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Abstract 

The paper addresses the issue of comparing deprivation distributions, when poverty is measured by a 
sum of binary variables. To accomplish this task, it provides a graphical device, the Three I’s of 
Deprivation (TID) curve, that summarizes incidence, intensity and inequality aspects of deprivation in 
a society, and it is the natural counterpart of the TIP curve widely used in income poverty analysis. 
Uncertainty around the estimated deprivation curves is evaluated through simultaneous confidence 
bands. An hypothesis test of dominance is presented to facilitate the comparison and the ordering of 
deprivation curves across groups and over time. An extension of the Sen-Shorrocks poverty index that 
summarizes the three I’s of deprivation is characterized and confidence intervals are developed. As a 
substantive illustration the evolution of material and social deprivation across European countries over 
the period of the outbreak of the pandemic is analysed. 
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1 Introduction

Most of policy designs for alleviating poverty focus on head-count measures of monetary-

based poverty. In the literature, however, it is commonly agreed that two important

aspects of poverty – intensity and inequality – should be considered in practice, in addi-

tion to incidence. Whether a measure captures these three aspects of poverty has large

consequences for the incentives of a policy maker (Alkire and Seth, 2014). The ‘Three

Is of Poverty’ (TIP) curve (Jenkins and Lambert, 1997), also known as Poverty Pro-

file curve or Poverty Gap Profile (Barrett et al., 2016), is a valuable graphical device,

because of its ability to simultaneously represent the poverty head-count (Incidence),

the average poverty income-gap, i.e. the average distance of individual incomes from

the poverty line (Intensity) and the within-poor distribution (Inequality). With indi-

viduals ranked in ascending order of income, a TIP curve plots the cumulative poverty

income-gap per person against the corresponding cumulative proportion of individuals.

At the same time, there is a growing consensus that measurement of poverty should

not be confined to a monetary variable, such as income, because poverty has multiple

facets, which, in practice, are often binary or ordinal in nature. Within this discrete

response framework, poverty is defined as a situation of deprivation that reflects en-

forced lack of material, social, political, health benefits considered to be basic needs in

a modern society.

Although the extent to which an individual is deprived cannot be directly observed,

it can be inferred from observed behaviour representing deprivation observable expres-

sions. Therefore, to measure deprivation in its broad sense, questionnaires for surveys

on poverty and social exclusion are typically composed by a series of items scored on a

binary scale. Binary scoring are typical of yes/no, revealing either the presence (yes)

or the absence (no) of specific deprivations due to lack of resources, access or freedom.

Each individual is characterized by a score equal to the total number of questions that

are answered affirmatively, ranging in between 0 and the total number of considered

items. Individuals are then classified as either no deprived or in different levels of

deprivation if their deprivation score is equal or higher than a certain threshold or

cut-off.

The present paper aims at translating the ‘three I’s’ properties of TIP curves into

a binary setting, where deprivation scores are countable but not continuous. Since the

diagram bears a close resemblance to the TIP curve, it is described here as a ‘Three
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I’s of Deprivation’ (TID). The TID curve presented here generalizes deprivation pro-

files derived from deprivation counts, first introduced by Lasso de la Vega (2010) and

Espinoza-Delgado and Silber (2024). While statistical inference for TIP curves has

been proposed by Thuysbaert (2008), Barrett et al. (2016), and recently by Fourrier-

Nicoläı and Lubrano (2020) in a Bayesian framework, it has not been developed for TID

curves so far. At the same time, the methodology implemented for TIP curves cannot

be straightforwardly applied, because of the discrete nature of our data. Therefore, we

provide a procedure to obtain simultaneous confidence bands to evaluate uncertainty

around the estimated TID curves. An hypothesis test of stochastic dominance is also

illustrated, to make it possible comparison and ordering of deprivation curves across

groups and over time. We also show that the TID curve is related to the (censored) gen-

eralized Lorenz curve, so red that dominance criterion can be used to rank deprivation

distributions by all those measure meeting a given set of axioms. In line with Espinoza-

Delgado and Silber (2024), an extension of the Sen-Shorrocks index in a binary setting

that satisfies the given set of axioms is introduced and discussed. Statistical inference

for the index is also provided.

The empirical motivation of this study is to look at the evolution of material and

social deprivation (Guio et al., 2016) across European countries, to compare countries’

deprivation profiles before and after the pandemic outbreak. Data come from the latest

2022 wave of the European Union Statistics on Income and Living Conditions (EU-

SILC). However, the TID curves can be relevant in other related contexts, whenever

bounded count data are encountered. For instance, to analyse experience-based food

security (Bickel et al., 2000), job satisfaction (Stride et al., 2008), or several health

outcomes (Mullahy, 2023).

The paper is organised as follows. In section 2 we introduce notation and basic

definitions. Section 3 formally describes the TID curve. It provides an estimator

of the curve along with a procedure to build a confidence band. Section 4 proposes

a dominance test for comparing TID curves. It also shows the implications of TID

dominance to poverty aggregate measures, and specifically to the extension in the

binary setting of the Sen-Shorrocks index. Section 6 provides the main results of our

temporal analysis of the European countries’ deprivation profiles. Section 7 is devoted

to conclusions.
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2 Deprivations and achievements: the framework

Each individual is assigned a vector of several attributes that represent different aspects

of living conditions. To measure deprivation, it becomes necessary to check whether

an individual has a minimum acceptable number of these attributes. These accept-

able quantities of attributes represent the individual threshold limits necessary for an

adequate standard of living. The ability to deal with such discrete response data is

fundamental, since only few variables measuring individual well-being are numerical

in nature. This is the case of material deprivation, where each attribute represents a

deprivation item, and an affirmative response indicates a basic necessity failure.

Given a population of N individuals, and D attributes/items of deprivation, define

dis as:

dis =

{
1, if individual i is deprived in item s

0, otherwise

i ∈ {1, ..., N} and s ∈ {1, ..., D}.
Within this binary framework, the formal representation is a deprivation matrix

whose rows denote a pattern of zeros and ones for each individual. The value one,

corresponding to an affirmative response, identifies a basic necessity failure, while the

value zero corresponds to a basic need achievement. For each individual i, deprivation

assessment is the sum of his/her positive items (deprivations), the deprivation raw

score:

RSi =
D∑
s=1

dis, i = 1, . . . , N.

Symmetrically, the achievement raw score of individual i is equal to

ASi =
D∑
s=1

(1− dis) = D −RSi, i = 1, . . . , N,

indicating the sum of items the individual i has access to.

