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Abstract 

This paper examines the influence of local (state-specific) and global Economic Policy Uncertainty 
(EPU) on the volatility of US state-level equity returns. We employ a GARCH-MIDAS approach that 
incorporates multiple EPU indices as low-frequency predictors of daily stock return volatility. To 
address the challenge of selecting the most relevant EPU indices, we utilize an Elastic Net (EN) 
shrinkage method to combine forecasts from different models. Our results reveal that the combined 
model, which leverages information from both local and global EPU indices, generally outperforms 
single specifications. Further, a cluster analysis based on the volatility forecasts uncovers distinct 
geographical patterns, suggesting that state-level volatility is influenced by both state-specific and 
nationwide policy uncertainties. These findings highlight the importance of considering both local and 
global economic policy uncertainty in understanding and predicting the volatility dynamics at the 
regional level. 
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1 Introduction
The present value model of asset prices (Shiller, 1981a,b) suggests that asset market volatility depends on
the variability of cash flows and the discount factor. At the same time, general equilibrium models devel-
oped by Pástor and Veronesi (2012, 2013) shed light on the role played by uncertainty about government
policy; they point out that policy changes raise the volatility of the stochastic discount factor, which, in
turn, causes risk premia to go up and stock returns to become more volatile. By the same token, increases
in policy-related uncertainties can also lead to a reduction in volatility due to lower trading volume in
the equity market, as per the Mixture of Distribution Hypothesis (MDH, Clark, 1973) or the Sequential
Information Arrival Hypothesis (EN, Copeland, 1976), since investors are then likely to move into “safe
haven” assets (Balcilar et al., 2016; Raza et al., 2018). Hence, uncertainty surrounding government policy
decisions can be associated with either an increase or a decrease in stock market volatility.

Given these transmission mechanisms, some researchers (see, for example, Liu and Zhang (2015); Liu
et al. (2017); Gong et al. (2022); Li et al. (2023); Salisu et al. (2023, 2024b)) have resorted to the index of
Economic Policy Uncertainty (EPU) constructed by Baker et al. (2016) from newspaper articles, to success-
fully forecast aggregate stock market volatility of the United States (US) by employing primarily variants of
the generalized autoregressive conditional heteroskedasticity (GARCH) model (Bollerslev, 1986). Unlike
the studies that use aggregated stocks and national-level EPU, we focus, for the first time, on individual
state-level analysis using a new dataset developed by Baker et al. (2022) on state-level EPU. The state-level
equity returns are derived from the sub-aggregation of stocks returns of firms within each of the 50 US
states being considered, based on the location of their headquarters. The rationale for taking such a re-
gional perspective is derived from the premise that core business activities of firms often occur close to their
headquarters (Pirinsky and Wang, 2006; Chaney et al., 2012) and, hence, equity prices should contain a
non-negligible regional (own- and neighbouring-state) component, so much so that investors’ portfolios
over-represent local firms (Coval and Moskowitz, 1999, 2001; Korniotis and Kumar, 2013). Nationally ag-
gregated data tends to overlook the heterogeneous nature of the states, potentially failing to capture the
true dynamics within specific groups of states. Analyzing data at the state-level thus highlights the unique
characteristics and variations among individual states, revealing their specific dynamics in the examined
stock returns volatility–EPU nexus. Obviously then, the forecasting exercise we undertake in this research
turns out to be relevant for investors, in that it has valuable implications for portfolio selection, derivative
pricing, risk management, and also for policy-making (Poon and Granger, 2003; Rapach et al., 2008).

The range of return variability affecting asset prices is time-varying and tends to be persistent through
time. This so-called phenomenon of volatility clustering (Engle, 1982) is at the basis of a massive litera-
ture in financial econometrics, comprising both measurement and modeling of volatility. With relatively
recent developments in exploiting the ultra-high frequency data on market prices, measurement is ac-
complished by building one of the many versions of realized volatility (Andersen and Benzoni, 2009), an
end-of-day observed variable the dynamics of which can be modeled with either additive (e.g. Corsi, 2009)
or multiplicative errors (Engle, 2002; Cipollini et al., 2021). In the absence of data on realized volatility, the
GARCH literature still receives substantial empirical attention, as it simply uses the time series of close-
to-close daily returns. The phases of measurement and modeling are accomplished at once: the signal in
the conditional mean of the returns is treated as negligible, and the object of interest is the dynamics of
the conditional variance, possibly accommodating an asymmetric reaction of volatility to negative returns
(as in the GJR model of Glosten et al., 1993, for instance). While an autoregressive dependence on past
squared returns is common to various GARCH approaches, there has been an increasing awareness about
the presence of a slow-moving component following the paper by Engle and Rangel (2008) who recognize
that there is a time-varying average level of volatility that moves at a low frequency around which the short-
run dynamics evolve. Amado et al. (2019) provide a survey of models in the GARCH family addressing
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this empirical regularity: next to the spline-GARCH by Engle and Rangel (2008), the smooth transition
GARCH of Amado and Teräsvirta (2008) and, most importantly for what is covered in this paper, the
GARCH-mixed data sampling (MIDAS) by Engle et al. (2013). This model, in particular, has the feature
of filtering out information observed at a lower frequency to provide a contribution to the volatility dy-
namics: such information may be economic-based (e.g. the industrial production to proxy phases of the
business cycle, as in Conrad and Loch, 2015), financial-based (e.g. volatility observed at monthly level, as
in Fang et al., 2020), or sentiment-based as in the monthly EPUs considered in what follows. A general-
ization to the original GARCH-MIDAS is given by Amendola et al. (2019), with a detailed review of this
approach provided in Amendola et al. (2021), Segnon et al. (2024), and Salisu et al. (2024a).

In our econometric analyses, we adopt the same GARCH-MIDAS specification and we utilize alter-
native variants of the information from different low-frequency local and global EPU indices in the form
of eleven monthly EPU-based predictors, next to the GJR model. To simplify matters, while adaptively
identify the most informative EPU indices, we adopt an Elastic Net (EN, Zou and Hastie, 2005) shrinkage
combination strategy of the volatility forecasts. To the best of our knowledge, this is the first time that a
EN-based combination approach is used within the class of the GARCH-MIDAS models. Interestingly,
we find that the shrinkage combination approach typically yields volatility forecasts that are superior or at
least equivalent to those of the GJR and all the other GARCH-MIDAS models here used, as determined
by the Set of Superior Models (SSM) of the Model Confidence Set (MCS, Hansen et al., 2011). These
results are robust to changes in different parameters like the loss function employed in the MCS or the
frequency at which the combined predictor updates.

To gain further insights on the meaning of the results, we perform a novel cluster analysis to identify
homogeneous regions sharing similar volatility forecast features. In particular, following Luo et al. (2023)
and references therein, we use the hierarchical clustering with Dynamic Time Warping (DTW, Sakoe and
Chiba, 1978) as the distance metric and Ward’s method for linkage (Ward Jr, 1963; Murtagh and Legendre,
2014). Commonly used validity indices are employed to check the goodness of the generated clusters, as in
Nanda et al. (2010) and Chaudhuri and Ghosh (2015), among others. Notably, the clusters obtained from
the EN-based combination approach have better validity indices with respect to the clusters generated by
the simpler GJR model without the low-frequency component.

