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Abstract 

Modern approaches to financial time series aim to model in a multivariate framework the volatility of 
different indices or assets, which could influence each other, creating spillover effects. Furthermore, the 
integration of financial markets provides a similar dynamics (co-movement). We propose a new model 
for volatility vectors, belonging to the family of Multiplicative Error Models, which incorporates 
spillover and co-movement effects. By adopting an appropriate parameterization, it is possible to 
estimate this model even for high dimensional vectors of volatility. To reduce the number of unknown 
coefficients, we propose a 3-step model-based clustering procedure. The proposed model is applied to 
a set of seventeen world financial indices, providing a useful interpretation of spillover effects and co-
movements. Furthermore, the proposed parameterization is compared with two alternatives, showing 
significantly better performance. 
 
Keywords: high-dimensional time series, high-low range, model-based clustering, multiplicative factors, 
vector of volatility. 
Jel Classification: C32, C38, C55, C58. 



1 Introduction

The increasing globalization of financial markets and their mutual dependence have fa-
vored the development of multivariate models for vectors of volatility indices or assets.
The early models extend the traditional GARCH (Bollerslev, 1986) approaches to multi-
variate cases for the analysis of covariance matrices (e.g. the BEKK model of Engle and
Kroner, 1995) or correlation matrices (e.g. the DCC model of Engle, 2002a). When mod-
eling covariance (correlation) matrices, a typical problem is to provide parameterizations
involving estimated positive definite matrices, which are also parsimonious to avoid the
so-called curse of dimensionality problem (Bauwens, Laurent, and Rombouts, 2006). The
solutions adopted are generally based on scalar or diagonal specifications, excluding the
dependence of each conditional variance on the other lagged variances; alternatively, the
2-step estimation procedure for DCC models considers independent univariate GARCH
models for each conditional variance. In practice, the usual multivariate GARCH-type
models preclude the possibility of including spillover e↵ects in the model specification.

A more recent approach to volatility modeling is the Multiplicative Error Model
(MEM) of Engle (2002b), where a model for positive time series was developed, based on
two multiplicative factors representing the conditional mean of the series and the posi-
tive disturbance respectively. The success of this model and its extensions is due to the
di↵usion of more precise measures of volatility, based on the high-low daily range (HLR-
Parkinson, 1980) and ultra-high frequency data, the so-called realized volatility (RV- An-
dersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and Labys, 2003), with robust
to microstructure noise specifications (Barndor↵-Nielsen, Hansen, Lunde, and Shephard,
2008). Both measures use the intraday movements of the prices: the former is very sim-
ple to derive, being based on the di↵erence between the maximum and the minimum
value of the day; the latter is based on several equally spaced intradaily observations.
Although RV is recognized as a more precise measure, the availability of intraday data is
not frequent; the HLR, on the other hand, uses less information but is generally available
for all indices and tickers. Both measures are robust to microstructure noises and their
quality is superior to methods derived from the GARCH approach, based on squared or
absolute returns (Chou, Chou, and Liu, 2015).

MEM is particularly suitable for modeling this type of time series. The extension
to the multivariate case has inaugurated a recent new approach, called vector MEM
(vMEM), proposed by Engle and Gallo (2006), where the dependent variable is repre-
sented by a vector of positive series. In their application, Engle and Gallo (2006) consider
a 3-variate vector, containing three di↵erent measures of volatility (absolute return, daily
range, and realized volatility); they introduce the strong hypothesis that the vector of
disturbances is composed of uncorrelated elements to provide an equation-by-equation
parameter estimation. A first improvement in vMEM estimation was made by Cipollini,
Engle, and Gallo (2013), who developed a semiparametric model (without distributional
hypotheses) and a GMM estimator, capable of estimating the entire model, including
the interdependence e↵ects. Cipollini, Engle, and Gallo (2017) propose a copula-based
approach to link Gamma and log-Normal marginal distributions of the innovations; they
show that these alternative specifications provide equivalent results to the semiparamet-
ric approach of Cipollini et al. (2013). A useful solution is that of Taylor and Xu (2017),
who adopt a log-Normal distribution for innovations, modeling the logarithm of the con-
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ditional mean of volatility, with the advantage of not imposing restrictions on parameters
to guarantee positiveness. They compare this method with the semiparametric approach
of Cipollini et al. (2013) via simulations, obtaining a certain consistency of results. All
these approaches are applied to 3-variate random vectors to avoid the curse of dimension-
ality problem (a full 3-variate VMEM involves estimating 24 parameters; they increase
to 42 in the 4-variate case).