Deprived individuals are defined as those lacking at least a certain number of items.

This definition requires the identification of a threshold or cutoff. Such a threshold is

a positive integer k and denotes the minimum number of items that an individual

cannot afford in order to be classified as deprived/poor. Having fixed k, each indi-

vidual is either deprived/poor or not deprived/poor according to the following crisp

identification:

deprived
(k)
i =

{
1 if RSi ≥ k,

0 if RSi < k.
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Potentially, the deprivation threshold k may take all values in the range k =

1, · · · , D. Extreme cases are when individuals lack all the D items (k = D), and

when individuals lack at least one item (k = 1).1

For a given deprivation cutoff k, the proportion of population that fails to meet

the minimum standard k is equivalently referred to as the incidence of deprivation,

deprivation rate, or deprivation head-count ratio:

Hk =

∑N
i=1 deprived

(k)
i

N
=

qk
N
. (1)

The head-count is usually taken as the unique measure of deprivation, ignoring

intensity and shape of the deprivation distribution among the poor.

Related to the threshold k, is the concept of deprivation gap, which is defined as

the number of deprivations individuals need to convert into achievements to escape

poverty:

xi =

{
RSi − (k − 1) if RSi ≥ k

0 if RSi < k.
(2)

For example, suppose to measure the deprivation of a phenomenon with D = 12

items and that the threshold is fixed at k = 4. If individuals have a raw score of 9

(they are deprived in 9 items out of 12), their gap score is equal to 6 since they have to

convert at least 6 deprivations into achievements to reach the status of non deprived.

When individuals report D = 12 affirmative items they need to convert D∗ = 9 items

out of 12 to be considered out of poverty.2

The average of the deprivation gaps xi among the poor is the intensity of deprivation

Iq =

∑qk
i=1 xi

qk
. (3)

The average of the deprivation gaps xi among the total population is the adjusted

head-count ratio (Alkire and Foster, 2011) since it can be expressed as:

x̄ =

∑N
i=1 xi

N
= Hk × Iq. (4)

1In the multidimensional poverty literature, these two special cases correspond to the intersection
approach in which individuals are multidimensional poor if they are poor in all the poverty dimensions
(Atkinson, 2003) and to the union approach which establishes that individuals are poor if they are
poor in at least one poverty dimension. Alkire and Foster (2011) provide the intermediate solution,
based on a ‘suitably fixed minimal number’ of dimensions.

2Its relative formulation is x∗
i = xi

D∗ where D∗ = D − (k − 1) represents the maximum number
of deprivations individuals need to transform into achievements to escape deprivation. A relative
formulation is useful when we want to compare two groups with a different number of deprivation
items.
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A complementary portrait of deprivation incidence is given by information on inten-

sity and inequality, representing different aspects of deprivation. To develop measures

that account for these distributional aspects, we need to combine information on de-

privation suffered by poor people. Based on that, we develop deprivation curves able

to hierarchically compare different population groups or countries, and eventually able

to derive dominance relationship.

3 Setting up a deprivation profile

3.1 Deprivation curves

Deprivation curves or deprivation profiles provide a graphical device that plays a similar

role in deprivation analysis as the Lorenz curve plays in income inequality. Beyond a

graphical perspective, deprivation curves have useful implications in deriving measures

that go beyond the simple head-count ratio.

In the monetary poverty literature, Jenkins and Lambert (1997) demonstrated that

three important dimensions of poverty can be summarized by plotting the cumulative

poverty gap per capita against the corresponding cumulative proportion of people. In

this way, the ‘Three I’s of Poverty’ can be simultaneously represented in the TIP curve.

These I’s are: I1. Incidence of poverty, as captured by the head-count poverty measure;

I2. Intensity, as measured by the income gap, the average distance of the incomes of the

poor from the poverty line; I3. Inequality of poverty within the poor group, capturing

how far the incomes of the poorest differ from those closer to the poverty line.

Due to the importance of simultaneously representing these three different aspects

of poverty, we formally derive a deprivation curve or deprivation profile for binary items

that mimics the TIP curve.

Let X be a discrete random variable (r.v.) representing the deprivation gap for a

given threshold k, taking values in the finite set {0, 1, . . . , x, . . . , D∗}, with probability

function pX(x) = Pr(X = x). Its survival function

SX(x) = Pr(X ≥ x), x = 0, 1, . . . , D∗ (5)

is a jump function and represents the cumulative share of individuals with a gap at

least equal to x. The corresponding cumulative per capita deprivation gap is given by

µX(x) =
D∗∑
j=x

j · pX(j). (6)
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and the “total” mean µX(0) represents the overall per capita deprivation gap. There-

fore, the generic µX(x) can be interpreted as the “incomplete mean” of deprivation

gap, namely the contribution to the overall mean from those with a gap at least equal

to x.

The deprivation curve is a piecewise linear function defined on [0, 1] that connects

points [(0, 0), (SX(x), µX(x))], x = D∗, D∗ − 1, · · · , 0, in descending order and is rep-

resented in Figure 1. At each point SX(x) the slope α of the curve changes and the

slope corresponding to the breakpoint SX(x) is equal to tan(α) = (x − 1) (see Figure

1).3

Figure 1: Deprivation (TID) curve for a fixed threshold
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Segment OH on the horizontal axis, corresponding to SX(1), is the share of pop-

ulation having a deprivation gap at least equal to one. Therefore, it represents the

deprivation head-count ratio Hk. At point H the deprivation curve saturates and be-

comes flat at value µX(1), being the remaining share of population not deprived with

zero deprivation gap. The equal segments MH and NP , corresponding to µX(1) and

µX(0) respectively, represent the average deprivation gap for the whole population,

Mk. The slope of the triangle MOH (MH/OH) is the average deprivation gap of

deprived individuals Ak, and it represents the intensity of deprivation among the poor.

Segment OM can be interpreted as a ‘deprivation equality line’ being the deprivation

curve when each deprived individual has the same deprivation gap. Therefore, the area

3The slope is simply given by the ratio between (µX(x − 1) − µX(x)) = (x − 1)pX(x − 1) and
(SX(x− 1)− SX(x)) = pX(x− 1).
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between segment OM and curve OM represents the extent of inequality among the

deprived. As in the monetary poverty approach, this deprivation curve emphasizes the

T(hree) I(’s) of D(eprivation): I1 Incidence; I2 Intensity; I3 Inequality. For this reason,

the deprivation curve is named TID curve.

