
(α)
t /∂θ(j), with L

(α)
t denoting the strictly consistent loss function used

for estimation. When L
(α)
t ≡ FZ0

(α)
t , λt(θ

(j)) is given by

λt(θ
(j)) =

∂FZ0
(α)
t

∂θ(j)
= ∇⊤vt(θ

(j))
1

−et(θ
(j))

[
1

α
I{vt(θ(j))} − 1

]
+ ∇⊤et(θ

(j))
1

et(θ
(j))2

[
1

α
I{vt(θ(j))}{vt(θ(j))− rt} − vt(θ

(j)) + et

]
.
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If the ALS loss is used, the formula above becomes

λt(θ
(j)) =

∂ALS
(α)
t

∂θ(j)
= ∇⊤vt(θ

(j))
1

−et(θ
(j))

[
1

α
I{vt(θ(j))} − 1

]
+ ∇⊤et(θ

(j))
1

et(θ
(j))2

[
1

α
I{vt(θ(j))}{vt(θ(j))− rt} − vt(θ

(j)) + et(θ
(j)) + rt

]
that differs from (15) for the return rt in the last term on the RHS. Analytical expres-
sions for the elements of ∇et(θ̂

(j)
) have been derived and reported in Web Appendix

Derivatives. Finally, an estimate of the asymptotic variance and covariance matrix of
θ(j) is then given by Σ̂θ̂ = T−1D̂−1

T ÂT D̂T and standard errors are computed as

ŝe(θ̂) =

√
diag

(
Σ̂−1

θ̂

)
.

Appendix B: Diagnostic tests for VaR and ES

B.2 In-sample hit test

The in-sample hit test is proposed by Engle and Manganelli (2004) as a model-based
diagnostic test for detecting misspecified CAViaR models. The test relies on the Hit
variables defined as Hitt = I(vt) − α. Replacing vt by its estimated counterpart v̂t,
the estimated hits are obtained as Ĥitt = I(v̂t)− α and stacked together into Ĥit =

(Ĥitq+1, . . . , ĤitT )
⊤. Then, letting θ(v) denote the vector of CAViaR coefficients,

define Xt(θ
(v)
0 ) as Xt(θ

(v)
0 ) = (Hitt−1, . . . ,Hitt−q, z

⊤
t−1), where zt is a (m × 1)

vector of It measurable instruments, for t = q + 1, . . . , T . For example, z⊤t−1 could
include estimated past VaR values or realized measures of skewness and kurtosis. Let
thenX(θ0) be the matrix whose generic row is given by Xt(θ

(v)
0 ), so thatX(θ(v)) is of

dimension (T − q)× (q +m). Then, define (q +m)× (T − q)-dimensional matrix

MT = X⊤(θ
(v)
0 )− E

{
T−1X⊤(θ

(v)
0 )H∇vt(θ

(v)
0 )
}
D−1

T ,

whereH is a diagonal matrix with diagonal entries given byht(0|It−1) as defined in A.1.
Under the assumptions from Engle and Manganelli (2004), we have{

α (1− α) E
(
T−1MTM

⊤
T

)}−1/2
T−1/2X⊤(θ̂

(v)
) Ĥit

d→ N(0q+m, Iq+m),

where 0q+m is the q +m vector of zeros, and Iq+m is the q +m dimensional identity
matrix. In the above result, the matrix MT can be estimated as

M̂T = X⊤(θ̂
(v)

)−

{
(2T ĉT )

−1
T∑
t=1

I(|rt − vt(θ̂
(v)

)|< ĉT )X
⊤
t (θ̂

(v)
)∇vt(θ̂

(v)
)

}
D̂−1

T g⊤(θ̂
(v)

),
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with g(θ(v)) = {∇vq+1(θ
(v)), . . . ,∇vT (θ

(v))}⊤. It can then be proved that

DQIS =
Ĥit

⊤
X(θ̂

(v)
)(M̂TM̂

⊤
T )

−1X⊤(θ̂
(v)

)Ĥit

α (1− α)

d→ χ2
q ,

that in the reminder will be denoted as the In-Sample Dynamic Quantile test statistic.