We propose a new log-vMEM, along the lines of Taylor and Xu (2017), to capture
spillover e↵ects in financial market volatility; furthermore, we include in the model a
common variable that drives the long-run movements of all markets, representing the co-
movement of the financial time series. The spillover e↵ects are represented by the lagged
interdependence parameters of the vMEM. The common features are preliminarily iden-
tified from the principal components of the panel of volatilities and then inserted into the
model with separate loading coe�cients for each volatility; this idea was used by Atak
and Kapetanios (2013), adding them to the Heterogeneous AutoRegressive (HAR) model
of Corsi (2009). In our specification, the co-movement e↵ect does not directly a↵ect the
GARCH-type equation of the conditional mean, but we separate the long-run e↵ect due
to the common features of the volatilities from the idiosyncratic behavior of each index,
also influenced by specific spillover e↵ects. This can be achieved by decomposing the fac-
tor representing the conditional mean into two additive components; it can be considered
an extension to the multivariate case of the Spillover Asymmetric MEM (SAMEM) of
Otranto (2015), belonging to the class of Composite MEMs (Brownlees, Cipollini, and
Gallo, 2012). We also address the problem of the high-dimensional vector of volatilities,
proposing a reparameterization of the coe�cients of the model, based on a model-based
clustering algorithm. The new model is estimated on a data set composed of seventeen
world financial indices and compared with two alternative parameterizations of the same
basic model; we detect some evidence of improved performance of the proposed parame-
terization and useful interpretation of the results, despite the small number of coe�cients
used.

The paper is organized as follows: in the next section we present the new model:
in subsection 2.1 we describe the fully parameterized model, while in subsection 2.2
we introduce the proposed parameterization for the high-dimensional case. Section 3
is devoted to the application in a 17-variate case, valorizing the output derived from
the model estimation; this section describes in detail all the steps to build and validate
the model, starting from reducing the number of unknown coe�cients (subsection 3.1),
then estimating the reparameterized model and interpreting the results (subsection 3.2),
finally proposing a procedure to validate it and comparing the results with two alternative
parameterizations, the simple scalar one and another less parsimonious one (subsection
3.3). Some final remarks will conclude the paper.

2 The model proposed

Let us consider n volatility indices collected in the vector yt. The proposed model is a
vMEM (Cipollini et al., 2017), enriched by the presence of specific coe�cients to consider
spillover e↵ects and by a common signal that drives all indices. For this purpose we
adopt the logarithmic transformation of the variables, expressing the vMEM in the form
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proposed by Taylor and Xu (2017), modifying the conditional mean equation to include
the co-movement e↵ect. The log-specification for vMEM makes model estimation easier,
allowing the adoption of the Normal distribution.

2.1 The fully parameterized model

Calling xt the logarithm of yt, the model proposed, in the variance targeting version, is:

yt = µt � "t "t ⇠ lnN(m,V )
lnµt = &t + �⇠t
&t = x̄+A(xt�1 � x̄) +B(&t�1 � x̄)

(1)

where � indicates the element-by-element Hadamard product. The vector of disturbances
"t is a unit mean vector and µt is the conditional mean of the volatility vector yt.
Following Taylor and Xu (2017), "t is log-normally distributed with parameters m =
(m1, . . . ,mn)

0 and the n⇥n matrix V = {vij}, (i, j = 1, . . . , n). To satisfy the unit mean
property, it is imposed the constraint mi = �vii/2 (i = 1, . . . , n). As a consequence,
yt ⇠ lnN(lnµt +m,V ) and xt ⇠ N(lnµt +m,V ).

In (1) lnµt is decomposed into the sum of two unobservable components: the id-
iosyncratic log-volatility &t and the common (weighted) signal ⇠t. The first represents
the ’proper’ dynamics of each volatility excluding the co-movement (in log terms), repre-
sented by ⇠t, which is loaded into each element of the full conditional log-volatility vector,
lnµt, with a di↵erent coe�cient contained in the vector �.