The rest of the paper is as follows. Section 2 presents the methodology employed, with the GARCH-
MIDAS model formulation illustrated in 2.1 and the EN-based combination strategy in 2.2. Section 3 is
devoted to the empirical analysis, and Section 4 concludes.

2 Methodology

2.1 GARCH-MIDAS model

The framework of this work relies on the general autoregressive heteroskedastic formulation with a zero
conditional mean for the daily log-returns ri,t that is:

ri,t |Fi−1,t = σi,tηi,t , (1)

where i represents the day of the low-frequency period t, with i = 1, · · · ,Nt , and t = 1, · · · ,T , Nt is
the number of daily observations within the low-frequency period t and T is the total number of low-
frequency periods, with N denoting the total number of days, Fi−1,t is the information set up to day i−1,
σi,t is the conditional standard deviation of ri,t , and ηi,t is the error term, with ηi,t

i.i.d∼ N (0,1). In order
to accommodate the double multiplicative component in Eq. (1), we use the GARCH-MIDAS model, for
which the conditional standard deviation σi,t decomposes into a long- and short-run components, namely
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σi,t =
√

τtgi,t . In particular, the short-run component follows a unit-mean GJR-GARCH(1,1) process,
that is:

gi,t = (1−α −β − γ/2)+

(
α + γ1(ri−1,t<0)

)
r2

i−1,t

τt
+βgi−1,t , (2)

with 1(·) denoting an indicator function which is equal one when the argument is true. The long-run τt ,
varying each period t, is specified as

τt = exp

{
m+θ

K

∑
k=1

δ (ω)MVt−k

}
, (3)

where MVt is the additional exogenous variable, whose K lagged realizations are weighted according to the
weighting function δ (ω). In this work, the Beta function will be used as a weighting function, defined as
follows:

δk(ω) =
(k/K)ω1−1(1− k/K)ω2−1

∑
K
j=1( j/K)ω1−1(1− j/K)ω2−1

(4)

subject to the constraint ω1 = 1, to allow for a monotonically decreasing weighting scheme, where the
most recent observations are given more importance. Other weighting functions are discussed in Ghysels
and Qian (2019).

The parameter space of the GARCH-MIDAS model presented above is Θ = {α,β ,γ,m,θ ,ω2}.
Given the normality assumption for the error term in (1), the following log-likelihood is to be maximized:

L (Θ) =−1
2

T

∑
t=1

Nt

∑
i=1

[
log(2π)+ log(gi,tτt)+

r2
i,t

gi,tτt

]
. (5)

In addition to the GARCH-MIDAS, we also use the GJR model. In coherence with the double index
formulation used in Eq. (1), the conditional variance of ri,t , σ2

i,t , is modelled as:

σ
2
i,t = ω0 +

(
α + γ1(ri−1,t<0)

)
r2

i−1,t +βσ
2
i−1,t . (6)

2.2 Shrinkage combination strategy

The literature on forecast combinations has its origins in the paper by Bates and Granger (1969) (see, for
a review, Timmermann, 2006; Wang et al., 2023b, among others). Combination of volatility forecasts has
its own peculiarities addressed in the key contributions by Amendola and Storti (2008) in the univariate
and Amendola and Storti (2015) in the multivariate context. Within the GARCH-MIDAS approach,
Asgharian et al. (2013) combined different sources of information, via principal component analysis to
select the most relevant macroeconomic variables for the S&P 500 long-run and overall volatilities. For the
same index volatility, Fang et al. (2020) resorted to the Adaptive Least Absolute Shrinkage and Selection
Operator (LASSO, Zou, 2006) to combine twenty low-frequency macroeconomic and financial variables
via the Adaptive-LASSO. Shrinking methods to combine forecasts from different volatility models are
quite common in general: for instance, Zhang et al. (2019) used the LASSO (Tibshirani, 1996) and Elastic
Net (EN, Zou and Hastie, 2005) methods in the context of Heterogeneous AutoRegressive (HAR, Corsi,
2009) model to forecast the oil price volatility. Recently, Wang et al. (2023a) used LASSO and EN to
identify the most important Bitcoin volatility drivers among several macroeconomic and technical factors.

In order to adaptively weight the best performing models using (as in GARCH-MIDAS) the low-
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frequency additional covariates, or not using such additional variables, we resort to a combination strategy
across J models. The adopted combination strategy is based on the EN shrinkage method, which uses
both the L1 and L2 penalty functions. The L1 penalty function refers to the Least Absolute Shrinkage
and Selection (LASSO, Tibshirani, 1996) method:

LASSO : argmin
β

 1
2N

T

∑
t=1

Nt

∑
i=1

(
σ

2
i,t −β0 −

J

∑
j=1

β jσ
2
i,t, j

)2

+λ

J

∑
j=1

|β j|

 , (7)

j identifies the j-th model, with j = 1, · · · ,J; σ2
i,t, j the conditional variance from model j, and λ is the

nonnegative regularization parameter controlling the strength of the L1 penalization function (the second
addendum in (7)). In particular, higher λ s imply stronger regularization, that is, more coefficients are
shrunk towards zero or even set exactly to zero.

The L2 penalty function refers the Ridge regression (Hoerl and Kennard, 1970):

RIDGE : argmin
β

 1
2N

T

∑
t=1

Nt

∑
i=1

(
σ

2
i,t −β0 −

J

∑
j=1

β jσ
2
i,t, j

)2

+λ

J

∑
j=1

β
2
j

 . (8)

Contrary to the L1 penalty function in (7) which penalizes the sum of coefficients in absolute values,
the L2 penalty function in (8) penalizes the sum of the squares of the coefficients (namely, the second
addendum in (8)).

Specifically designed for dealing with high correlated predictors, the EN is then as follows:

EN : argmin
β

 1
2N

T

∑
t=1

Nt

∑
i=1

(
σ

2
i,t −β0 −

J

∑
j=1

β jσ
2
i,t, j

)2

+λ

(
ρ

J

∑
j=1

|β j|+(1−ρ)
J

∑
j=1

β
2
j

) , (9)

where ρ is the mixing parameter controlling the balance between L1 and L2 penalties. In this work, we fix
ρ = 0.5.

Our idea is to use the EN as a combination strategy to adaptively identify the superior models, among
several GARCH-MIDAS models and the GJR specification, taking benefit from different low-frequency
variables whose informative content towards the dependent variable of interest could be time-varying. For
instance, if the informative power of a subset of low-frequency variables included within the GARCH-
MIDAS models is low for a given period of time, the EN will shrink to zero the importance of these models,
for that period.

Following the setup in Amendola et al. (2020), we define the training (or in-sample) period as the sam-
ple used to find the optimal β̂ββ via (9). For the testing (or out-of-sample) period, starting on the day follow-
ing the last available day of the training sample, NT ,T , and ending after H days (without re-estimating),
the combined one-step ahead conditional variance forecasts, named EN-Comb, will be calculated as:

σ̂
2,(Comb)
NT+h,T = XXX ′

NT+h,T β̂ββ , h = 1, . . . ,H (10)

where, for each h = 1, . . . ,H , XXXNT+h,T represents the J×1 vector of one-step ahead conditional variance
forecasts generated by each of the J models for that period.

