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Abstract 
The rise of artificial intelligence and automation is fueling anxiety about the 
replacement of workers with robots and digital technologies. Relying upon a 
(country-sector-year) constructed measure of robotic capital (RK), we study the extent 
of complementarity/substitutability between robots and workers at different skill 
levels (i.e., high-, medium- and low-skilled workers). The analysis points to a higher 
elasticity of substitution (EoS) - i.e., higher substitutability - between RK and 
unskilled labor, compared to skilled labor. Furthermore, we find evidence of 
polarizing effects, according to which middle-skilled workers, typically employed in 
intermediate routine and/or codifiable tasks, are the most vulnerable to robotization. 
Results turn out to be robust to using different: i) definitions of EoS; ii) 
computations of      RK; iii) samples of countries and industries (WIOD vs EU KLEMS 
data); iv) skill grouping. 
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1 Introduction

The spread of robotization and, more generally, of automation is seen as one of the most challenging
issues for the future of workers and their integration into society and economy of our communities
(e.g., Ford, 2015; West, 2018; Susskind, 2020).

Among the major questions, the risk of disappearing of the middle-class and the increasing level
of between-group inequality, as a result of a more intensive use of new technologies, has spurred an
intense debate. As proof of this, Jaimovich et al. (2020) �nd that the likelihood of working in routine
occupations between the pre-polarization era and the post-polarization one decreased roughly by 16%.
Further causes of concern are linked to the ongoing COVID-19 pandemic, that might likely amplify
this pattern, as argued by Okyere et al. (2020) for the cases of epidemic interactions, communications
and meal delivery in China. Relatedly, Prettner and Bloom (2020) point out that the “hollowing out”
e�ect of robots and automation is expected to be reinforced by the COVID-19 pandemic, while Leduc
and Liu (2020) discusses how the pandemic-induced uncertainty about workers productivity may fur-
ther trigger automation adoption. Muro et al. (2020) stress how “Robots’ infiltration of the workforce
doesn’t occur at a steady, gradual pace” but is “concentrated especially in bad times such as in the wake
of economic shocks, when humans become relatively expensive as firms’ revenues rapidly decline”. Ulti-
mately, the rising concerns about the replacement of workers by this new wave of labor-saving tech-
nological change is even leading scholars to support robot taxation (e.g., Costinot and Werning, 2018;
Thuemmel, 2018; Guerreiro et al., 2020).1

A growing literature is currently dealing with the e�ects of robotization (and even more generally
of automation) on various labor market outcomes: unemployment, participation, along with wage
and inequality e�ects. At the same time, there has been a rising use of skills within the production
process. For instance, the raw percentages of hours worked by skilled labor has increased by 6% on
average across both sectors and countries, while the ones worked by unskilled labor dropped by 7% in
the 1995-2005 period (see Battisti et al., 2020). These two phenomena are jointly assessed in the race
between technology and education, pioneered by Tinbergen (1974) and further explored by Goldin
and Katz (2009), Autor et al. (2020) and many others. By making use of International Federation of
Robotics (2019) data, we document that the share of robotic capital has dramatically increased from
the ’90s till to the end of the following decade of about 40%, reaching percentages of more than 2.5% in
some industrial sectors in countries such as Japan, Germany, Italy and Spain, where a lot of job routines
are robotized or automated.

As pointed out by Griliches (1969), the introduction of new technologies in production could give
rise to adjustments in the relative demand for di�erent labor skills which, in turn, are re�ected in their
relative wages. We focus on these issues by investigating whether robotic capital is complementary to
some kinds of skills, to which we refer to as robotic capital-skill complementarity (RCSC) hypothesis.
In so doing, we take into account other forms of capital and a wide array of skill types. Particularly, we
build a speci�c stock of robotic capital and include it into di�erent types of production functions at the

1 On the other hand, it should be acknowledged the positive role potentially and e�ectively played by robots during the
COVID-19 outbreak, especially in terms of public health and services, addressing risks of infectious diseases, disinfection,
surgical procedures, delivering foods and medication, as argued, among others, by Yang et al. (2020), Khan et al. (2020) and
Tavakoli et al. (2020).
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country-sector level, distinguishing between robotic, ICT capital and the remainder. The robustness
of our results are assessed using two di�erent datasets and analysis frameworks. Our primarily dataset
includes 8,217 observations, matched over 35 countries and 17 sectors (based on WIOD, 2015), while a
secondary, and smaller dataset, includes 2,843 observations, matched over 15 countries and 17 sectors
(based on EU KLEMS, 2009).