The common component ⇠t can be obtained as the first principal component of the
n log-volatilities in xt. Of course, it is possible to consider more principal components
to explain a high percentage of the entire variability, obtaining more common factors;
however, due to the high degree of homogeneity of the volatility series, subject to a
strong co-movement, very often (as in the application in Section 3) the percentage of
variance explained is greater than 90% already with the first principal component.

The (n ⇥ 1) vector &t follows a multivariate GARCH dynamics. The lagged e↵ects
of the volatility of each variable are represented by the elements on the diagonal of the
matrix of coe�cients A = {↵ij}; the o↵-diagonal elements are the coe�cients of the
spillover e↵ects. More specifically, denoting with xj,t the log-volatility of the j-th series
at time t (the j-th element of xt), the spillover e↵ect from the j-th variable to the i-th
variable at time t is ↵ijxj,t.

We do not consider interactions between pairs of elements of &t�1, so that B =
diag(�), where � = (�1, . . . , �n)

0 is an n�dimensional vector containing the elements
of the diagonal of B.1

The variance targeting specification (Engle and Mezrich, 1996) of the third equation
in (1) implies that the expectation of &t is the mean of the log volatilities (indicated with
x̄).

It is worth noting that, by adopting a logarithmic transformation of volatility, it is
not necessary to impose positivity constraints on the parameters. The stationarity and
invertibility conditions involve considering only the third equation in (1), so they can be

1
Bauwens and Otranto (2023), modeling realized covariance matrices, show empirical evidence of

non-interdependence between the elements of the lagged conditional covariance matrix, and also an

equal coe�cient, so that � is scalar.
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easily derived from Appendix A of Taylor and Xu (2017). Indicating with In the n ⇥ n

identity matrix, the process (1) is stationary if the modulus of the roots of

|In � (Az +Bz)| = 0

are greater than one. The process (1) is invertible if the modulus of the roots of

|In �Bz| =
nY

i=1

(1� �iz) = 0

are greater than one.
Parameter estimation is performed using the Quasi Maximum Likelihood Estimator

(QMLE). Indicating with ✓ the set of parameters to be estimated, under the hypothesis
of log-normality of the disturbances, the log-likelihood is given by:

l(✓) = �Tn

2
ln 2⇡� T

2
ln |V |�

TX

t=1

"
nX

i=1

xi,t �
1

2
(xt � lnµt �m)0 V �1 (xt � lnµt �m)

#

(2)
Robust standard errors can be obtained by applying a sandwich estimator of the co-
variance matrix (White, 1982). As suggested by Taylor and Xu (2017), consistency
and asymptotic normality of QMLE, in this context, can be shown using the results of
Nakatani and Teräsvirta (2009).

2.2 Parameterization for large datasets

The number of unknown coe�cients in (1) is n [(n+ 1)/2 + n+ 2] and, if n is large, we
run into the curse of dimensionality problem: some parameterization is needed to attain
a parsimonious and feasible model. The reduction of the number of parameters can be
obtained by identifying groups of volatilities that follow similar dynamics. This could be
achieved with a simple agglomerative algorithm, composed of three steps.

Combining the second and third equations of model (1), the dynamics of the i � th

element of lnµt is given by:

lnµi,t = (1� ↵ii � �i)x̄i + ↵iixi,t�1 + �i&i,t�1 +
X

j 6=i

↵ijxj,t�1 + �i⇠t (3)

Setting ci = (1�↵ii � �i)x̄i, adding and subtracting xi,t and �ixi,t�1 in equation (3), and
replacing &i,t�1 with the corresponding expression derived from the second equation in
(1), we can specify the model for xi,t as:

xi,t = ci+(↵ii+�i)xi,t�1+(xi,t�µi,t)��i(xi,t�1�µi,t�1)+
X

j 6=i

↵ijxj,t�1+�i⇠t��i�i⇠t�1 (4)

In practice xi,t follows an ARMAX process, with (xi,t�µi,t) representing the disturbance
of the ARMA(1,1) part with AR coe�cient equal to (↵ii + �i) and MA coe�cient given
by �i; furthermore, it depends on the n � 1 lagged variables xj,t�1 and on the common
signal at time t and t� 1.
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The reduction in the number of coe�cients could be based on the idea of identifying
groups of series that follow the same dynamics and assigning them the same parameters.
To this end, first, we estimate n univariate MEMs as (3) and then we use the estimates
of the parameters to group the series. We distinguish the ARMA dynamics from the
spillover part and the common feature part. To this end, we adopt separate model-based
clustering steps, one for each dynamic part of model (4).