Schematically, the algorithm used to obtain the combined predictorEN-Comb is described as follows,
omitting the low-frequency time index t for the sake of simplicity:

1. Estimate all the J models over a window of the training sample Tin, including observations from
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the day i = p+1 to i = p+Tin, with starting value p = 0.

2. Conditionally on the estimated parameters, generate H one-step ahead conditional variance fore-
casts, for all the J models.

3. Estimate β̂ββ via the EN approach in (9) over the training sample.

4. Obtain EN-Comb for the period i = (p+Tin+1) to i = (p+Tin+H), combining each of the H
one-step ahead conditional variance forecasts of the models through β̂ββ of the previous step via Eq.
(10).

5. Moving p ahead by H , that is, p= {H,2H, · · · ,(nstep−1)H}, repeat steps 1, 2, 3, and 4, (nstep−
1) times.

3 Empirical Analysis

3.1 The dataset

We employ daily stock log-returns and eleven variants of monthly EPUs for the 50 US states to forecast
volatility using the GARCH-MIDAS model, covering the period of January, 2010 to December, 2023.1
The state-level equity indices are taken from the Bloomberg terminal as the capitalization-weighted index
of equities domiciled in a given state.2

In the conditional heteroscedasticity framework, the presence of outliers may alter the GARCH esti-
mates (Carnero et al., 2007). Therefore, we use the procedure suggested by Hoaglin and Iglewicz (1987)
to detect outliers in log-returns, possibly induced by thin trading. On average, 12.7 outliers per state are
found. When an outlier is detected, it is replaced by the overall median. Washington has the lowest number
of detected outliers (6 outliers), while Hawaii has the largest number (19 outliers).

In the first two columns of Table 1, for each US state in decreasing order by population size, we report
the number of stocks included in the state-level equity index and the total market capitalization of these
stocks (in $ ’000). This gives a good idea of the basis of the heterogeneity at stake. The remaining columns
of Table 1 include the summary statistics of the (outlier-free) log-returns (in percentage annualized terms)
confirms the heterogeneity of market outcomes across states: while many states experience average daily
returns close to zero, the range extends from notable losses in Wyoming (an annualized value of -2.04%) to
gains in Vermont (an annualized value of 1.49%); overall volatility represented by the standard deviation of
the log-returns ranges between 14.2% (New Jersey) and 50% in Wyoming, with most states between 15%
and 26%. Skewness is generally negative (40 out of 50) and excess kurtosis is noticeable but not excessive
(generally under 3, with rare exceptions). The descriptive picture testifies to the unique risk-return pro-
files across states, emphasizing the importance of considering state-specific factors in financial modeling
and investment decisions. Graphically, and limiting it to the first ten US states by population for space
constraints, the time series of the log-returns are plotted in Figure 1,3 where the usual episodes of height-
ened volatility are discernible, with the COVID-19 crisis in 2020 the most evident one with corresponding
sudden spikes and larger fluctuations of the log-returns from there on.

1The EPU indices are uniformly available for all states in 2006; since we need to skip 24 monthly observations for the MIDAS
filter to be operational, we decided to further move forward the start of the estimation of the models away from the Lehman
Brothers demise in September 2008.

2This approach is motivated by the core business activities of firms often taking place near their headquarters, influenced by
the economic and financial dynamics of that particular state.

3The remaining forty plots are reported in the supplementary material.
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Table 1: Summary statistics by state in decreasing order by population.

State # Equities Capitalization Minimum Maximum Mean Std. Dev. Skewness Kurtosis

California 972 14210.613 −90.654 85.671 0.859 19.763 −0.402 2.400
Texas 492 4173.075 −95.643 93.786 0.395 19.074 −0.204 2.387
Florida 292 853.422 −81.646 82.718 0.686 16.951 −0.246 2.444
New York 638 4462.509 −84.040 78.294 0.526 16.230 −0.310 3.002
Pennsylvania 186 1022.095 −78.388 75.247 0.586 16.809 −0.289 2.284
Illinois 175 2013.918 −82.558 73.244 0.661 15.110 −0.364 3.026
Ohio 128 1466.353 −77.452 73.455 0.697 14.613 −0.171 3.089
Georgia 127 1340.082 −82.431 71.390 0.674 15.038 −0.386 2.742
North Carolina 87 999.935 −95.411 94.048 0.759 19.481 −0.170 2.544
Michigan 71 470.490 −89.839 94.764 0.691 19.317 −0.170 2.304
New Jersey 178 1345.889 −71.914 66.841 0.493 14.158 −0.356 2.655
Virginia 127 838.467 −78.848 70.921 0.701 15.387 −0.254 2.786
Washington 100 5341.921 −100.565 111.501 1.171 21.827 −0.151 2.869
Arizona 83 475.685 −101.438 105.969 0.643 21.671 −0.046 1.902
Tennessee 57 374.653 −82.259 84.284 0.891 17.730 −0.117 2.216
Massachusetts 308 1784.901 −89.144 84.799 0.651 18.090 −0.331 2.318
Indiana 60 969.007 −81.469 88.445 0.878 16.702 −0.136 2.300
Missouri 42 305.228 −85.162 80.788 0.645 16.214 −0.139 2.744
Maryland 91 375.882 −88.276 86.590 0.571 17.238 −0.253 2.714
Wisconsin 60 325.679 −97.391 92.929 0.726 18.968 −0.158 2.615
Colorado 157 314.641 −93.673 84.483 0.415 18.030 −0.271 2.221
Minnesota 81 1059.701 −82.781 66.364 0.673 15.453 −0.300 2.296
South Carolina 22 22.331 −90.008 110.406 0.578 20.775 0.232 2.659
Alabama 19 67.972 −119.981 116.727 0.712 22.872 −0.073 2.652
Louisiana 22 59.502 −94.445 89.067 0.357 17.987 −0.122 2.629
Kentucky 24 158.106 −90.327 83.812 0.948 17.030 −0.251 2.976
Oregon 24 161.893 −112.857 107.901 0.648 22.060 −0.212 2.995
Oklahoma 33 161.761 −141.016 131.172 0.523 26.366 −0.109 3.166
Connecticut 82 850.044 −92.416 88.063 0.792 18.253 −0.319 2.689
Utah 50 71.018 −90.209 98.344 0.700 20.340 −0.203 1.834
Iowa 18 51.526 −96.643 106.641 0.892 21.350 −0.156 2.415
Nevada 103 132.874 −149.123 146.607 0.758 28.661 0.020 2.748
Arkansas 17 500.597 −76.972 80.845 0.402 15.544 −0.241 2.507
Kansas 20 18.835 −132.017 129.751 0.324 26.552 −0.027 2.867
Mississippi 10 24.111 −104.761 106.683 0.539 21.204 0.064 2.431
New Mexico 5 6.208 −174.778 206.207 0.489 32.385 0.536 6.635
Nebraska 17 952.964 −89.681 85.207 0.917 17.374 0.030 2.763
Idaho 15 133.883 −149.888 134.659 1.066 33.283 −0.107 1.569
West Virginia 8 9.266 −118.863 132.613 0.470 25.499 0.154 2.916
Hawaii 13 14.115 −94.652 108.519 0.488 20.495 0.100 2.685
New Hampshire 11 22.384 −100.733 100.645 0.729 20.473 −0.097 2.345
Maine 7 56.577 −114.223 119.137 1.244 24.352 −0.146 2.382
Montana 7 8.161 −145.040 154.186 0.583 30.246 0.040 2.499
Rhode Island 14 146.885 −102.689 84.820 0.630 19.812 −0.244 2.036
Delaware 41 148.256 −111.694 111.382 0.452 23.396 −0.110 1.872
South Dakota 5 8.274 −97.314 109.634 0.519 19.964 −0.052 2.788
North Dakota 8 9.775 −114.056 101.378 0.253 21.068 −0.275 2.641
Alaska 1 0.293 −107.250 104.048 0.641 21.200 −0.030 2.659
Vermont 5 5.036 −188.559 231.310 1.498 36.217 0.417 5.859
Wyoming 8 0.706 −255.677 278.609 −2.042 49.905 0.288 3.900