While Figure 1 depicts the deprivation profile for a fixed threshold k, a more general

view is shown in Figure 2, where TID curves for different values of k are depicted. The

deprivation curves in Figure 2 are based on a D = 12 item list and the threshold

assumes values in the range k = 1 to k = 12. The size of the three I’s of deprivation

changes according to the threshold, but the meaning remains the same.

Figure 2: Deprivation (TID) curves for different thresholds k
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In the extreme case where k = D, individuals are deprived only when they failure

in all D items. Then, the deprivation gap of individual i becomes a binary variable:

xi =

{
1 if i is deprived in allD items,

0 otherwise.

and µX(1) is equal to the head-count ratio SX(1). The deprivation curve is composed

by a linear segment with unit slope from the origin to percentile SX(1), and at value

µX(1) it becomes flat (see the bottom blue curve in Figure 2, corresponding to k = 12).4

The other extreme case is when individuals are deprived if they failure in at least

one item (see the black curve in Figure 2, corresponding to k = 1). When k = 1, the

4In this case the head-count ratio is a sufficient statistics for the assessment of deprivation (Seth
and Yalonetzky, 2020).
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deprivation gap becomes equal to the deprivation raw score:

xi = RSi ∀i.

Segment OH on the horizontal axis still corresponds to the proportion of deprived

population and measures the incidence of deprivation, H1. Segments MH and NP

in Figure 2 now represent the average number of deprivations suffered by the whole

population M1. The ratio MH/OH is the average number of deprivations suffered by

the deprived, and it still measures the intensity of deprivation A1. Segment OM is

still a ‘deprivation equality line’, and the area between segment OM and curve OM

is the extent of inequality among the deprived. The TID curve for k = 1 is similar

to the ‘PUB curve’ presented by Espinoza-Delgado and Silber (2024), which takes

simultaneously into account the ‘prevalence’ (incidence), the ‘unevenness’ (inequality),

and the ‘breadth’ (intensity) of deprivation. The TID curve is also similar to the ‘SD

curve’ introduced by Lasso de la Vega (2010) although she focused on the adjusted

head-count ratio. Both approaches do not address the issue of statistical inference of

the curves. In the following sections, attention is devoted to provide statistical inference

for TID curves and characterization of TID dominance. For the purpose of inference,

an alternative parametrization of the deprivation curve in terms of achievements can

be convenient and it is explained in section 3.2.

3.2 An alternative specification of deprivation curves

A deprivation curve can also be specified for convenience in terms of achievements.

Given the deprivation gap X for a fixed threshold k, define Y = D∗ −X with

yi = D∗ − xi =

{
ASi if RSi ≥ k

D∗ = D − (k − 1) if RSi < k,
(7)

for i = 1, · · · , n.
The variate Y counts the number of achievements for deprived individuals, and it

is equal to D∗ for not deprived individuals, being D∗ the minimum number of achieve-

ments to be out of poverty according to a fixed threshold k.

The r.v. Y is of course discrete, and takes values in the finite set {0, 1, . . . , D∗}.
Its probability function is given by Pr(Y = y) = pY (y) = pX(D

∗ − y). If y = D∗ − x,

the following relations hold:

SX(x) = Pr(Y ≤ D∗ − x) = FY (y), (8)
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µX(x) =

y∑
j=0

(D∗ − j)pY (j) = D∗FY (y)− µY (y), (9)

where the incomplete mean of Y is defined as

µY (y) =

y∑
j=0

j · pY (j) =
y∑

j=0

j · [FY (j)− FY (j − 1)], y = 0, 1, · · · , D∗. (10)

Therefore points (SX(x), µX(x)) are equivalent to points (FY (y), D
∗FY (y)− µY (y)).

Note that FY (0) = 0, µy(0) = 0, and FY (D
∗) = 1, µY (D

∗) = D∗ − µX(1).

Consider next the quantile function of Y , QY (p) = inf{y : Fy(y) ≥ p}, 0 ≤ p ≤ 1.

In explicit terms, QY (p) is equal to

QY (p) =

{
0 if 0 ≤ p ≤ FY (0) = pY (0),

y if FY (y − 1) ≤ p ≤ FY (y), y = 1, . . . , D∗.

Using the symbol HY (p), 0 ≤ p ≤ 1 to denote the deprivation curve, it can be written

as

HY (p) = D∗p−
∫ p

0

QY (u)du = D∗p−GY (p), 0 ≤ p ≤ 1 (11)

where GY (p) =
∫ p

0
QY (u)du, is the generalized concentration curve of Y . Since GY (p)

is a convex function, HY (p) is concave and it is easy to shown that HY (0) = 0 and

HY (1) = D∗ − µY (D
∗).

From (11), it is clear that the relationships D∗FY (y)− µY (y) = HY (FY (y)) hold.

3.3 Estimation and uncertainty of TID curves

Estimation of the deprivation profile in a population requires estimation of SX(x) and

µX(x), or, equivalently (cfr. eqns.(8) and (9)), of FY (y) and HY (F (y)).

Let X1, . . . , Xn be a random sample of size n of deprivations from a population,

composed by independent and identically distributed (i.i.d.) r.v.s with probability

function pX(·), and let Y1, . . . , Yn be the corresponding random sample of achieve-

ments, with Yi = D∗ −Xi, i = 1, . . . , n. To simplify the notation, define py = pY (y),

Fy = FY (y), Hy = HY (F (y)), and µy = µY (y). Define further the indicator function

1(Yi=y) =

{
1 if Yi = y

0 if Yi ̸= y

The r.v. (1(Yi=0), . . . , 1(Yi=D∗)) possesses Multinomial distribution with parame-

ters 1 and p1, . . . , pD∗ . Hence, by standard computations, the Maximum Likelihood

Estimator (MLE, for short) of py is

10



p̂y =
n∑

i=1

1(Yi=y).

The corresponding MLE of the cumulative function Fy = FY (y) is then, by the

invariance property,

F̂y =

y∑
j=0

p̂j,

and the MLE of the incomplete mean µy = µY (y) is

µ̂y =

y∑
j=0

j p̂j =

y∑
j=0

j
[
F̂j − F̂j−1

]
.

Finally, again by the invariance property, the MLE of Hy = HY (F (y)) is therefore

Ĥy = D∗F̂y − µ̂y.

The above MLEs have desirable properties, such as consistency, asymptotic normal-

ity, and asymptotic efficiency. Their main properties are summarized in Proposition

1.