Step 1: similar ↵ii and �i parameters. We form clusters of series following the
same ARMA dynamics. A common way is to adopt a classical clustering algorithm based
on the so-called AR distance proposed by Piccolo (1990). It is based on the Euclidean
distance between the parameters of the AR(1) representations of two invertible time
series. For the ARMA(1,1) case illustrated in equation (4), we can derive a closed-form
of this distance (ARMA distance) between series i and j as:

dARMA =


↵
2
ii

1� �2
i

+
↵
2
jj

1� �2
j

� 2
↵ii↵jj

1� �i�j

�1/2
(5)

The clustering algorithm will provide k1 groups of pairs of coe�cients (↵, �); let us call
the 2k1 coe�cients ↵1, . . . ,↵k1 , �1, . . . , �k1 . The final Appendix shows how to derive this
distance for the generic case of two ARMA(1,1) processes.

Step 2: similar ↵ij (i 6= j) parameters. We can also adopt a clustering algo-
rithm for the coe�cients representing the spillover e↵ects. We consider all the n(n � 1)
parameters ↵ij (i 6= j) estimated by the n univariate models (3), corresponding to the
o↵-diagonal elements of matrix A in (1). We group these coe�cients with the cluster-
ing algorithm based on the Euclidean distance between the coe�cients representing the
spillover from the series j to i and from the series s to r, given by:

dspill = |↵ij � ↵rs| (6)

The clustering algorithm will provide k2 groups of coe�cients ↵ij (i 6= j); we call them
a1, . . . , ak2 .

Step 3: similar �i coe�cients. Finally, we detect the similar loading coe�cients
of the co-movement represented by variable ⇠t. In equation (4) this part is characterized
by the parameters �i and ��i�i; as a consequence, the corresponding Euclidean distance
between series i and j is given by:

dcom =
⇥
(�i � �j)

2 + (�j�j � �i�i)
2
⇤1/2

=
⇥
�
2
i (1 + �

2
i ) + �

2
j (1 + �

2
j )� 2�i�j(1 + �i�j)

⇤1/2

(7)
The clustering algorithm will provide k3 groups of coe�cients �i (�1, . . . , �k3). In this case
the role of �i is dominant compared to �i in the calculation of the distance dcom: it is
much larger than �i, as we will see in Section 3. For this reason, we only use this step to
group the � coe�cients and not the � coe�cients, identified in step 1.

The three steps of clustering will provide, in equation 1, a matrix A of coe�cients
with k1 distinct elements on the diagonal and k2 di↵erent o↵-diagonal values. It is worth
noting that this parameterization provides a not symmetric A; in principle, this is a
desirable result because the spillover e↵ect between two variables changes depending on
the direction of causality. Similarly, the vector �, containing the elements of the diagonal
of B, is composed of k1 di↵erent elements, whereas the vector � of k3 di↵erent elements.
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Finally, the covariance matrix V also needs a feasible parameterization; we propose

to rewrite it as a linear transformation of the sample covariance matrix of (xt � [lnµt)
(call it V̄ ), where the hat indicates the estimated value. Formally:

V = #V̄ (✓̂), (8)

where # is a scalar parameter. By adopting an iterative algorithm to maximize the

log-likelihood (2), at the end of each iteration, the value ✓̂ is used to evaluate [lnµt and

V̄ (✓̂) = COV (xt�[lnµt); the last value of V̄ (✓̂) is used in the next iteration to maximize
(2) until convergence.

In summary, the number of estimated coe�cients for the reparameterized model is
p = 2k1 + k2 + k3 + 1. For example, if n = 5 and the clustering algorithm provides
k1 = 2, k2 = 2, k3 = 3 groups, the fully parameterized model requires the estimation of
50 coe�cients, while the proposed reparameterization requires only 10.

Evaluating reparameterization for large datasets is not possible, because the bench-
mark fully parameterized model (1) is not feasible. In the next section, we will propose a
procedure to compare the two models. Hereafter we denote with FPM the fully parame-
terized model, and RPM the reparameterized model.