Notes: The table reports the number of stocks included in the state-level equity index and the total market capi-
talization of these stocks (in $ ’000) in the first two columns. The remaining columns present summary statistics
of the (outlier-free) daily-log returns in annualized percentage terms. Kurtosis is the excess kurtosis. Sample period:
January 2010 to December 2023 (3531 observations).

7



Figure 1: Daily log-returns for the ten most populated states, expressed in annualized percentage terms (different
scales).
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The monthly EPU indices used in this work, as developed by Baker et al. (2022), are derived from
the site https://policyuncertainty.com/state_epu.html, which provides the National, Lo-
cal, and Composite EPU indices for each US state. To construct the state-level measures of EPU, Baker
et al. (2022) use around 3,500 daily and weekly newspapers for every state in the US (as well as Washington
DC), but exclude national papers published in a given state (such as the New York Times or the Wall Street
Journal). The three state-level EPU indices are constructed by recording the fraction of articles that con-
tain terms from sets regarding the economy, uncertainty, and policy: the nation-level EPU index measures
the level of uncertainty within a state that stems from policy-related sources with a national content.4 By
contrast, the state-level index aims at capturing uncertainty within a state, stemming from state and local
policy issues.5 Finally, the third composite index is derived from articles that contain terms related to the
economy and uncertainty and a term from a set containing both state-specific and national policy terms.
These three EPU indices are summarized in the first three rows of Table 2 and illustrated in Figure 2 (for
the first ten US states by population), while all the remaining plots are in the supplementary material.

With the idea to enlarge the set of low-frequency variables to capture extra elements in the measure-
ment of uncertainty in policy issues, we computed seven other novel indices derived as averages of the
existing EPU indices, detailed in Table 2; they take into consideration a national aggregation of the EPU
indices and also variants at the state level that averages across neighboring states as well. Moreover, and this
brings the number of low-frequency variables to eleven, Baker et al. (2016) also provide a global US EPU
index, available at: https://policyuncertainty.com/us_monthly.html, based on news cover-
age with a weighting scheme on the broad news-based policy uncertainty index, the tax expiration indices,
the CPI forecast disagreement measure, and the federal/state/local purchases disagreement metric.

Table 2: Low-frequency variables.

Label Full Name Level Informative Basis

Nat. National State National policy-related sources

Loc. Local State State and local policy issues

Comp. Composite State and National National and state-specific EPU sources

Avg. EPU Averaged State Average of state-specific Nat., Loc. and Comp. indexes

Nat. Avg. National Averaged National Average of all the Nat. indexes

Loc. Avg. Local Averaged National EPU Average of all the Loc. indexes

Comp. Avg. Composite Averaged National Average of all the Comp. indexes

Neigh. Nat. Neighbourhood State Average of all the Nat.
National indexes of the bordering states

Neigh. Loc. Neighbourhood State Average of all the Loc.
Local indexes of the bordering states

Neigh. Comp. Neighbourhood State Average of all the Comp.
Composite indexes of the bordering states

Glob. Global National Global (at US level) EPU

4It includes terms related to national elections, elected officials, federal agencies, departments, and regulators.
5Each state-specific policy term set includes terms that describe the names of their executive positions and legislative bodies

at both state and local levels as well as terms that note policy initiatives put to a direct vote by citizens. Also included are the names
of the state bodies that deal with regulations spanning the environment, labor and unemployment, gambling, transportation,
banking, energy and utilities, and other financial services. As a result, this set of terms is unique to each state, since the names
and titles of officials and regulators and departments vary across states.
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Figure 2: Global and Three State-specific EPUs.
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3.2 Estimation results

Overall, we estimate eleven GARCH-MIDAS models, plus the GJR specification. We adopt a rolling win-
dow of eleven years, which, according to the notation of the previous section, means that Tin, the length
of the rolling window, is equal to 2771 daily observations. The out-of-sample period covers the time span
from 2021 to 2023, corresponding to 750 daily observations. Moreover, we initially consider the length
of the forecasting horizon, H , to be 30, meaning that after each estimation of the training sample, the
conditional variance forecasts are generated for the following thirty days. Finally, the combined predictor,
EN-Comb, is adaptively obtained by combining the conditional variance forecasts of the models through
Eq. (10). The frequency of model re-estimation (and then of the EN-comb) is, again, fixed to 30 days.

Table 3 reports the estimated coefficients for the first training period of the thetas of the eleven GARCH-
MIDAS models (for space constraints, all the other variables are available upon request). Dark, medium
and light shades of green denote the significance at levels 1%,5%,10%, respectively. In line with the the-
ories outlined above, the effect of EPUs on stock returns volatility is mixed, with the significant effects
being both positive and negative. But evidently, irrespective of the direction of the impact, clearly there is
strong prrof that EPUs do predict stock market volatility of the 50 US states.

In order to implement the EN-Comb predictor, we need to replace σ2
i,t with a (unbiased) volatility

proxy. In absence of high-frequency data, we resort to use the squared daily log-returns as (unbiased,
even if noisy) volatility proxy. Once run the EN regression for each training period and once obtained
the EN-Comb predictor, we jointly evaluate the conditional variance of EN-Comb, together that all the
other conditional variances from the other twelve models, via the MCS. As in Cipollini et al. (2021) and
references therein, the test statistic used in the MCS is the semi-quadratic, denoted by TSQ:

TSQ = ∑
i̸=j∈J

ℓ
2
i,j

v̂ar
(
ℓi,j
) ,

where i and j denote two models within the model universe J, ℓ the loss differential between i and j, and
v̂ar
(
ℓi,j
)

the variance of ℓi,j calculated using a bootstrap procedure on 5,000 replications.
Table 4 reports the Mean Squared Errors (MSE) of the twelve models involved in our analysis and

the combined predictor EN-Comb, for the out-of-sample period. Green cells indicate inclusion in the
SSM at 25% significance level. Remarkably, the combined predictor, based on the low-frequency variables
concerning the local and global EPUs, almost always (more precisely, 45 times out of 50) enters the SSM
of the MCS. Moreover, in some states, such as New York, Georgia, and Connecticut, EN-Comb is the
only model included in the SSM. Furthermore, when the SSM is large, the MSE of EN-Comb is usually
relatively smaller than that of the others (see, for instance, the cases of New Hampshire, Rhode Island,
and North Dakota).