Proposition 1 Define the D∗-dimensional vectors

p = [p0, p1, · · · , pD∗−1]
T , p̂ = [p̂0, p̂1, · · · , p̂D∗−1]

T ;

F = [F0, F1, · · · , FD∗−1]
T , F̂ = [F̂0, F̂1, · · · , F̂D∗−1]

T ;

H = [H0, H1, · · · , HD∗−1]
T , Ĥ = [Ĥ0, Ĥ1, · · · , ĤD∗−1]

T ;

and let Tn =
√
n(p̂ − p), Wn =

√
n(F̂ − F), Vn =

√
n(Ĥ − H). The following

three statements hold. In the sequel, the symbol
d→ (

p→) will denote convergence in

distribution (probability).

1. As n → ∞, Tn tends in distribution to a Multinormal r.v. with null mean vector

and covariance matrix

ΣT = [σjk] =

{
pj(1− pj) if k = j,

−pjpk if k ̸= j.

In symbols: Tn
d→ N (0,ΣT ) as n → ∞.

2. Wn
d→ N (0,ΣW ) as n → ∞, where ΣW = LΣTL

T , and L is the lower triangular

matrix (A.1) .
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3. Vn
d→ N (0,ΣV ) as n → ∞, where ΣV = BΣWBT , and B is the lower triangular

matrix (A.2) .

Proof. See Appendix.

Results in Proposition 1 can be used to construct a (conservative) confidence

band for the deprivation curve. First of all, due to its piecewise linearity, the prob-

lem is equivalent to construct simultaneous confidence intervals for the D∗ points

(Fy, Hy), 0 ≤ y ≤ D∗ − 1. To this purpose, from Proposition 1 and the continu-

ous mapping theorem,it is easy to see that

max
0≤y≤D∗−1

√
n|F̂y − Fy|

d−−→ max
0≤y≤D∗−1

|W(y)| = |W|max;

max
0≤y≤D∗−1

√
n|Ĥy −Hy|

d−−→ max
0≤y≤D∗−1

|V(y)| = |V|max.

Since the distributions of |W|max and |V|max are absolutely continuous, there exist

unique percentiles dW,1−α and dV,1−α such that for each 0 < α < 1:

Pr (|W|max ≤ dW,1−α) = 1− α; (12)

Pr (|V|max ≤ dV,1−α) = 1− α. (13)

An overall continuous confidence band for the deprivation profile HY (p) requires

definition of a lower curve H−(p) and an upper curve H+(p) for each p ∈ [0, 1] such

that:

Pr
(
H−(p) ≤ HY (p) ≤ H+(p)

)
≥ 1− α, ∀p. (14)

In particular, in the present case the lower and upper curve are constructed as follows.

1. The lower curve H−(p), is a piecewise linear and continuous curve, joining the

points (
F̂y +

dW,1−α/2√
n

, Ĥy −
dV,1−α/2√

n

)
, y = 0, 1, . . . , D∗ − 1.

2. The lower curve H+(p), is a piecewise linear and continuous curve, joining the

points (
F̂y −

dW,1−α/2√
n

, Ĥy +
dV,1−α/2√

n

)
, y = 0, 1, . . . , D∗ − 1.

Proposition 2 As n → ∞, the confidence band (H−(p), H+(p); p ∈ [0, 1]) possesses

asymptotic level ≥ 1− α.
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Proof. See Appendix.

Figure 3: Deprivation curve confidence band at level ≥95%
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The simultaneous continuous confidence band at level ≥95% is shown in Figure

3. Quantiles dW,1−α and dV,1−α are estimated using a parametric bootstrap procedure

with 1000 replications, under the assumption of a multinomial distribution.5

4 Comparing TID curves: testing for stochastic

dominance

Let A, B be two populations, with corresponding TID curvesHA(·), HB(·), respectively.
Distribution A TID dominates distribution B if the deprivation curve of population A

lies below the deprivation curve of population B over its support, namely HA(p) ≤
HB(p) for each p ∈ [0, 1]. Therefore, as pointed out by Fourrier-Nicoläı and Lubrano

(2020) for income distributions, TID dominance means less deprivation.

Statistical tests of stochastic dominance for numerical variables distinguish between

the null hypothesis of dominance and the null hypothesis of non-dominance. In the

first case the null of dominance is rejected only when there is clear evidence against

it, while in the second case the alternative hypothesis of dominance is accepted only

when there is clear evidence in its favour (Davidson and Duclos, 2000; Davidson, 2006).

Following the most popular approach of testing the null hypothesis of dominance, we

5Functions for all the computing are written in R (Team, 2021).
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extend the procedure typically adopted for numerical variables to the case of binary

variables and piecewise linear curves.

Let us consider two (independent) populations A, B, with achievements probabil-

ities py,A, py,B and d.f.s FA(y), FB(y), respectively, y = 0, 1, . . . , D∗. Furthermore,

let HA(p), HB(p) be the corresponding deprivation curves, and Hy,A = HA(FA(y)),

Hy,B = HA(FB(y)), as defined in Section 3.3. The main goal of the present section is

to develop a test for the hypothesis problem H0 : HA(p) ≤ HB(p) ∀p ∈ [0, 1]

H1 : HA(p) > HB(p) for some p ∈ [0, 1].
(15)

Since the cumulative deprivation share has support in [0, 1], our approach compares

the object at all points in the support, a considerable property as highlighted by Barrett

and Donald (2003). We focus on a situation where the available data correspond to

two independent samples with possibly different sizes, nA and nB, coming from two

populations with deprivation (TID) curves HA(p) and HB(p), respectively.

Define

∆(p) = HA(p)−HB(p), p ∈ [0, 1]. (16)

Then, a grid of (equally spaced) values uj, j = 1, . . . , J is selected, and the hypothesis

problem (15) is transformed into{
H0 : ∆(uj) ≤ 0 ∀ j = 1, . . . , J
H1 : ∆(uj) > 0 for some j = 1, . . . , J

(17)

The adopted testing procedure is based on constructing simultaneous confidence

regions for ∆(u1), . . . , ∆(uJ), and in rejecting H0 whenever for at least one ∆(uj) the

corresponding confidence region does not intersect the negative half-line.

Let YA,1, . . . , YA,nA
, YB,1, . . . , YB,nB

be two independent samples of size nA, nB of

achievements from populations A, B, respectively. If ĤA(p), ĤBy(p) are the MLEs

of HA(p), HB(p) obtained from the two samples, define ∆̂(uj) = ĤA(uj) − ĤB(uj),

j = 1, . . . , J . Consider the J-dimensional vectors of equally spaced points u =

[u1, . . . , uJ ]
T in the interval [0, 1], and define further the vectors

∆(u) =

∆(u1)
· · ·

∆(uJ)

 , ∆̂(u) =

∆̂(u1)
· · ·

∆̂(uJ)

 , UnA,nB
(u) =

√
nAnB

nA + nB

(
∆̂(u)−∆(u)

)
.