3 An Example with Real Data

To empirically illustrate the proposed model, we consider the HLR proxy calculated on
seventeen indices collected by the Yahoo Finance website for the period January 21, 2014-
January 19, 2024 (2600 daily data). We selected the series that can be freely downloaded
from the section World Indices of the Yahoo Finance website. Then we selected only the
observations in correspondence of the dates common to all indices. The list of indices is:
NASDAQ Composite (US market, label IXIC); NYSE Composite Dow Jones (US, NYA);
NYSE AMEX Composite (US, XAX); Russell 2000 (US, RUT); ESTX 50 PR.EUR (Eu-
rope, STOXX50E); DAX Performance (Germany, GDAXI); Nikkei 225 (Japan, N225);
BEL 20 (Belgium, BFX); Euronext 100 Index (Europe, N100); Hang Seng (China, HSI);
SSE Composite (China, SS); Shenzhen Index (China, SZ); KOSPI Composite (South
Korea, KS11); TSEC weighted index (Taiwan, TSII); S&P/TSX Composite (Canada,
GSPTSE); IBOVESPA (Brazil, BVSP); IPC MEXICO (Mexico, MXX).

Following Parkinson (1980), the HLR proxy of volatility is obtained as the di↵erence
of the logarithms of the highest and the lowest value of the day, rescaled by the factor
(⇡/8)1/2.

3.1 Grouping the coe�cients

The number of coe�cients involved in model (1) is 476, so it is impossible to estimate
it. The parameterization proposed in subsection 2.2 requires three separate clustering
procedures to select groups of coe�cients with similar values. It requires as a preliminary
step the estimation of the common component ⇠t, as the first principal component of the
set of seventeen time series. It explains 94.1% of the total variance, confirming that
the series are subject to a strong co-movement. We then estimate seventeen univariate
MEMs, as (3), one for each index, providing the values of the coe�cients to cluster.
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Table 1: Clusters of parameters in the diagonal of matrices A and B (labeled with 1, 2,
3; step 1) and in the vector � (labeled with 1, 2, 3, 4; step 3).

index IXIC NYA XAX RUT STOXX50E GDAXI N225 BFX N100
step 1 1 3 2 3 2 3 2 2 3
step 2 4 3 2 4 3 3 2 4 3
index HSI SS SZ KS11 TWII GSPTSE BVSP MXX
step 1 1 1 1 1 1 2 2 2
step 2 1 1 1 1 1 4 1 2

The three clustering procedures, performed employing an agglomerative hierarchical
algorithm with average linkage criterion, choose the number of clusters that provides the
largest vertical di↵erence between nodes. In the first step, in which similar parameters
are identified in the diagonal of matrices A and B, the number of clusters obtained is
k1 = 3; in the second step the number of di↵erent o↵-diagonal parameters of A is k2 = 3;
in the third step, the number of di↵erent coe�cients in the vector � is k3 = 4. In Table 1
we indicate the clusters identified for the ARMA and co-movement parts (steps 1 and 3
respectively; step 2 involves 272 coe�cients and is available on request). Interestingly, the
Asian indices (excluding N225) belong to the same cluster for both classifications. The
two most peculiar indices, IXIC, characterized by companies in the IT sector, and RUT,

Table 2: Estimation results for the reparameterized (Model A) and the constrained
(Model B) vMEMs with spillover e↵ects and co-movements; battery of tests on parame-
ters with corresponding p-values.

Model A Model B Test
Parameter Estimate st. . Estimate st. err. Hypothesis p-value
↵1 0.1371 0.0072 0.1368 0.0072 ↵1 = ↵2 = ↵3 0.000
↵2 0.1136 0.0053 0.1121 0.0050 ↵1 = ↵2 0.000
↵3 0.1097 0.0051 ↵1 = ↵3 0.000
�1 0.8190 0.0104 0.8187 0.0106 ↵2 = ↵3 0.176
�2 0.8490 0.0079 0.8506 0.0076 �1 = �2 = �3 0.000
�3 0.8518 0.0076 �1 = �2 0.000
a1 0.0007 0.0002 0.0008 0.0002 �1 = �3 0.000
a2 0.0003 0.0004 �2 = �3 0.460
a3 0.0007 0.0002 a1 = a2 = a3 0.444
�1 5.5057 0.2636 5.4949 0.2279 a1 = a2 0.216
�2 6.4717 0.3084 6.4577 0.2589 a1 = a3 0.805
�3 8.7979 0.3921 8.7466 0.3077 a2 = a3 0.207
�4 7.2778 0.3394 7.2481 0.2723 �1 = �2 = �3 = �4 0.000
# 0.8241 0.0127 0.8242 0.0127 �1 = �2 0.000
Log-Likelihood -83442.6 -83445.3 �1 = �3 0.000
AIC 64.222 64.221 �1 = �4 0.000
BIC 64.254 64.244 �2 = �3 0.000

�2 = �4 0.003
�3 = �4 0.000
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which represents small-cap companies, belong to two unique combinations of clusters.