B.3 Out-of-sample diagnostic tests for VaR forecasts: the out-of-sample
Dynamic Quantile test (Engle and Manganelli, 2004)

Formally, let (v̂T+1, . . . , v̂T+H) be a sequence of (1-step ahead) out-of-sample VaR
forecasts. The OOS-DQ test statistic is computed as

DQOOS =
H̃it(θ̂

(v)
)⊤X̃(θ̂

(v)
){X̃(θ̂

(v)
)⊤X̃(θ̂

(v)
)}−1X̃(θ̂

(v)
)⊤H̃it(θ̂

(v)
)⊤

Hα(1− α)
,

(15)
whereθ(v) ⊆ θ indicates the subvector of model parameters involved in theVaRmodel
and

H̃it(θ̂
(v)

) = (H̃itT+q+1, . . . , H̃itT+H),

is the series of out-of-sample hits based on parameters estimated relying on information
up to time T ; X̃(θ̂

(v)
) is a (H − q) × (q + 2) matrix such that its (t − q)-th row is

given by
X̃t(θ̂

(v)
) = (1, H̃itt−1, . . . , H̃itt−q, vt(θ̂

(v)
)),

for t = q + 1, . . . ,H , and where θ̂
(v)

is the estimate of θ(v). It can be shown that,
under the assumption in Engle and Manganelli (2004), DQOOS

d→ χ2
q+2.

The out-of-sample DQ test could also be implemented by augmenting the X̃(θ̂T )
with other instruments such as past volatility measures, such as realized variances, squared
or absolute returns. In this case, the degrees of freedom of the χ2 distribution should be
changed accordingly.

The out-of-sample DQ test, in the above-presented configuration, can be seen as a
portmanteau test for the correct specification of the VaR forecasting model and, in this
sense, we will refer to this test as the correct conditional coverage DQOOS test, abbre-
viated CC −DQOOS . Differently, removing the constant term from the specification
of X̃(θ̂T ) would yield a different version of the out-of-sample DQ test, that we will call
the independenceDQOOS or, abbreviated, the ID−DQOOS . The name derives from
the fact that ID−DQOOS can detect serial correlation in the sequence of hits but, due
to the missing constant term, cannot be used to assess correct coverage of VaR forecasts.
The asymptotic distribution for the ID−DQOOS will be given by aχ2

q+1 random vari-
able. Similarly, it is possible to define analogous conditional coverage and independence
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versions of the in-sample DQ test. In the remainder, these will be labeled asCC−DQIS

and ID −DQIS , respectively.

B.4 Diagnostic tests for ES forecasts

B.5 The ESR backtests (Bayer and Dimitriadis, 2022)

In Bayer and Dimitriadis (2022), authors propose a set of backtesting procedures for
ES regression (ESR), which build upon the testing approach introduced by Mincer and
Zarnowitz (1969). Specifically, the authors propose three ESR backtests: the “auxiliary”,
“strict” and “strict intercept” ESR.

The “auxiliary” ESR test is based on the bivariate regression model

rt = β0 + β1v̂t + uvt , (16)
rt = γ0 + γ1êt + uet , (17)

for t = 1, . . . , T , where E(uet |It−1, rt < v̂t) = 0 and Qα(u
v
t |It−1) = 0. The

idea is that a series of ES forecasts from a correctly specified ES model should satisfy the
following relation

E(rt|It−1, rt < v̂t) = γ0 + γ1êt,

with (γ0, γ1)
⊤ = (0, 1)⊤. This hypothesis can be tested by fitting the regression model

in (16-17) through the minimization of a strictly consistent joint (VaR,ES) loss function.
This leads to the following Wald-type test statistic

TA−ESR = T (γ̂ − γ0)Ω̂
−1
γ (γ̂ − γ0)

⊤ d→ χ2
2,

where γ0 = (0, 1)⊤, γ̂ is a consistent estimator of γ = (γ0, γ1) and Ω̂γ is a consistent
estimator of the covariance of γ̂ (see Bayer and Dimitriadis, 2022). The ”strict” ESR
test is based on a similar framework but v̂t in equation (16) is replaced by êt. Finally, the
”strict intercept” test replaces equation (17) by the following

rt − êt = γ1 + uet .

The null is now given by γ1 = 0 against a one-sided or a two-sided alternative 7. The test
is performed by computing a standard t-type statistic based on the estimated asymptotic
variance of γ̂1. The one-sided alternative is of interest for regulatory and, in general, risk
management purposes. In this paper, our interest is mainly in detecting deviations from
the ideal situation of correct specification of the risk forecasting models. Hence, we will
focus only on the situation where a two-sided alternative is considered. To implement
the ESR backtests, we use the Esback R package provided by the same authors (Bayer
and Dimitriadis, 2020) for our empirical analysis.