Proposition 3 Assume that, as nA, nB increase, nA

nA+nB
→ γ ∈ (0, 1), i.e. the ratio of

the sample sizes is finite and bounded away from zero. The following two statements

hold.
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1. As nA, nB go to infinity, Umax
nA,nB

= maxj UnA,nB
(uj) tends in distribution to an

absolutely continuous r.v. Umax.

2. If dU ,1−α is the (1− α)-quantile of Umax, the confidence regions[
∆̂(uj)−

√
nA + nB

nAnB

dU ,1−α, +∞
)
, = 1, , . . . , J (18)

have simultaneous asymptotic confidence level 1− α.

3. The testing procedure consisting in rejecting H0 in (17) whenever

∆̂(uj)−
√

nA + nB

nAnB

dU ,1−α > 0 for some j = 1, . . . , J (19)

possesses asymptotic significance level α.

Proof. See Appendix.

To make the results in Proposition 3 operational, the quantile dU ,1−α can be esti-

mated using a parametric bootstrap procedure consisting in replicating M times the

subsequent steps (ii)-(iv).

(i) Estimate the relative frequencies in the original samples with sizes nA and nB:

p̂y,A and p̂y,B, y = 0, 1, · · · , D∗.

(ii) Draw two independent samples of size nA, nB from two multinomial distributions

with parameters (nA; p̂y,A) and (nB; p̂y,B), y = 0, 1, · · · , D∗ respectively. They are

the mth replicate (m = 1, . . . , M).

(iii) For each replicate m, estimate the piecewise TID curves Ĥm
A (p) and Ĥm

B (p) con-

necting points [(0, 0), (F̂m
y,A, Ĥ

m
y,A)] and points [(0, 0), (F̂m

y,B, Ĥ
m
y,B)], y = 0, 1, · · · , D∗,

respectively.

(iv) For each replicate m, compute ∆̂m(uj) = Ĥm
A (uj)− Ĥm

B (pj) at each point pj over

the equally spaced grid, and consider

Umax,m
na,nB

=

√
nAnB

nA + nB

max
1≤j≤J

(
∆̂m(pj)− ∆̂(pj)

)
.

(v) Compute the empirical cumulative distribution of the Umax,m
nA,nB

statistics over the

M bootstrap replicates, namely:

R̂nA,nB ,M(x) =
1

M

M∑
m=1

1
(
Umax,m
na,nB

≤ x
)
, x ∈ R.

Estimate the percentile d̂U ,1−α = inf{x : R̂nA,nB ,M(x) ≥ 1−α} for a fixed level of

significance α.
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Proposition 4 d̂U ,1−α converges almost surely to dU ,1−α, as nA, nB, M tend to infinity.

Proof. See Appendix.

From Propositions 3, 4, it follows that the testing procedure consisting in rejecting

H0 whether

∆̂(uj)−
√

nA + nB

nAnB

d̂U ,1−α > 0 for some j = 1, . . . , J (20)

possesses asymptotic significance level α.

5 TID dominance and deprivation measures

5.1 A deprivation index: descriptive aspects

We have shown that TID curves are related to the generalized Lorenz curve through

eqn.(11). Therefore, TID dominance is equivalent to second-order stochastic domi-

nance, and can be used to check deprivation orderings by all aggregate deprivation

measures satisfying a set of properties, as for the TIP dominance (Jenkins and Lam-

bert, 1998). Lasso de la Vega (2010) declined into the counting approach this set of

properties traditionally used in the monetary poverty measurement.6

Following this reasoning, TID dominance of population A over population B implies

that all deprivation indexes in B are larger than in A as long as the following axioms

are satisfied:

(i) Focus. A deprivation measure should not change when the deprivation score of a

non-deprived individual changes, as long as the individual remains non-deprived.

(ii) Symmetry. The measure should not change if two individuals switch their depri-

vation scores.

(iii) Replication invariance. The deprivation measure should not be affected by the

pooling of identical populations.

(iv) Monotonicity. When the deprivation score of a deprived individual decreases, the

aggregate measure of deprivation should decrease, as well.

(v) Distribution sensitivity. The reduction of deprivation measure due to a decrease

in the deprivation score of an individual is inversely related to the score of the

individual itself.

6See the basic papers of Atkinson (1987) and Foster and Shorrocks (1988). Zheng (2000) and
Zheng (2023) for exhaustive and updated reviews.
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An index of deprivation that satisfies the above axioms is the Multiple Deprivation

Index (MDI), originally introduced by Espinoza-Delgado and Silber (2024). The MDI

index represents an extension of the Sen-Shorrocks poverty index (Sen, 1976; Shorrocks,

1995) and it summarizes in a single measure the three I’s of the TID curve. The index

can be formalized as follows:

MDI =
1

N2

N∑
i=1

(2N − 2i+ 1)xi, (21)

where i is the position of individual i in the distribution of the raw scores decreas-

ingly ordered. The Multiple Deprivation Index can be also written as a function of

the average deprivation gap of the population x̄, and the Gini index of the censored

distribution of the deprivation scores Gx:

MDI = x̄(1 +Gx). (22)

Equation (22) is derived from equation (21) since the Gini index Gx is equal to:

Gx = 1−
(

1

N2x̄

)[
2

N∑
i=1

ixi −Nx̄

]
. (23)

If the sub-population of the qk deprived individuals is considered, the Gini index

Gx can be also written as:

Gx = 1−Hk(1−Gq),

where Hk is the incidence of deprivation (see eqn. (1)), and Gq is the Gini inequality

of the deprivation gaps of the poor.

Finally, MDI can be expressed in terms of incidence of deprivation H, intensity I,

and inequality among the deprived, similarly to what shown in Shorrocks (1995, p.

1228):

MDI = HkIq[2−Hk(1−Gq)]. (24)

The index ranges from 0 (minimum deprivation) to D∗ = D−(k−1).7 When k = D

the index reduces to MDI = HD(2−HD), while when k = 1 the average deprivation

gap Iq corresponds to the average number of deprivations among the poor.