3.2 Estimation of the vMEM with spillover e↵ects and co-movement

Adopting the previous grouping, the RPM (Model A) contains 14 parameters; the esti-
mation results are reported in the first columns of Table 2. At first glance, it is clear
that the spillover parameters ai (i = 1, 2, 3) are very small but significant (excluding
a2). The � coe�cients referring to the loading parameters of the co-movement e↵ect are
larger, with the highest value for the third cluster. It is appropriate to verify the equality
of the three groups of coe�cients, having the possibility of further reducing the number
of parameters and dealing with more parsimonious models. In the last two columns of
Table 2 we show the battery of tests to verify the equality (joint and pairwise) of the
parameters. The results show that we can further merge clusters 2 and 3 of the ARMA
coe�cients and consider a single parameter for the spillover e↵ects. The derived model
(Model B) requires the estimation of only 10 coe�cients, but in terms of AIC and BIC, it
is better than Model A. For this reason, the rest of the analysis will be conducted using
Model B.

For the sake of simplicity, we conduct a graphical analysis on three indices, XAX,
N100, and HSI. Figure 1 shows the dynamics of the three indices: they are very similar,
particularly in early 2020 when the COVID pandemic provided a common high spike in
volatility. The 2015-16 period shows several peaks, particularly in the N100 and HSI
series; this e↵ect could be ascribed to the stock market sell-o↵ that began in the USA,
but above all to the Chinese stock market, which recorded a crash in June 2015, with
several declines also in the following months, and a subsequent strong sell-o↵ in January
2016. Other common movements can be noticed after September 2018 (cryptocurrency
crash) and around the 2022 stock market decline. The proposed vMEM, despite the use
of a reduced number of parameters, seems able to follow the profile of HLR proxies.

Model B provides a single parameter to represent the spillover e↵ects, therefore, con-
sidering the variable from which the spillover starts, its dynamics does not depend on the
variable towards which the e↵ect is directed. Figure 2 illustrates the spillover e↵ect of
the three indices XAX, N100, and HSI; it is reported in exponential terms, therefore it is
a multiplicative e↵ect for the element in µt: a value greater than 1 indicates a spillover
e↵ect which increases the volatility of the target variable, less than 1 an attenuation of
volatility. The crash due to the COVID pandemic is conveyed by XAX and N100; The
HSI shows a stronger e↵ect in 2015-16 (Chinese stock market crash), while the XAX in
2022 (US stock market decline), with no e↵ect from N100. On the contrary, during 2021
and 2022, N100 appears to su↵er the spillover e↵ect of other markets; Figure 3 shows the
entire spillover e↵ect towards the three indices, given by (the exponential of) the sum
of the spillover e↵ects in the corresponding equation of (1). In 2021-22, N100 presents
the highest peaks of the spillover e↵ects while they are quite moderate for XAX and HSI
over the entire period considered (multiplication factors between approximately 0.98 and
1.01).

Figure 4 shows the co-movement factors for the three series; the profile of the three
factors is the same, di↵ering only for the loading parameter �i (higher for N100, belonging
to cluster 3, lower for HSI-cluster 1; see Table 1, corresponding to step 3 of clustering).
Also in this case the strongest co-movements are observed in correspondence with the
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Figure 1: HLR of three indices (gray lines) and corresponding estimation of µt (black
lines) by using Model B.

crises of 2015-16 and 2021-22, and the shock of 2020.

3.3 Model evaluation

The natural benchmark for evaluating the RPM is the FPM; as mentioned it involves
476 unknown coe�cients, so it is not feasible. Since a direct comparison can only be
made considering a few number of variables, a simple alternative to check whether the
adopted parameterization is a valid approximation of the FPM is to select several small
subsets of the seventeen series, estimate the FPM and the RPM, and check the di↵erences
between the µt obtained with the two models. The steps of the proposed procedure can
be summarized as follows:

1. divides the n series into randomly selected separate subgroups of k series; if n is
not a multiple of k, some series can be randomly included in multiple subsets;

10



Figure 2: Multiplicative spillover e↵ects from variables XAX, N100, and HSI .