7Differently from the ”strict” and ”auxiliary” tests for which only a two-sided alternative was allowed.
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B.6 Regression based calibration tests for VaR and ES (Patton et al.,
2019)

Patton et al. (2019) propose OLS regression-based calibration tests for assessing the qual-
ity ofVaR andES forecasts. In the auxiliary regression equations used for implementing
the tests, the dependent variables are given by the standardized generalized residuals

λs
v,t = I(rt ≤ v̂t)− α λs

e,t =
1

α
I(rt ≤ v̂t)

rt
êt

− 1

for VaR and ES, respectively. Both λs
v,t and λs

e,t are conditionally zero mean under
correct specification of the VaR and ES modelsE(λs

v,t|It−1) = 0 and E(λs
e,t|It−1) =

0, for all t. It is also worth noting that λs
v,t = Hitt, the hit variable already defined for

DQ tests.
The test procedures, henceforth denoted as the PZC tests, are based on fitting by

OLS the following regression models

λs
v,t = a0,v + a1,vλ

s
v,t−1 + a2,vv̂t + uvt (18)

λs
e,t = a0,e + a1,eλ

s
v,t−1 + a2,eêt + uvt , (19)

where, under correct specifications, we have av = (a0,v, a1,v, a2,v)
⊤ = 0 and ae =

(a0,e, a1,e, a2,e)
⊤ = 0. The statistics for testing these hypotheses are computed as

PZCv = â⊤v Ω̂
−1
v âv

d→ χ2
2, PZCe = â⊤e Ω̂

−1
e âe

d→ χ2
2,

where Ω̂v (Ω̂e) is a consistent estimator of the asymptotic covariance matrix of âv (âe).
In our empirical analysis, following Patton et al. (2019), to estimateΩv andΩe a Newey-
West estimator with 20 lags is used.
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Appendix C: Tables

Table C.1: Calibration tests for VaR and ES models Patton et al. (2019); in-sample DQ
conditional coverage (CCIS) and independence test (IDIS); Wald tests for skewness and
kurtosis coefficients inVaR andESmodels; ”Str.”, ”Aux.”, ”Str.I.” ES Regression (ESR)
calibration test (Bayer and Dimitriadis (2022)): non-rejection frequencies at the 0.05
significance level (full sample).

α = 0.01 In-sample DQ Wald test Calibration test ESR calibration test
VaR ES Loss CCIS IDIS ai = 0 bi = 0 VaR ES ”Str.” ”Aux.” ”Str.I.”
mlt_lev — EM 0.712 0.727 0.005 — 0.617 — — — —
mlt_skk — EM 0.701 0.690 0.002 — 0.661 — — — —
mlt_sim — EM 0.684 0.589 — — 0.684 — — — —
add_lev — EM 0.198 0.746 0.010 — 0.594 — — — —
add_skk — EM 0.193 0.679 0.004 — 0.625 — — — —
add_sim — EM 0.235 0.562 — — 0.655 — — — —
mlt_lev sim ALS — — 0.016 — 0.548 0.695 0.988 0.987 0.995
mlt_skk sim ALS — — 0.017 — 0.584 0.734 0.984 0.983 0.995
mlt_sim sim ALS — — — — 0.612 0.783 0.980 0.982 0.996
add_lev sim ALS — — 0.016 — 0.563 0.741 0.984 0.984 0.994
add_skk sim ALS — — 0.010 — 0.601 0.778 0.980 0.978 0.991
add_sim sim ALS — — — — 0.588 0.682 0.983 0.982 0.993
mlt_lev skk ALS — — 0.017 0.532 0.546 0.670 0.969 0.961 0.999
mlt_skk skk ALS — — 0.010 0.539 0.597 0.688 0.962 0.947 0.999
mlt_sim skk ALS — — — 0.494 0.638 0.718 0.978 0.931 0.999
add_lev skk ALS — — 0.012 0.610 0.598 0.722 0.975 0.946 0.997
add_skk skk ALS — — 0.015 0.589 0.604 0.730 0.975 0.946 0.997
add_sim skk ALS — — — 0.527 0.618 0.651 0.973 0.927 0.997
mlt_lev sim FZ0 — — 0.021 — 0.554 0.716 0.982 0.985 0.995
mlt_skk sim FZ0 — — 0.021 — 0.590 0.727 0.985 0.985 0.994
mlt_sim sim FZ0 — — — — 0.614 0.783 0.982 0.980 0.994
add_lev sim FZ0 — — 0.011 — 0.560 0.737 0.984 0.983 0.994
add_skk sim FZ0 — — 0.019 — 0.605 0.761 0.974 0.979 0.992
add_sim sim FZ0 — — — — 0.597 0.686 0.983 0.983 0.993
mlt_lev skk FZ0 — — 0.018 0.521 0.551 0.651 0.965 0.953 0.999
mlt_skk skk FZ0 — — 0.007 0.527 0.590 0.699 0.970 0.952 0.997
mlt_sim skk FZ0 — — — 0.487 0.623 0.711 0.967 0.934 0.999
add_lev skk FZ0 — — 0.019 0.597 0.593 0.732 0.970 0.950 0.999
add_skk skk FZ0 — — 0.010 0.592 0.618 0.738 0.968 0.942 0.997
add_sim skk FZ0 — — — 0.539 0.609 0.651 0.972 0.929 0.997
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Table C.2: Out-of-sample DQ independence test (IDOOS) and conditional coverage test
(CCOOS); calibration tests for VaR and ES models Patton et al. (2019); ”Strict”, ”Auxil-
iary” and ”Strict Intercept” ES Regression (ESR) calibration test (Bayer and Dimitriadis
(2022)): non-rejection frequencies at the 0.05 significance level and number of valid as-
sets (out-of-sample data Tin).