The indexMDI can be also written in a different way, useful for statistical inference

purposes. Denote by Nj (j = 0, 1, . . . , D∗) the number of individuals in the population

7When the deprivation gaps xi are normalised, the index ranges from 0 to 1.
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with j deprivation gaps, and by Nsurv,j = Nj + Nj+1 + · · · + ND∗ (j = 0, 1, . . . , D∗)

the corresponding inverse cumulative sums; denote further by xN =
∑

xi/N the finite

population mean. Since xN/N = O(N−1), the index MDI can be then written as

MDI =
1

N2

D∗∑
j=0

j


Nsurv,j∑

i=Nsurv,j+1+1

2(N − i) + 1


= 2

D∗∑
j=0

j

{
Nj

N
−

(
Nsurv,j+1

N

Nj

N
+

1

2

(
Nj

N

)2
)}

+
2

N
xN

= 2
D∗∑
j=0

j

{
1− Nsurv,j+1

N

Nj

N
− 1

2

Nj

N

}
Nj

N
+O(N−1). (25)

At an “infinite population” level, similarly to Section 3.2, let X be the r.v. “depri-

vation gap”, taking value j (= 0, 1, . . . , D∗) with probability pX(x), and let SX(x) =

1−FX(x−1) = pX(x)+pX(x+1)+· · ·+pX(D
∗) be the corresponding survival function.

The index MDI can be then written as

MDI = 2
D∗∑
j=0

j

{
1− SX(j + 1)− pX(j)

2

}
pX(j)

= 2
D∗∑
j=0

j

{
FX(j)−

pX(j)

2

}
pX(j). (26)

The subsequent section is devoted to statistical inference for the deprivation mea-

sure (26).

5.2 Inference on the deprivation index

Let X1, . . . , Xn be a random sample of size n, composed by i.i.d. r.v.s with P (Xi =

x) = pX(x), x = 0, 1, . . . , D∗. To simplify the notation, define

πx = pX(x), x = 0, 1, . . . , D∗,

Πx = π0 + · · ·+ πx, x = 0, 1, . . . , D∗.

The index MDI (26) can be then written as

MDI = 2
D∗∑
j=0

j
{
Πj −

πj

2

}
πj. (27)

A natural estimator of MDI, which is by invariance a MLE, is:

M̂DI = 2
D∗∑
j=0

j

{
Π̂j −

π̂j

2

}
π̂j (28)
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where

π̂j =
1

n

n∑
i=1

1(Xi=j), Π̂j = π̂0 + · · ·+ π̂j; j = 0, 1, . . . , D∗.

Let us now consider the D∗ + 1-dimensional vectors

π = [π0, π1, . . . , πD∗ ]T , Π = [Π0,Π1, . . . ,ΠD∗ ]T ;

π̂ = [π̂0, π̂1, . . . , π̂D∗ ]T , Π̂ = [Π̂0, Π̂1, . . . , Π̂D∗ ]T .

The D + 1-variate r.v. nπ̂ has a Multinomial distribution with parameters n,

π0, . . . , πD. As well-known, from the Central Limit Theorem it follows that
√
n(π̂−π)

tends in distribution, as n → ∞, to a singular Multinormal distribution, with mean

vector 0 and covariance matrix Σπ having diagonal elements πj(1 − πj) and extra-

diagonal elements −πjπh (j, h = 0, 1, . . . , D∗).

Proposition 5 Let L be a (D∗ + 1) × (D∗ + 1) lower triangular matrix as in (A.1);

and define the (D∗ + 1)-dimensional vectors:

a1 =


0

Π1 − π1

2

2
(
Π2 − π2

2

)
· · ·

D∗ (ΠD∗ − πD∗
2

)

 , a2 =


0
π1

2π2

· · ·
D∗πD∗

 ;

cT = 2aT
1 − 2aT

2L− aT
2 .

As n → ∞, the r.v.
√
n(M̂DI −MDI) tends in distribution to a Normal variate

with expectation 0 and variance cTΣπc. In symbols:

√
n(M̂DI −MDI)

d→ N (0, cTΣπc).

Proof. See Appendix.

Proposition 5 allows us to construct a confidence interval for MDI. Define the

vectors â1, â2, Σ̂π exactly as a1, a2, Σπ, respectively, but with πx, Πx replaced by

their MLEs π̂x, Π̂x. Define further ĉ = 2â1 − 2LT â2 − â2. Then, as a consequence of

the above results and the continuous mapping theorem, it is easy to see that ĉT Σ̂πĉ

tends in probability, as n increases, to cTΣπc
T . In symbols:

ĉT Σ̂πĉ
p→ cTΣπc

T as n → ∞.
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Hence, the interval[
M̂DI − 1√

n
zα/2

√
ĉT Σ̂πĉ, M̂DI +

1√
n
zα/2

√
ĉT Σ̂πĉ

]
(29)

is a confidence interval for MDI with asymptotic level 1− α.

6 How has the pandemic affected the downward

trend in material deprivation in the EU?

The official EU deprivation scale provides a measure related to the (in)ability of individ-

uals to afford a set of thirteen predefined items (Guio et al., 2017), that are considered

to be desirable or even necessary to experience an adequate quality of life. The items,

seven related to the household and six related to the individual, are listed in Table 1.

Table 1: The thirteen items for measuring material and social deprivation in the EU.

Item description Measurement
level

Capacity to face unexpected expenses Household
Capacity to afford paying for one week annual holiday away from home Household
Capacity to being confronted with payment arrears (mortgage or rental payments,
utility bills, hire purchase installments or other loan payments)

Household

Capacity to afford a meal with meat, chicken, fish or a vegetarian equivalent every
second day

Household

Ability to keep home adequately warm Household
Have access to car-van for personal use Household
Replace worn-out furniture Household
Having internet connection Individual
Replacing worn-out clothes by some new ones Individual
Having two pairs of properly fitting shoes (including a pair of all-weather shoes) Individual
Spending a small amount of money each week on him/herself Individual
Having regular leisure activities Individual
Getting together with friends/family for a drink/meal at least once a month Individual

The material and social deprivation rate is defined as the proportion of the popu-

lation that is unable to afford five or more out of this list of thirteen items. The severe

material and social deprivation rate is defined as the proportion of the population that

is unable to afford seven or more of the above-mentioned items. As reported in Table

1, some items are recorded at household level. However, the unit of our analysis is

the individual, and household failures are attributed to each household member. We

analyze the distribution of achievement failures among individuals.
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The indicators come from the European Union Survey on Income and Living Con-

ditions (EU-SILC).8 The survey is employed by European Union member states and

the Commission to monitor national and EU progress toward key objectives for the

social inclusion process since the launch of the Europe 2020 strategy and included in

the 2030 Agenda for Sustainable Development.