The estimated βββ ’s of the training samples obtained through Eq. (9) and employed in Eq. (10) may
be positive or negative. Therefore, it is worth verifying the robustness of the results when positivity con-
straints are imposed on the βββ ’s. Table 5 reports the MSE of the whole model universe, with the EN-Comb
predictor obtained using such a positivity constraint in Eq. (9). Interestingly, the results found in Table
4 are largely confirmed: (i) the EN-Comb predictor enters the SSM always, except three times; (ii) EN-
Comb is the only model belonging to the SSM for three states, namely Georgia, Oregon, and Connecticut.

A detailed robustness analysis of the results is not reported here for space limits but it is reported
within the supplementary material. In particular, we repeat the analysis using the QLIKE loss function
and updating more frequently the EN-Comb combined predictor, with the positivity constraints and
without. Overall, the results presented are by and large confirmed.
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Table 3: In-sample estimates of the θ parameter of the eleven GARCH-MIDAS models.

State/EPU Nat. Loc. Comp. Avg. Nat. Loc. Comp. Neigh. Neigh. Neigh. Glob.
Avg. Avg. Avg. Nat. Loc. Comp.

California −0.185 3.034 −0.304 2.853 2.641 1.576 3.331 1.194 2.815 4.987 −0.723
Texas −0.14 0.008 −0.459 −0.123 −0.486 0.579 0.442 −0.215 0.668 −0.277 −0.483
Florida −0.228 0.733 −0.015 8.496 −3.214 −1.068 −0.498 −1.719 −1.202 −2.396 −7.921
New York −0.092 0.265 0.085 0.779 −2.085 −0.85 −2.088 −2.106 1.793 0.407 −1.661
Pennsylvania −1.809 −0.148 −1.621 −0.69 −0.445 0.266 −0.62 −0.353 0.243 −0.287 −3.573
Illinois −0.464 0.261 −0.557 −0.362 −0.949 0.731 −0.16 −1.359 0.57 −0.141 −1.091
Ohio −0.257 0.579 −0.267 0.281 −0.981 0.733 0.732 0.301 0.855 −0.725 −0.732
Georgia −0.733 −0.346 −1.714 −1.103 0.02 1.058 1.554 2.612 1.67 1.99 1.173
North Carolina 1.407 −0.142 −0.428 −0.194 −0.177 −0.244 0.143 0.83 1.001 0.8 4.716
Michigan 0.892 −0.505 −0.901 −0.981 −2.243 −1.188 0.018 −0.256 −1.698 −1.934 −3.419
New Jersey −4.281 −0.187 −1.277 −0.491 −0.592 0.414 −0.152 −1.368 0.343 −0.34 −7.204
Virginia −0.147 0.036 0.438 −0.082 −1.518 0.66 −0.791 −1.995 0.644 −1.211 −4.368
Washington 2.096 1.211 2.817 2.223 0.941 1.112 2.229 1.546 1.235 1.734 −2.589
Arizona 0.623 0.74 1.814 1.675 −1.717 0.428 −0.178 −1.386 0.131 0.524 −2.704
Tennessee 0.247 −0.46 −0.888 0.22 −0.198 0.801 0.648 1.386 1.485 1.634 −0.879
Massachusetts −0.728 0.889 −0.111 −0.257 −0.648 0.658 −0.387 −0.307 1.181 −0.232 −1.599
Indiana −0.775 −0.143 −0.992 −0.556 −1.492 0.55 −0.582 −2.047 0.898 −0.274 −1.164
Missouri −0.103 0.058 −0.087 0.16 −2.512 0.203 −2.374 −0.151 0.835 −0.202 −0.241
Maryland −1.058 0.106 −2.222 −1.453 −2.029 −0.548 −0.248 2.389 4.671 1.72 −4.627
Wisconsin −3.128 −1.485 −1.732 −2.458 −0.933 −1.657 −0.301 −2.626 0.318 −2.228 −5.874
Colorado 0.04 0.115 0.152 0.086 −0.947 0.289 −2.134 0.14 0.937 0.522 −5.373
Minnesota −1.089 −0.074 0.097 −1.389 −0.228 0.625 0.449 0.103 1.076 1.636 −0.971
South Carolina −1.082 0.115 0.457 0.499 0.121 0.995 0.495 0.671 0.08 1.014 0.659
Alabama −0.328 0.046 −0.2 0.089 −3.036 0.308 −1.944 −3.483 −0.015 −0.325 −6.898
Louisiana 0.365 −1.125 −0.515 0.395 1.018 0.741 1.23 −0.365 1.548 −0.284 4.333
Kentucky −0.278 0.19 0.241 0.182 0.363 0.705 0.835 −0.224 0.739 −0.108 −0.415
Oregon 1.064 1.083 −0.091 1.456 2.269 1.147 2.913 2.066 1.361 2.1 5.882
Oklahoma 0.168 0.203 0.009 0.127 2.914 0.887 1.076 −0.173 2.772 0.386 1.096
Connecticut −1.267 0.354 −0.756 −0.772 −2.83 −1.644 −3.609 −0.217 −1.643 −2.208 −5.364
Utah −0.542 0.22 −0.604 0.365 −1.381 0.49 0.321 0.434 −0.009 1.286 −2.541
Iowa −1.539 0.071 −1.609 0.11 −2.49 −1.227 −2.909 −0.635 −3.802 −3.384 −7.805
Nevada 0.079 1.151 −0.104 0.553 0.37 0.215 0.828 1.582 −2.486 1.481 2.099
Arkansas −0.507 0.101 −0.25 −0.142 0.419 0.287 −0.055 −0.149 0.357 0.322 −0.249
Kansas −0.024 0.069 0.659 0.098 1.271 0.43 2.047 −1.127 3.763 0.677 9.06
Mississippi −0.629 0.732 −0.237 −0.209 −0.036 0.881 1.108 3.762 0.097 1.7 −6.961
New Mexico 0.251 −0.241 2.025 0.754 2.61 2.457 6.672 0.291 5.368 3.524 14.168
Nebraska 0.000 0.657 1.319 1.077 −0.039 0.848 2.171 2.217 1.932 2.588 1.806
Idaho 0.169 0.162 0.524 0.159 −0.296 0.689 1.477 1.723 0.252 1.352 3.656
West Virginia 0.211 0.379 0.733 0.184 −0.501 1.896 0.233 −0.571 2.202 −0.236 −4.132
Hawaii 0.814 0.795 −1.043 0.849 −1.641 0.278 −0.741 −8.114
New Hampshire −0.058 −0.02 −0.418 −0.049 −1.231 0.295 −0.653 −0.197 0.346 −1.065 −8.033
Maine −0.828 0.511 −0.794 −0.475 −0.286 0.579 −0.247 −0.035 2.658 0.847 −0.795
Montana −0.241 −0.618 −2.291 −1.586 −2.523 0.098 −2.919 −1.456 −2.468 −3.039 −3.303
Rhode Island 0.183 0.385 0.896 0.47 2.076 1.565 3.138 −1.102 2.084 −0.14 1.77
Delaware −0.064 −0.004 0.095 0.067 −0.193 −0.058 −0.17 −0.209 −0.177 −0.257 −0.755
South Dakota −0.877 0.13 −1.063 −1.095 −2.371 0.251 −1.624 −0.207 0.102 −1.108 −2.528
North Dakota 0.474 0.445 2.098 1.091 −0.884 0.887 −0.08 −1.568 1.76 −1.392 0.583
Alaska −1.156 −0.435 −1.782 −0.28 3.073 1.622 3.512 12.554
Vermont −0.496 0.253 0.028 0.094 0.07 0.33 0.312 0.353 2.666 2.104 −0.719
Wyoming 0.036 0.685 −0.004 0.258 −1.287 −1.338 −1.868 −2.029 −2.839 −2.456 10.472