α = 0.01 Out-of-sample DQ Calibration test ESR calibration test
VaR ES IDOOS CCOOS VaR ES ”Str.” ”Aux.” ”Str.I.”

T
in

=
50

0

mlt_lev — 0.030 0.002 0.002 — — — —
mlt_skk — 0.010 0.000 0.005 — — — —
mlt_sim — 0.039 0.017 0.084 — — — —
add_lev — 0.025 0.000 0.002 — — — —
add_skk — 0.015 0.000 0.000 — — — —
add_sim — 0.052 0.022 0.074 — — — —
mlt_lev sim 0.052 0.022 0.000 0.025 0.169 0.176 0.817
mlt_skk sim 0.020 0.007 0.007 0.057 0.186 0.211 0.838
mlt_sim sim 0.042 0.022 0.067 0.099 0.370 0.366 0.867
add_lev sim 0.022 0.005 0.000 0.074 0.266 0.261 0.884
add_skk sim 0.049 0.015 0.007 0.074 0.343 0.340 0.935
add_sim sim 0.015 0.007 0.049 0.092 0.317 0.348 0.898

T
in

=
10

00

mlt_lev — 0.180 0.086 0.165 — — — —
mlt_skk — 0.133 0.076 0.207 — — — —
mlt_sim — 0.224 0.185 0.405 — — — —
add_lev — 0.126 0.067 0.163 — — — —
add_skk — 0.126 0.047 0.175 — — — —
add_sim — 0.175 0.131 0.430 — — — —
mlt_lev sim 0.143 0.089 0.064 0.114 0.409 0.415 0.948
mlt_skk sim 0.143 0.101 0.106 0.146 0.457 0.463 0.944
mlt_sim sim 0.190 0.170 0.326 0.304 0.641 0.688 0.964
add_lev sim 0.094 0.057 0.059 0.126 0.491 0.499 0.944
add_skk sim 0.126 0.069 0.099 0.168 0.487 0.487 0.939
add_sim sim 0.145 0.123 0.277 0.296 0.551 0.580 0.960

T
in

=
20

00

mlt_lev — 0.330 0.241 0.449 — — — —
mlt_skk — 0.310 0.227 0.491 — — — —
mlt_sim — 0.419 0.362 0.531 — — — —
add_lev — 0.281 0.200 0.459 — — — —
add_skk — 0.268 0.192 0.447 — — — —
add_sim — 0.377 0.335 0.578 — — — —
mlt_lev sim 0.291 0.232 0.316 0.326 0.593 0.587 0.885
mlt_skk sim 0.234 0.192 0.358 0.356 0.629 0.643 0.886
mlt_sim sim 0.335 0.291 0.499 0.488 0.740 0.751 0.866
add_lev sim 0.303 0.207 0.294 0.311 0.656 0.644 0.880
add_skk sim 0.222 0.150 0.259 0.323 0.630 0.618 0.896
add_sim sim 0.300 0.241 0.486 0.472 0.735 0.735 0.872
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Table C.3: Median loss function values across all assets (out-of-sample data, Tin =
500, 1000, 2000). For VaR models, the average quantile loss is reported (×1000). For
ES models, the ALS scoring function is considered. The best model within each class is
reported in boldface.