To the best of our knowledge, the present study represents the �rst attempt for investigating com-
plementarity/substitutability between di�erent kinds of automatized capital and skill types, from a
country-industry perspective. In this respect, the main contributions of the study can be summarized
as follows:

The main contributions of this work can be summarized as follows:

1. The robotic capital-skill complementarity hypothesis is examined using di�erent samples, frame-
works of analysis and methods. Our main outcomes point to lower elasticities of substitution
(EoS) between robotic capital and skilled labor (i.e. more complementarity), than between
robotic capital and unskilled labor.

2. Such �ndings are extended and generalized by employing robotic, ICT and other capital, and
three skill groups to look for heterogeneous roles of elasticities, following Acemoglu and Autor
(2011). In this respect, robotic and ICT capital appear to be associated with a polarization of the
wage distribution, that is wages for middle-class workers worsen while earnings of the lowest
and the highest percentiles of the wage distribution rise;

The rest of the paper is organized as follows. Section 2 presents a survey about the recent theoretical
and empirical works dealing with automation and robotization issues; Section 3 brie�y illustrates the
datasets construction, providing information on the main variables used throughout the analysis, as
well as several insights with respect to the trends of robotization within the labor market; Section 4 sets
up the basic analysis framework and reports the parametric test results; Section 6 contains concluding
remarks.

2 Robotization and labor market related literature

This paper speaks to di�erent strands of literature. First, it is inspired by works on automation and
labor market outcomes, such as productivity, wages and unemployment, whereby e�orts by researchers
have been devoted in both the modelling and testing the impact of automation technologies, of which
robotization represents a subset.

From a theoretical standpoint, the concerns recently posed by analysts and scholars on the conse-
quences of the rapid outbreak of arti�cial intelligence, digital technologies and robots on labor market
have prompted many studies on this �eld.2 With speci�c reference to the employment e�ects, an opti-
mistic view is o�ered by Nakamura and Zeira (2018), who develop a task-based model where all labor
tasks are automatized if wages are adequately high: nonetheless, if the number of new jobs created
grow su�ciently fast, the share of jobs mechanized each period shrinks and unemployment stemming

2 Such concerns have been summarized in the expression “Is this time di�erent?” by several contributions, such as Mokyr
et al. (2015), Furman (2016) and Balsmeier and Woerter (2019), among others.
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from automation declines and converges to zero in the long-run. On the contrary, studies analyzing the
wage and inequality impacts of automation have come to more worrisome conclusion. For instance,
by developing a dynamic general equilibrium model incorporating investments in both robots and tra-
ditional capital, Berg et al. (2018) state that automation produce two contrasting e�ects: positive for
growth and negative for equality. Analogously, Moll et al. (2019) argue that automation may exacer-
bate inequality via increasing returns to wealth, in a theoretical model linking technology to personal
income and wealth distributions. On the same line, the growth model of directed technical change3

proposed by Hemous and Olsen (2014), with machines complementing (replacing) high-skilled (low-
skilled) labor and horizontal innovations (namely, the introduction of new products, which raises the
demand for both skill types), leads to stagnating wages for low-skilled workers and intensi�cation of
wage disparities.