Since 2012, incidence of deprivation has continuously declined in almost all the

EU-27 countries. Notably, the share of population suffering from material and social

deprivation (cutoff fixed at k = 5 items) was reduced by more than one third between

2014 and 2019. The pandemic ended this trend, as deprivation surged in 2020. The

most recent release of EU-SILC 2022 cross-sectional data9 allows to understand what

happened after the pandemic to the downward trend of material and social deprivation

experienced until 2019 in the EU. According to the Eurostat statistics, the material

and social deprivation rate in the EU was 12.7% in 2022, slightly above the 12.5%

reached in 2019. However, changes in incidence of deprivation largely differ across the

27 countries. The TID curves complement the picture of deprivation incidence with

information also about deprivation intensity and inequality. The deprivation profiles

are estimated by considering the list of 13 items and a threshold equal to k = 5 in

accordance to the official EU definition of material and social deprivation.

In the majority of countries,10 a reduction in the deprivation rate is reported (Eu-

rostat, 2023). For most of them, deprivation is unambiguously lower in 2022 since the

TID 2022 curve lies wholly below the TID 2019 curve and it flattens sooner, revealing

a reduction of the prevalence rate along with a clear dominance of the TID 2022 curve.

As an illustrative case, Figure 4 shows the estimated deprivation profiles for Poland in

2019 (red) and in 2022 (blue), along with the TID dominance test results. The sample

sizes are n19 = 41, 622 and n22 = 33, 893, respectively. The upper panel of Figure 4

shows a reduction by more than two percentage points in the incidence of depriva-

tion. The no crossing of the TID curves indicates also a reduction in the two other

dimensions of deprivation, intensity and inequality. Formal dominance test confirms

these results (lower panel of Figure 4). The TID dominance is assessed by considering

M=500 replications. The estimated difference ∆̂(uj) between 2019 and 2022 are always

8The set of the 13 items is available from 2014. Previously, material deprivation was measured
considering only nine items.

9Eu-Silc2004-2022 v.2 (release Autumn 2023).
10Austria (AT), Belgium (BE), Bulgaria (BG), Czechia (CZ), Denmark (DK), Estonia (EE), Finland

(FI), Ireland (IE), Italy (IT), Greece (EL), Latvia (LV), Lithuania (LT), Hungary (HU), Netherlands
(NL), Poland (PL), Portugal (PT), Romania (RO), Slovakia (SK), Slovenia (SI).
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above the critical value dU ,1−α = 0.00011 with α = 0.05. Therefore the hypothesis that

the year 2022 dominates 2019 cannot be rejected.

Figure 4: Poland: Estimated TID curves in 2019 and 2022 (upper panel); Estimated
differences between the TID curves along with the critical value dU ,0,95 (lower panel).
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In a few countries which experience a reduction in the incidence of deprivation, their

deprivation curves intersect. These countries are: Latvia, Estonia, Slovakia. Figure 5

shows the estimated deprivation profiles for Estonia in 2019 (red) and in 2022 (blue).

The sample sizes are n19 = 12, 395 and n22 = 9, 733, respectively. The vertical lines

indicate the point at which the TID curves flatten, and they cross the horizontal axis

at the value of the incidence of deprivation. The significant decrease of the deprivation

rate, equal to one percentage point, between 2019 and 2022 is also accompanied by a

reduction of intensity of deprivation, varying from 0.175 to 0.170. However the 2019

curve intersects the 2022 TID curve at around 7 percent of cumulative population share
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(see the upper panel in Figure 5, and, more evidently, the lower panel). This crossing

shows that the intensity of deprivation in 2019 was higher than in 2022 but only from

this point onwards, indicating that the poorest Estonian citizens were more deprived

in 2022 than in 2019.

Figure 5: Estonia: Estimated TID curves in 2019 and 2022 (upper panel); Estimated
differences between the TID curves along with the critical value dU ,0,95 (lower panel).
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In a few countries the incidence of deprivation instead increased.11 For Germany,

France and Luxembourg significant methodological changes were introduced in the

structure of the EU-SILC survey (Eurostat, 2023), therefore temporal comparison

should be taken with caution. For this reason we illustrate the deprivation profiles

11France (FR), Germany (DE), Luxembourg (LU), Sweden (SE), Spain (ES).
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only for Sweden and Spain. For Sweden the estimated TID 2019 curve is below the es-

timated 2022 curve in each point of the grid (upper panel of Figure 6), an indication of

an upsurge of the other dimensions of poverty, intensity and inequality. This evidence

is confirmed by the stochastic dominance test (lower panel of Figure 6). The sample

sizes are n19 = 10, 125 and n22 = 14, 856, respectively.

Figure 6: Sweden: Estimated TID curves in 2019 and 2022 (upper panel); Estimated
differences between the TID curves along with the critical value dU ,0,95 (lower panel).
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The case of Spain is less straightforward (see Figure 7), because a reduction of the

incidence of deprivation by 1.4% occurred, but stochastic dominance does not apply.

The sample sizes are n19 = 32, 779 and n22 = 49, 050, respectively. The crossing of

the curves at around 10 percent of cumulative share of the population reveals that
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the poorest decile of individuals suffered from deprivation more in 2019 than in 2022.

Deprivations are more equally distributed among the poor in 2022 than in 2019, as

confirmed by a significant reduction of the Gini inequality among the deprived, from

0.349 in 2019 to 0.325 in 2022. Changes in the intensity and inequality dimensions of

aggregate deprivation offset changes in incidence in deprivation, and this dynamic is

clear only with the TID curves.

Figure 7: Spain: Estimated TID curves in 2019 and 2022 (upper panel); Estimated
differences between the TID curves along with the critical value dU ,0,95 (lower panel).
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Finally, Figure 8 compares the MDI indexes of the European countries between 2019

and 2022. Countries below the 45-degree line indicates a reduction in deprivation.
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Figure 8: Estimates and 95% error bars of Multiple Deprivation Indices in European
countries, years 2019 and 2022.
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7 Conclusions

This study is motivated by the raising interest in using categorical variables to com-

plement the traditional evaluation of monetary poverty by a full-fledged analysis of

several deprivations suffered by individuals. We introduced a formal representation of

a deprivation profile when deprivations are measured by binary variables, and indi-

viduals by a total score generated by summing the individual deprivation affirmative

responses. With individuals ranked in descending order of total score, the profile is a

piecewise linear curve that plots the cumulative per capita deprivation gap against the

corresponding cumulative share of individuals.