Notes: For an explanation of the low-frequency variables, see Table 2. Dark , medium , and light shades of green
signal the coefficient significance at 1%,5%,10% levels, respectively. Quasi-Maximum Likelihood (Bollerslev and
Wooldridge, 1992) standard errors have been used. Sample period: January 2010 to December 2020 (2771 observa-
tions).
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Table 4: Out-of-sample volatility evaluation. MSE loss function. EN-Comb updated every 30 days.

GARCH-MIDAS GJR EN-Comb

State/EPU Nat. Loc. Comp. Avg. Nat. Loc. Comp. Neigh. Neigh. Neigh. Glob.
Avg. Avg. Avg. Nat. Loc. Comp.

California 0.943 0.98 0.952 0.945 0.963 0.969 0.975 0.947 0.985 0.985 0.948 0.9 0.892
Texas 0.487 0.473 0.474 0.476 0.474 0.475 0.475 0.474 0.475 0.474 0.475 0.471 0.472
Florida 0.306 0.308 0.306 0.306 0.306 0.307 0.306 0.306 0.305 0.305 0.306 0.3 0.301
New York 0.236 0.235 0.236 0.236 0.236 0.235 0.236 0.248 0.235 0.235 0.238 0.232 0.227
Pennsylvania 0.295 0.289 0.29 0.29 0.29 0.291 0.29 0.289 0.29 0.29 0.291 0.284 0.285
Illinois 0.155 0.155 0.157 0.153 0.155 0.154 0.155 0.155 0.155 0.154 0.157 0.152 0.152
Ohio 0.175 0.188 0.177 0.177 0.177 0.176 0.177 0.177 0.176 0.177 0.177 0.174 0.174
Georgia 0.257 0.259 0.258 0.257 0.259 0.262 0.261 0.261 0.262 0.262 0.258 0.255 0.248
North Carolina 0.458 0.458 0.459 0.458 0.457 0.458 0.474 0.458 0.458 0.459 0.458 0.453 0.467
Michigan 0.58 0.579 0.579 0.579 0.58 0.582 0.58 0.578 0.577 0.58 0.579 0.573 0.576
New Jersey 0.086 0.086 0.085 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.087 0.085 0.085
Virginia 0.205 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.203 0.203 0.201 0.2
Washington 1.199 1.217 1.215 1.222 1.208 1.206 1.195 1.182 1.195 1.201 1.189 1.164 1.176
Arizona 0.917 0.917 0.922 0.916 0.918 0.911 0.919 0.917 0.921 0.917 0.915 0.896 0.902
Tennessee 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.292 0.29 0.287 0.287 0.286 0.285
Massachusetts 0.387 0.43 0.392 0.386 0.387 0.388 0.389 0.389 0.389 0.389 0.391 0.375 0.373
Indiana 0.334 0.333 0.335 0.334 0.335 0.338 0.335 0.335 0.337 0.336 0.335 0.332 0.335
Missouri 0.212 0.212 0.212 0.213 0.212 0.211 0.212 0.212 0.213 0.212 0.213 0.214 0.212
Maryland 0.254 0.25 0.247 0.248 0.248 0.249 0.248 0.248 0.248 0.249 0.249 0.243 0.244
Wisconsin 0.4 0.395 0.399 0.399 0.398 0.398 0.397 0.398 0.411 0.397 0.403 0.392 0.399
Colorado 0.5 0.499 0.5 0.498 0.5 0.502 0.501 0.502 0.505 0.503 0.501 0.492 0.489
Minnesota 0.198 0.198 0.198 0.197 0.198 0.199 0.199 0.198 0.197 0.198 0.199 0.197 0.195
South Carolina 0.998 0.996 0.999 0.998 0.998 0.996 0.997 0.996 0.994 0.996 0.998 0.994 1.014
Alabama 0.678 0.678 0.679 0.68 0.681 0.677 0.679 0.681 0.722 0.68 0.686 0.68 0.678
Louisiana 0.553 0.549 0.553 0.553 0.553 0.554 0.555 0.55 0.555 0.551 0.553 0.549 0.552
Kentucky 0.294 0.295 0.294 0.294 0.293 0.294 0.294 0.293 0.294 0.293 0.294 0.29 0.289
Oregon 1.627 1.65 1.763 1.628 1.647 1.649 1.655 1.653 1.657 1.656 1.64 1.611 1.604
Oklahoma 1.355 1.349 1.352 1.358 1.355 1.356 1.354 1.356 1.357 1.361 1.354 1.359 1.355
Connecticut 0.394 0.39 0.392 0.392 0.395 0.394 0.393 0.391 0.391 0.393 0.398 0.388 0.384
Utah 0.693 0.693 0.694 0.693 0.694 0.692 0.696 0.695 0.699 0.7 0.688 0.684 0.685
Iowa 0.545 0.543 0.543 0.543 0.545 0.544 0.546 0.545 0.546 0.546 0.545 0.545 0.545
Nevada 2.092 2.102 2.091 2.096 2.085 2.089 2.087 2.106 2.095 2.105 2.085 2.07 2.088
Arkansas 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.165 0.164 0.164 0.164 0.164
Kansas 4.046 4.047 4.038 4.056 4.044 4.045 4.041 4.062 4.023 4.061 4.074 4.032 4.031
Mississippi 0.766 0.769 0.77 0.767 0.768 0.769 0.769 0.768 0.769 0.765 0.771 0.767 0.776
New Mexico 16.607 16.209 19.155 20.96 22.668 16.358 16.735 16.229 16.243 17.012 16.233 16.388 17.327
Nebraska 0.242 0.242 0.244 0.244 0.244 0.243 0.246 0.243 0.244 0.244 0.243 0.241 0.242
Idaho 2.335 2.337 2.332 2.354 2.336 2.334 2.338 2.32 2.308 2.316 2.305 2.322 2.334
West Virginia 1.713 1.711 1.718 1.695 1.694 1.707 1.708 1.711 1.707 1.707 1.716 1.689 1.761
Hawaii 1.156 1.152 1.161 1.154 1.156 1.157 1.157 1.157 1.147 1.162
New Hampshire 0.759 0.756 0.76 0.76 0.759 0.758 0.758 0.76 0.759 0.759 0.763 0.759 0.757
Maine 2.105 2.14 2.118 2.115 2.126 2.132 2.104 2.114 2.101 2.151 2.121 2.063 2.089
Montana 3.295 3.259 3.28 3.268 3.278 3.285 3.213 3.264 3.224 3.257 3.285 3.217 3.311
Rhode Island 0.631 0.633 0.63 0.632 0.633 0.635 0.634 0.63 0.632 0.63 0.63 0.63 0.624
Delaware 1.295 1.294 1.29 1.295 1.294 1.294 1.294 1.295 1.297 1.285 1.296 1.273 1.275
South Dakota 0.579 0.578 0.577 0.579 0.579 0.578 0.578 0.575 0.577 0.582 0.577 0.576 0.578
North Dakota 0.636 0.634 0.635 0.634 0.634 0.63 0.632 0.632 0.632 0.632 0.631 0.632 0.629
Alaska 1.208 1.215 1.213 1.214 1.221 1.213 1.213 1.215 1.208 1.223
Vermont 4.132 4.083 4.08 4.153 4.079 4.079 4.08 4.154 4.003 4.026 4.131 4.218 4.823
Wyoming 37.293 37.46 37.206 37.354 37.437 36.959 37.09 37.098 37.352 37.138 39.634 37.441 37.959