Meanwhile, although the growing empirical literature is attempting to address the many concerns
regarding the impact of robotization on labor market outcomes, the evidence is far from clear-cut.
For instance, pioneering works by Acemoglu and Restrepo (2020) and Graetz and Michaels (2018),
employing new data from the International Federation of Robotics (IFR) on operational industrial
robots, point to, respectively, a harmful e�ect of robotics on wages and employment in the US labor
market from 1990 to 2007 and a favorable in�uence on productivity growth in 17 economies spanning
the period 1993-2007. Contrary to the non-signi�cant association between robotization and total em-
ployment in Graetz and Michaels (2018), de Vries et al. (2020) provide evidence of a strong decline in
the employment share of routine manual task-intensive jobs in a panel of 37 countries and 19 sectors
over the years 2005-2015. On the same line, Chiacchio et al. (2018) report that the adverse impact of
robot adoption comes at the expense of middle-educated workers. Similarly, by introducing an indica-
tor for the ability of robots to execute di�erent tasks, Carbonero et al. (2020) observe a strong, negative
e�ect on worldwide employment, especially in emerging economies.4 Positive impacts of robotization
on employment are instead found by Klenert et al. (2020) and De Backer et al. (2018) in Europe and
within MNEs, respectively. Opposite �ndings are highlighted by Compagnucci et al. (2019) in a panel
of manufacturing industries of 16 OECD countries, with robots positively (negatively) correlated with
the growth of hourly wages (hours worked). Likewise, Blanas et al. (2020) show that robots are associ-
ated with a decreasing (increasing) demand for the young, women, low- and medium-skilled workers
(men, older and high-skilled workers).

Overall, it can be noticed that the empirical literature on this �eld usually produces mixed results,
with evidences of drops in employment and participation, that may be temporary or focused in some
sectors or for speci�c skills.

The second line of research examines the issues of inequality, whose contributions starting from
Katz and Murphy (1992) and the literature on skill-biased technical change point to di�erent substi-

3 On this point see, inter alia, Acemoglu (1998, 2002).
4 As further evidence from a single country perspective, Faber (2020) observes a robust negative in�uence of robotization

on employment within the Mexican labor market, in particular for men and low-skilled workers. Relatedly, Lankisch et al.
(2019) and Dixon and Lim (2020) argue that automation can be considered as a crucial factor in explaining, respectively,
the rising inequality and the decline of the US labor share. With speci�c reference to Portugal, Fonseca et al. (2018) point
out job polarization as a result of rising automation and computerization. Conversely, Dauth et al. (2018) show sectoral
adjustments in the composition of total employment in German labor markets over the years 2004-2014, with the creation
of additional service sector jobs o�setting the losses in manufacturing industry.
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tutability degrees for skilled and unskilled workers, as in the recent work of Caselli (2016). Alongside
these themes, this paper is related (to a limited extent) to the polarization of the labor force framework,
namely the documented process, starting from the 1980s, for which employment has gradually becom-
ing clustered at the tails of the occupational skill distribution (see, for instance, Acemoglu and Autor,
2011). Such a framework is based upon the so-called routine-biased technical change hypothesis (Au-
tor et al., 2003), whereby the “hollowing out” e�ect of automation leads to the disappearance of jobs
requiring a well-de�ned set of repetitive tasks, typically assigned to middle-skilled workers.5