The deprivation profile takes into account the incidence, the intensity and the in-

equality of deprivation, and, being an extension of the ‘Three I’s of Poverty’ (TIP)

curve of Jenkins and Lambert (1997), we named it the ‘Three I’s of Deprivation’ (TID)

curve. In complementing statistical inference for TIP curves already proposed in the

literature, we provided confidence bounds for TID curves, and consistent tests for de-

privation stochastic dominance relations. TID dominance implies the same ranking
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of a class of deprivation counting measures satisfying a set of axioms. One of these

measures is the extension in a binary setting of the Sen-Shorrocks poverty measure.

These curves can be particularly appropriate to shed lights on different aspects

of deprivation. Comparing TID curves over time, we drew an empirical portrait of

the evolution of material and social deprivation in Europe that goes beyond the mere

analysis of head-count ratios. In most countries the reduction of incidence before and

immediately after the pandemic was also accompanied by a reduction in intensity and

inequality of deprivation. In these cases, formal tests confirmed the dominance of the

2022 TID curve over the 2019 curve. Similarly, a few countries experienced an increase

of deprivation in all its aspects. The 2019 dominated the 2022 and the deprivation

incidence increased. However, in some cases deprivation ordering was ambiguous since

decreasing (increasing) deprivation rates were associated with a decrease (increase) in

incidence and inequality. These situations were in fact characterized by intersection of

the TID curves.
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Appendix

Proof Proposition 1. Statement 1 is an immediate consequence of the multidimen-

sional Central limit Theorem. Statement 2 is an immediate consequence of Statement

1 and the relationship Wn = LTn, L being the lower triangular matrix

L =


1 0 0 · · · 0
1 1 0 · · · 0
· · · · · · · · · · · · · · ·
1 1 1 · · · 1

 . (A.1)

Finally, Statement 3 is a consequence of Statement 2 and the relationship Vn = BWn,

where B is the lower triangular matrix

B =


D∗ 0 0 · · · 0
1 D∗ − 1 0 · · · 0
1 1 D∗ − 2 · · · 0
· · · · · · · · · · · · · · ·
1 1 1 · · · 1

 . (A.2)

Proof Proposition 2. As a consequence of eqns. (12), (13), it is easy to verify that,

as n → ∞, the following relationships asymptotically hold:

Pr

(
F̂y −

dW,1−α√
n

≤ Fy ≤ F̂y +
dW,1−α√

n

)
= 1− α, ∀y, (A.3)

Pr

(
Ĥy −

dV,1−α√
n

≤ Hy ≤ Ĥy +
dV,1−α√

n

)
= 1− α, ∀y. (A.4)

Hence, using the Bonferroni correction, simultaneous confidence intervals for each

pair (Fy, Hy) can be defined as:(
F̂y −

dW,1−α/2√
n

≤ Fy ≤ F̂y +
dW,1−α/2√

n

∧
Ĥy −

dV,1−α/2√
n

≤ Hy ≤ Ĥy +
dV,1−α/2√

n

)
(A.5)

where the overall confidence level of the D∗ regions (A.5) is ≥ 1− α.

Proof Proposition 3. First of all, using the Delta method, it can be seen that, as

nA, nB tend to infinity:

UnA,nB
(u) =

√
nAnB

nA + nB

(
∆̂(p)−∆(p)

)
d→ U(u) ∼ N (0,ΣU), (A.6)

where the covariance matrix ΣU is possibly of not full rank (but this does not affect the

subsequent developments). As a consequence of (A.6), from the continuous mapping

theorem it follows that

max
j

UnA,nB
(uj)

d→ max
j

U(uj) = Umax as na, nB → ∞. (A.7)
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Moreover, from well-known properties of the Multinormal distribution, the r.v. Umax

possesses absolutely continuous distribution, so that there exists a unique percentile

dU ,1−α for which P (Umax > dU ,1−α) = 1− α. This proves statement 1.

To prove statement 2, it is enough to observe that, as a consequence of the above

arguments, the following chain of relationships holds:

1− α = Pr

(
max
1≤j≤J

U(uj) ≤ dU ,1−α

)
≃ Pr

(√
nAnB

nA + nB

(∆̂(uj)−∆(uj)) ≤ dU ,1−α,∀j = 1, · · · J
)

= Pr

(
∆(uj) ≥ ∆̂(uj)−

√
nA + nB

nAnB

dU ,1−α,∀j = 1, · · · J
)
.

(A.8)

On the basis of eqn. (A.8), the half-lines[
∆̂(uj)−

√
nA + nB

nAnB

dU ,1−α, +∞
)
, j = 1, . . . , J

are simultaneous confidence regions of overall asymptotic level 1− α.

Finally, statement 3 is an immediate consequence of 2.

Proof Proposition 4. In the first place by standard arguments, it is easy to see that

sup
x∈R

|R̂nA,nB ,M(x)− P (Umax ≤ x)| a.s.−−→ 0 as nA, nB,M → ∞.

The continuity of the d.f. P (Umax ≤ x), again by standard arguments, implies then

the convergence of quantile: d̂U ,1−α
a.s.→ dU ,1−α as nA, nB, M increase.

Proof Proposition 5. By elementary algebra,
√
n(M̂DI−MDI) can be decomposed

as follows:

√
n(M̂DI −MDI) =

√
n(A1,n + A2,n −Bn) (A.9)

where

A1,n = 2
D∗∑
j=0

j(Π̂j −
π̂j

2
)(π̂j − πj);

A2,n = 2
D∗∑
j=0

jπj(Π̂j − Πj);

Bn =
D∗∑
j=0

jπj(π̂j − πj).
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Denote by oP (1) a term tending to 0 in probability as n goes to infinity. Using the

Law of Large Numbers, the term
√
nA1,n is equal to

√
nA1,n = 2

D∗∑
j=0

j(Πj −
πj

2
)
√
n(π̂j − πj) + oP (1)

= 2aT
1

√
n(π̂ − π) + oP (1). (A.10)

Next, from the relationship Π̂ − Π = L(π̂ − π), it follows that the term
√
nA2,n

can be written as:

√
nA2,n = 2aT

2

√
n(Π̂−Π)

= 2aT
2L

√
n(π̂ − π). (A.11)

The term
√
nBn can be expressed, in its turn, as

√
nBn = aT

2

√
n(π̂ − π). (A.12)

Finally, from (A.10)-(A.12), the following equality can be immediately obtained:

√
n(M̂DI −MDI) = 2cT

√
n(π̂ − π) + oP (1)

from which the proposition follows.
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