Notes: The table reports the MSE (multiplied by 100) of the GARCH-MIDAS models (columns from two to
the antepenultimate), the GJR model, and the proposed predictor EN-Comb. The low-frequency variables of the
GARCH-MIDAS models in columns from two to penultimate are illustrated in Table 2. Sample period: January
2021 to December 2023 (750 observations). Green cells indicate inclusion in the SSM at 25% significance level.
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Table 5: Out-of-sample volatility evaluation. MSE loss function. EN-Comb updated every 30 days, with β̂ ≥ 0.

GARCH-MIDAS GJR EN-Comb

State/EPU Nat. Loc. Comp. Avg. Nat. Loc. Comp. Neigh. Neigh. Neigh. Glob.
Avg. Avg. Avg. Nat. Loc. Comp.

California 0.943 0.98 0.952 0.945 0.963 0.969 0.975 0.947 0.985 0.985 0.948 0.9 0.896
Texas 0.487 0.473 0.474 0.476 0.474 0.475 0.475 0.474 0.475 0.474 0.475 0.471 0.472
Florida 0.306 0.308 0.306 0.306 0.306 0.307 0.306 0.306 0.305 0.305 0.306 0.3 0.298
New York 0.236 0.235 0.236 0.236 0.236 0.235 0.236 0.248 0.235 0.235 0.238 0.232 0.228
Pennsylvania 0.295 0.289 0.29 0.29 0.29 0.291 0.29 0.289 0.29 0.29 0.291 0.284 0.285
Illinois 0.155 0.155 0.157 0.153 0.155 0.154 0.155 0.155 0.155 0.154 0.157 0.152 0.15
Ohio 0.175 0.188 0.177 0.177 0.177 0.176 0.177 0.177 0.176 0.177 0.177 0.174 0.175
Georgia 0.257 0.259 0.258 0.257 0.259 0.262 0.261 0.261 0.262 0.262 0.258 0.255 0.248
North Carolina 0.458 0.458 0.459 0.458 0.457 0.458 0.474 0.458 0.458 0.459 0.458 0.453 0.459
Michigan 0.58 0.579 0.579 0.579 0.58 0.582 0.58 0.578 0.577 0.58 0.579 0.573 0.576
New Jersey 0.086 0.086 0.085 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.087 0.085 0.085
Virginia 0.205 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.203 0.203 0.201 0.2
Washington 1.199 1.217 1.215 1.222 1.208 1.206 1.195 1.182 1.195 1.201 1.189 1.164 1.178
Arizona 0.917 0.917 0.922 0.916 0.918 0.911 0.919 0.917 0.921 0.917 0.915 0.896 0.907
Tennessee 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.292 0.29 0.287 0.287 0.286 0.285
Massachusetts 0.387 0.43 0.392 0.386 0.387 0.388 0.389 0.389 0.389 0.389 0.391 0.375 0.378
Indiana 0.334 0.333 0.335 0.334 0.335 0.338 0.335 0.335 0.337 0.336 0.335 0.332 0.335
Missouri 0.212 0.212 0.212 0.213 0.212 0.211 0.212 0.212 0.213 0.212 0.213 0.214 0.211
Maryland 0.254 0.25 0.247 0.248 0.248 0.249 0.248 0.248 0.248 0.249 0.249 0.243 0.244
Wisconsin 0.4 0.395 0.399 0.399 0.398 0.398 0.397 0.398 0.411 0.397 0.403 0.392 0.39
Colorado 0.5 0.499 0.5 0.498 0.5 0.502 0.501 0.502 0.505 0.503 0.501 0.492 0.492
Minnesota 0.198 0.198 0.198 0.197 0.198 0.199 0.199 0.198 0.197 0.198 0.199 0.197 0.195
South Carolina 0.998 0.996 0.999 0.998 0.998 0.996 0.997 0.996 0.994 0.996 0.998 0.994 1.003
Alabama 0.678 0.678 0.679 0.68 0.681 0.677 0.679 0.681 0.722 0.68 0.686 0.68 0.675
Louisiana 0.553 0.549 0.553 0.553 0.553 0.554 0.555 0.55 0.555 0.551 0.553 0.549 0.552
Kentucky 0.294 0.295 0.294 0.294 0.293 0.294 0.294 0.293 0.294 0.293 0.294 0.29 0.289
Oregon 1.627 1.65 1.763 1.628 1.647 1.649 1.655 1.653 1.657 1.656 1.64 1.611 1.585
Oklahoma 1.355 1.349 1.352 1.358 1.355 1.356 1.354 1.356 1.357 1.361 1.354 1.359 1.352
Connecticut 0.394 0.39 0.392 0.392 0.395 0.394 0.393 0.391 0.391 0.393 0.398 0.388 0.384
Utah 0.693 0.693 0.694 0.693 0.694 0.692 0.696 0.695 0.699 0.7 0.688 0.684 0.687
Iowa 0.545 0.543 0.543 0.543 0.545 0.544 0.546 0.545 0.546 0.546 0.545 0.545 0.545
Nevada 2.092 2.102 2.091 2.096 2.085 2.089 2.087 2.106 2.095 2.105 2.085 2.07 2.088
Arkansas 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.165 0.164 0.164 0.164 0.164
Kansas 4.046 4.047 4.038 4.056 4.044 4.045 4.041 4.062 4.023 4.061 4.074 4.032 4.028
Mississippi 0.766 0.769 0.77 0.767 0.768 0.769 0.769 0.768 0.769 0.765 0.771 0.767 0.776
New Mexico 16.607 16.209 19.155 20.96 22.668 16.358 16.735 16.229 16.243 17.012 16.233 16.388 16.787
Nebraska 0.242 0.242 0.244 0.244 0.244 0.243 0.246 0.243 0.244 0.244 0.243 0.241 0.242
Idaho 2.335 2.337 2.332 2.354 2.336 2.334 2.338 2.32 2.308 2.316 2.305 2.322 2.311
West Virginia 1.713 1.711 1.718 1.695 1.694 1.707 1.708 1.711 1.707 1.707 1.716 1.689 1.755
Hawaii 1.156 1.152 1.161 1.154 1.156 1.157 1.157 1.157 1.147 1.16
New Hampshire 0.759 0.756 0.76 0.76 0.759 0.758 0.758 0.76 0.759 0.759 0.763 0.759 0.758
Maine 2.105 2.14 2.118 2.115 2.126 2.132 2.104 2.114 2.101 2.151 2.121 2.063 2.097
Montana 3.295 3.259 3.28 3.268 3.278 3.285 3.213 3.264 3.224 3.257 3.285 3.217 3.305
Rhode Island 0.631 0.633 0.63 0.632 0.633 0.635 0.634 0.63 0.632 0.63 0.63 0.63 0.623
Delaware 1.295 1.294 1.29 1.295 1.294 1.294 1.294 1.295 1.297 1.285 1.296 1.273 1.274
South Dakota 0.579 0.578 0.577 0.579 0.579 0.578 0.578 0.575 0.577 0.582 0.577 0.576 0.578
North Dakota 0.636 0.634 0.635 0.634 0.634 0.63 0.632 0.632 0.632 0.632 0.631 0.632 0.63
Alaska 1.208 1.215 1.213 1.214 1.221 1.213 1.213 1.215 1.208 1.211
Vermont 4.132 4.083 4.08 4.153 4.079 4.079 4.08 4.154 4.003 4.026 4.131 4.218 4.142
Wyoming 37.293 37.46 37.206 37.354 37.437 36.959 37.09 37.098 37.352 37.138 39.634 37.441 37.12