VaR ES Tin = 500 Tin = 1000 Tin = 2000

0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
mlt_lev — 0.999 1.667 2.538 0.852 1.490 2.322 0.818 1.464 2.319
mlt_skk — 0.982 1.643 2.521 0.842 1.486 2.309 0.801 1.458 2.320
mlt_sim — 0.940 1.602 2.454 0.822 1.469 2.291 0.790 1.443 2.308
add_lev — 0.990 1.663 2.524 0.855 1.494 2.330 0.813 1.465 2.322
add_skk — 0.992 1.648 2.537 0.859 1.490 2.320 0.816 1.467 2.325
add_sim — 0.958 1.639 2.569 0.820 1.472 2.306 0.798 1.448 2.315
mlt_lev sim -0.411 -1.312 -1.739 -1.031 -1.654 -1.977 -1.395 -1.789 -2.042
mlt_skk sim -0.484 -1.365 -1.765 -1.082 -1.645 -1.984 -1.399 -1.797 -2.043
mlt_sim sim -1.002 -1.592 -1.888 -1.319 -1.784 -2.045 -1.506 -1.844 -2.055
add_lev sim -0.354 -1.316 -1.737 -1.014 -1.651 -1.965 -1.357 -1.762 -2.026
add_skk sim -0.442 -1.331 -1.695 -0.968 -1.604 -1.954 -1.297 -1.756 -2.023
add_sim sim -0.665 -1.568 -1.900 -1.302 -1.782 -2.043 -1.491 -1.836 -2.064

Table C.4: Average ranks across all assets based on quantile loss and ALS scoring func-
tions (out-of-sample data, Tin = 500, 1000, 2000).The best model within each class is
reported in boldface.

VaR ES Tin = 500 Tin = 1000 Tin = 2000

0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
mlt_lev — 4.441 4.374 4.153 4.303 4.241 4.155 4.204 4.034 3.975
mlt_skk — 3.436 3.303 3.192 3.554 3.594 3.483 3.643 3.466 3.581
mlt_sim — 2.002 1.709 1.820 2.020 2.027 2.081 2.261 2.241 2.264
add_lev — 4.209 4.562 4.569 4.475 4.781 4.751 4.387 4.562 4.369
add_skk — 3.990 4.143 4.081 4.143 4.113 4.217 4.165 4.236 4.200
add_sim — 2.921 2.909 3.185 2.505 2.244 2.313 2.340 2.461 2.611
mlt_lev sim 3.956 4.160 4.025 4.076 4.030 4.084 4.002 4.002 3.803
mlt_skk sim 3.739 3.685 3.749 3.766 3.938 3.778 3.778 3.682 3.734
mlt_sim sim 2.067 2.229 2.377 2.057 2.167 2.246 2.094 2.131 2.091
add_lev sim 4.101 4.283 4.165 4.234 4.458 4.507 4.446 4.549 4.623
add_skk sim 3.823 4.126 4.227 4.251 4.350 4.406 4.515 4.505 4.552
add_sim sim 3.315 2.517 2.458 2.616 2.057 1.978 2.165 2.131 2.197

31



Appendix D: Figures

32



α̂

0.00 0.02 0.04 0.06 0.08 0.10
0.01 0.025 0.05

VaR=a_sim, ES=SkKu, Loss=FZ0

VaR=a_skk, ES=SkKu, Loss=FZ0

VaR=a_lev, ES=SkKu, Loss=FZ0

VaR=m_sim, ES=SkKu, Loss=FZ0

VaR=m_skk, ES=SkKu, Loss=FZ0

VaR=m_lev, ES=SkKu, Loss=FZ0
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VaR=m_sim, ES=sim, Loss=ALS
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VaR=m_lev, ES=sim, Loss=ALS

VaR=a_sim, ES=no, Loss=EM
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NA %

0.000 0.010 0.020 0.030

Figure D.1: In-sample coverage for the models listed on the Y-axis. The left panel displays
the estimated coverage probabilities (α̂), while the right panel shows the percentage of
cases where the model estimation failed. Different colors represent different true cover-
age levels: blue for α = 0.01, green for α = 0.025, and red for α = 0.05. Each point
corresponds to one stock.
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w = 500, α = 0.05
w = 1000, α = 0.05
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Figure D.2: Out-sample-coverage estimated probabilities (α̂) for the models listed on the
Y-axis. Different colors represent different true coverage levels: blue for α = 0.01, green
for α = 0.025, and red for α = 0.05. Different intensities of the colours represent
different widths of the rolling window, as depicted in top-right corner. Each point cor-
responds to one stock. 34
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w = 1000, α = 0.05
w = 2000, α = 0.05

Figure D.3: Value of the loss function in out-sample-performance for the models listed
on the Y-axis. Different colors represent different true coverage levels: blue for α =
0.01, green for α = 0.025, and red for α = 0.05. Different intensities of the colours
represent different widths of the rolling window, as depicted in top-right corner. Each
point corresponds to one stock. 35
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