2. for each subset estimate FPM and RPM;

3. compare the k�dimensional estimated µt obtained with the two models with a
Diebold-Mariano test in its multivariate version (mDM, Mariano and Preve, 2012).

We set k = 3, and then we obtain 6 subsets, as shown in the first column of Table
3; the last subset is integrated by another random draw to obtain the same k, so XAX
is included in two subsets. The constraints on the RPM parameters are obtained from
the three clustering procedures described in subsection 3.1. The number of coe�cients
p to estimate varies with the subsets and is reported in the second column of Table 3;
the maximum p (11) is at the last subset, while the FPM requires 21 parameters for
each subset. To estimate a positive definite V in the FPM, we estimate the elements of
a lower triangular matrix P with positive diagonal entries (representing the Cholewsky
factorization of V ) and therefore we set V = PP 0.

The mDM statistic is calculated by comparing the quadratic errors derived from the
two models; the null hypothesis of equal performance of the two models is never rejected at
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Figure 3: Multiplicative total spillover e↵ects toward variables XAX, N100, and HSI .

Table 3: Multiple Diebold-Mariano statistic (mDM) and corresponding p-value to com-
pare FPM (number of estimated coe�cients equal to p) and RPM (number of estimated
coe�cients equal to 21) for six subsets of the HLR dataset.

Subset p mDM p-value
HSI-KS11-SS 6 5.419 0.1436
GPTSE-TWII-XAX 10 4.968 0.1742
MXX-STOXX50E-N100 9 4.670 0.1976
NYA-N225-GDAXI 9 11.246 0.0105
BFX-BVSP-IXIC 10 5.824 0.1205
RUT-SZ-XAX 11 6.277 0.0989

a significance level of 1%; only the null hypothesis for the subset with NYA, N225, GDAXI
is rejected at the 5% significance level. In conclusion, the adopted reparameterization
seems to have a good performance.
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Figure 4: Co-movement factor for XAX (black line), N100 (gray dotted line), and HSI
(gray continuous line).

Table 4: Comparison of di↵erent parameterizations of model (1) with di↵erent number
of coe�cients p: loss functions and mDM statistic to compare RPR with the alternative
parameterizations.

Parameterization p AIC BIC MSE mDM
RPR 10 64.221 64.244 175.282
scalar 5 64.262 64.275 176.648 48.37
outer product 36 66.762 66.843 205.774 92.21

An alternative simple version of (1), maintaining the parameterization of V as in (8),
could be represented by the scalar representation, where A, B, and � are scalars: this
implies the estimation of only 5 unknown coe�cients. A less parsimonious representation
is obtained by parameterizing A as the outer product of a vector and its transpose and
B as a scalar;2 again maintaining the parameterization of V as in (8), this representation
implies 2n+2 estimated parameters but imposes the constraint of considering symmetric
spillover e↵ects because A is symmetric, which, in principle, is a strong assumption.

Table 4 reports the values of AIC, BIC, and MSE to compare the three alternative
parameterizations. RPR always outperforms the other two; the outer product parame-
terization shows poor performance, perhaps due to the constraint on autoregressive coef-
ficients. Comparing RPR to the other two alternatives using the mDM test, we see high
values of the statistic implying a p-value of zero and a significantly better performance
of RPR than the other two.

2
Bauwens and Otranto (2023), developing a multivariate model for matrices of covariance realized,

empirically obtain a constant scalar coe�cient of the lagged conditional covariance matrix.
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4 Concluding Remarks

An important strand of statistical and econometric literature aims to include the depen-
dence on movements of other markets in volatility models, generating various multivariate
approaches, concerning, in particular, spillover and contagion e↵ects (see, for example,
Pericoli and Sbracia, 2003). Most approaches develop ad hoc models to capture these
e↵ects, in particular by inserting them into a VAR framework (Gallo and Otranto, 2008;
Diebold and Yilmaz, 2012). The vMEM seems an excellent candidate to include spillover
e↵ects, adopting the flexible dynamics GARCH to model the volatility and, resorting to
the composite MEM extension (Brownlees et al., 2012), having the possibility to specify
several unobservable signals. We use this last property to divide the expected conditional
variance as the sum of the GARCH part, including spillover e↵ects and volatility persis-
tence, and the co-movement part, which is a typical characteristic of financial markets
(Forbes and Rigobon, 2002).