Notes: The table reports the MSE (multiplied by 100) of the GARCH-MIDAS models (columns from two to the
antepenultimate), the GJR model, and the proposed predictor EN-Comb. The combined predictor EN-Comb has
been obtained with the constraint that the estimated betas of the EN regression (Eq. (9)) are positive. The low-
frequency variables of the GARCH-MIDAS models in columns from two to penultimate are illustrated in Table 2.
Sample period: January 2021 to December 2023 (750 observations). Green cells indicate inclusion in the SSM at 25%
significance level.
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Figure 3: Out-of-sample volatility evaluation. Squared daily log-returns and EN-Comb, annualized percentage
scale.
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3.3 Cluster analysis and validity indices

To gain further insight into the analysis, we find clusters of homogeneous regions among the US states
according to volatility predictions. The algorithm is used here to construct a hierarchy of clusters, starting
from the volatility forecasts of the EN-Comb and GJR models. A detailed description of the hierarchi-
cal clustering algorithm is beyond the scope of this work (see, for example, Murtagh and Contreras, 2012,
2017, for literature reviews, among others). Hereafter we make use the dissimilarity matrix calculated using
the DTW metric (as described in Franses and Wiemann, 2020, among others) in the initial step. Subse-
quently, clusters are merged based on the Ward’s linkage criterion, whereby pairs of clusters are aggregated
to minimize the total within-cluster variance.6

In the literature, several indices have been proposed for measuring the validity of each partition and
calculating the optimal number of clustering. In this work, we use four validity indices, briefly described
as follows:

Silhouette score (Rousseeuw, 1987). It is in interval [−1;1] and represents a measure of how well the
observation fits into its assigned cluster. A higher value indicates a better quality of clustering.

Dunn index (Dunn, 1974). It measures the compactness (intra-cluster distance) and separation (inter-
cluster distance) of clusters. A higher value indicates a better quality of clustering.

Davies-Bouldin index (Davies and Bouldin, 1979). It is based on both the intra-cluster and inter-cluster
distances, and measures the average similarity between each cluster and its most similar cluster. A lower
value indicates a better quality of clustering.

Ball-Hall index (Ball and Hall, 1965). It is based on cluster mean dispersion, defined as the mean of
the squared distances of the cluster’s points with respect to their barycenter. The Ball-Hall index is the
mean of all the clusters mean dispersions. A lower value indicates a better quality of clustering.

The cluster analysis reveals distinct patterns in the volatility forecasts produced by the EN-Comb and
GJR models. Table 6 presents the validity indices for different cluster solutions. Notably, the EN-Comb
model, incorporating EPU information, consistently produces clusters with higher validity across all in-
dices compared to the baseline GJR model. The EN-Comb model achieves the highest Silhouette score,
Dunn index, and lowest Davies-Bouldin and Ball-Hall indices across all cluster solutions, suggesting that
it effectively captures the underlying structure of volatility patterns better than the baseline. This superior
performance is attributed to the EN-Comb model’s ability to integrate state-specific EPU data, allowing
it to discern nuanced regional variations in volatility responses to policy-related uncertainty. Specifically,
the EN-Comb model identifies distinct clusters of states with similar volatility profiles, potentially linked
to shared economic structures or geographical proximity.

Table 6: Validity indices for clusters

Number of clusters 3 4 5

GJR EN-Comb GJR EN-Comb GJR EN-Comb
Silhouette score (H) 0.482 0.487 0.464 0.470 0.403 0.403
Dunn index(H) 0.086 0.131 0.223 0.244 0.236 0.244
Davies-Bouldin index (L) 1.011 0.805 0.663 0.650 0.900 0.940
Ball-Hall index (L) 5.984 0.895 0.491 0.403 0.566 0.466

Notes: The table reports four internal validity indices for the clusters. (H) indicates that
higher values represent better validity, while (L) indicates that lower values are better. Sample
period: January 2021 to December 2023 (750 observations).

6The cluster analysis is performed using the R package dtwclust of Sardá-Espinosa (2019).
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Figure 4: Hierarchical Cluster Dendrograms.
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Figure 5: Clusters of states for EN-Comb.
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4 Conclusion
In this study we have documented the informational effectiveness from incorporating local and global
EPU indices into the GARCH-MIDAS framework for forecasting US state-level equity returns volatility.
By leveraging the Elastic Net combination approach, we find that our model generally outperforms both
the benchmark GJR model and individual GARCH-MIDAS models using single EPU predictors. This
underscores the value of integrating multiple sources of EPU information when forecasting volatility.

The decision to forecast state-level daily equity returns volatility at a mixed frequency using economic
policy uncertainty indices combines the needs to provide both more accurate measures of volatility (Ghy-
sels et al., 2019), and terms of reference for timely portfolio decisions and for risk management (Ghysels
and Valkanov, 2012): as a matter of fact, more robust risk models and stress-testing scenarios enable risk
managers to face potential economic downturns. By the same token, policymakers are able to gauge the
impact of policy decisions on different regions and, possibly, tailor their interventions accordingly.

While our analysis focuses on the US context, the methodology and findings of this study can be ex-
tended to other regions with heterogeneous stock markets where EPU data is available. Future research
could investigate the impact of EPU on stock market volatility in European countries, examining the dis-
tinct reactions across diverse economic and political landscapes, thus contributing to a global understand-
ing of the EPU-volatility nexus. Additionally, exploring the potential of other mixed-frequency models
or alternative combination strategies for incorporating EPU information could further improve volatility
forecasting accuracy and enhance decision-making in financial markets.

Overall, this study provides convincing evidence for the predictive power of EPU indices in volatility
forecasting at the state level. The GARCH-MIDAS framework, enhanced by the Elastic Net combination
approach and cluster analysis, offers a comprehensive tool for understanding and navigating the complex
relationship between economic policy uncertainty and stock market volatility.
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