To provide the ability to handle a large set of volatility series, we propose a model-
based clustering algorithm to dramatically reduce the number of unknown coe�cients; in
the proposed empirical exercise, the number of estimated coe�cients is only 10, while the
full model contains 476 parameters, with a reduction of 98%. Evaluating the reparame-
terized model would require estimating the benchmark (the fully parameterized model),
which is not feasible, but we propose a procedure to evaluate the performance of the
reduced model by comparisons on subsets of series, which are exhaustive of the complete
data set.

The proposed model could be usefully used for forecasting purposes or to evaluate
the direction of spillover e↵ects, identifying groups of markets with di↵erent degrees of
transmission of shocks (the so-called dominant markets; see Gallo and Otranto, 2008;
Otranto and Gargano, 2014). It might also be interesting to investigate the possibility
of including in this model alternative methods for grouping the parameters, such as the
fuzzy clustering approach of Cerqueti, D’Urso, Mattera, and Vitale (2023), or of using
the results for classification purposes.

Details on the results of the clustering procedures and the estimation of models with
scalar and outer product parameterizations are available upon request. The GAUSS
codes used for the application were written by the author.
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Appendix

A The distance between ARMA(1,1) processes

Let us consider two ARMA(1,1) processes:

xi,t = 'ixi,t�1 + ⌘i,t �  i⌘i,t�1 i = 1, 2 (9)

with ⌘i,t representing a white noise process.
Using the lag operator L (Lj

xi,t = xi,t�j), equation (9) can be written with lag
polynomials:

(1� 'iL)xi,t = (1�  iL)⌘i,t (10)

The AR distance proposed by Piccolo (1990) is the Euclidean distance between the
infinite AR coe�cients relating to two stochastic processes; calling ⇡i,j the j � th AR
coe�cient of the process i (i = 1, 2), the AR distance is given by:

dAR =

" 1X

j=1

(⇡1,j � ⇡2,j)
2

#1/2

(11)

This distance has been widely used to verify whether two models can be considered as
reproducing the same dynamics (see, for example, Otranto, 2010; Otranto and Gargano,
2014). For the specific case ARMA(1,1), we can extend the AR distance along the
following lines.

Under the assumptions of invertibility, we write (10) as:

(1� 'iL)(1�  iL)
�1
xi,t = ⌘i,t (12)

and, under the invertibility constraint | i| < 1,

(1� 'iL)
1X

j=1

( iL)
j
xi,t = ⌘i,t (13)

Putting the AR coe�cients on the right side of equation (13), the j-th AR coe�cient is
given by:

⇡i,j = 'i 
j�1
i �  

j
i (14)

Consequently, by substituting (14) into (11), we obtain the following expression for
the AR distance between two ARMA(1,1) processes:
hP1

j=1('1 
j�1
1 �  

j
1)

2 + ('2 
j�1
2 �  

j
2)

2 � 2('1 
j�1
1 �  

j
1)('2 

j�1
2 �  

j
2)
i1/2

=
hP1

j=1

⇣
'
2
1 

2(j�1)
1 +  

2j
1 � 2'1 

2j�1
1 + '

2
2 

2(j�1)
2 +  

2j
2 � 2'2 

2j�1
2 � 2'1'2( 1 2)j�1+

2'2 1( 1 2)j�1 + 2'1 2( 1 2)j�1 � 2( 1 2)j)]
1/2

(15)
For invertibility,  2

1 < 1,  2
2 < 1,  1 2 < 1; labeling with  one of the three previous

functions of  1 and/or  2, each
P1

j=1 
j�1 = 1

1� and
P1

j=1 
j = 

1� . Therefore, (15) is
equal to:
h

'2
1

1� 2
1
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1

1� 2
1
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1� 2
1
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2
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2
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2
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Finally, we can express the distance between two ARMA(1,1) processes as:

dARMA =


('1 �  1)2

1�  2
1

+
('2 �  2)2

1�  2
2

� 2
('1 �  1)('2 �  2)

1�  1 2

�1/2
(16)

Considering the parameterization in equation (4), the ARMA distance (16) takes the
form in (5). A similar distance was derived in Otranto (2010) for DCC models.
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