Furthermore, a relevant number of studies deals with problems of capital-skill complementarity
at a general level of capital, such as Griliches (1969), Fallon and Layard (1975), Du�y et al. (2004) and
Henderson (2009), whereas Krusell et al. (2000), Raveh and Reshef (2016), Eden and Gaggl (2018),
Taniguchi and Yamada (2019) and Ohanian et al. (2021) investigate the e�ects of speci�c, non-neutral
kinds of capital equipment. The complementarity/substitutability argument is important in the re-
versal discussion of technology adoption pioneered by Krugman (1979), because if a productive factor,
such as unskilled labor, becomes less complementary to capital and the latter is increasingly more rel-
evant in the production process, then this is equivalent to a higher opportunity cost for such factor,
implying greater demand for unskilled labor saving technology, as in Koeniger and Leonardi (2007) or
Alesina et al. (2018). The evidence from this literature literature typically validates the hypothesis of
more complementarity between capital and skilled workers. In particular, Krusell et al. (2000) analyze
the phenomenon under investigation in the direction of this paper, by disaggregating capital in struc-
tures and equipment, �nding the latter as less substitutable with skilled workers. On the same line,
by paying attention to developing economies, Raveh and Reshef (2016) �nd that only R&D capital
is complementary to skilled labor, while less innovative capital is complementary to unskilled. Analo-
gously, Taniguchi and Yamada (2019) and Eden and Gaggl (2018) observe similar results for ICT capital
in a panel of OECD countries and US, respectively. Lastly, Dao et al. (2020) argue that the downward
trend of the labor share of income can substantially be explained by the high substitutability between
routinized jobs and computer capital. This could be even more severe with robotic capital, insofar
as the embodied content of technical progress may be higher, for instance, than ICT or other capital
equipment. Moreover, Caselli and Manning (2019) show how under the assumption of a reduction
of the relative price of investment goods driven by the new technology, the existing capital return will
drop, implying a higher return for labor. The crucial empirical question, in such context, is whether
and what workers bene�t from this new wave of technological advances.

3 Data

In this section, we provide a brief overview of the relevant data used to carry out the present study
(3.1), as well as a set of descriptive �ndings surrounding the relationship between the rise of automated
capital and workers’ replaceability (3.2).

5 Additional empirical evidence in this direction is provided, among others, by David and Dorn (2013), Michaels et al. (2014),
Jaimovich and Siu (2020) and vom Lehn (2020).
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3.1 The datasets

The empirical analysis builds upon the integration of data from di�erent sources. In particular, we ex-
ploit information on robots from the Industrial Federation of Robotics (IFR, 2019), and merge these
data with both WIOD (2015) and EU KLEMS (2009) releases, encompassing information on worker
types, capital assets and value added, among others.6 In so doing, we derive two distinct datasets on
which the robotic capital-skill complementarity (RBCS) hypothesis can be tested. The WIOD dataset
contains 8,217 observations, matched over 35 countries and 17 industries spanning the period 1995-2009,
whereas the EU KLEMS dataset includes 2,843 observations, matched over 15 countries and 17 indus-
tries for the years 1994-2005.7

The main variables employed throughout the empirical analysis are:

• Robotic capital stock, KR. Data on stock, deliveries and average unit price of operational in-
dustrial robots are retrieved from the World Robotics: Industrial Robots and Service Robots
(IFR, 2019). Following Graetz and Michaels (2018), we compute the robot stock (i.e., quanti-
ties) for each country-sector pairs using the perpetual inventory method based on robot deliver-
ies (i.e., investments) and assuming a depreciation rate of 10 percent.8 Speci�cally, we calculate
RS,cit = RD,cit + (1 − δ)RS,cit−1, where c, i and t represent country, industry and time,
respectively; RS and RD denote, respectively, the stock and deliveries of robots, whereas δ is
the depreciation rate. Consequently,KR, is obtained by

KR,cit =
RS,cit ∗RP,ct

Dcit

whereRP represents the average unit price of industrial robots andD is the capital de�ator;9

• Total capital stock,K , and value added, Y , from WIOD (2015) or EU KLEMS (2009);

• Non-robotic capital,KNR, from WIOD (2015) or EU KLEMS (2009), computed as the di�er-
ence between total (K) and robotic capital stock (KR);

• ICT and other capital stock,KI andKO, respectively, from EU KLEMS (2009), as additional,
disaggregated measures of capital;

• High-, medium- and low-skilled workers, from WIOD (2015) or EU KLEMS (2009), expressed
in terms of hours worked, hourly wages, hours and income shares, depending on the speci�c
estimated models.

6 Data on operational stock and deliveries of robots are provided by IFR (2019) according to ISIC Rev. 4 industry classi�ca-
tion, contrary to ISIC Rev. 3.1 characterizing both the WIOD (2015) and EU KLEMS (2009) datasets. In order to merge
the di�erent coded sources, we make use of a correspondence table to convert IFR data from ISIC Rev. 4 to ISIC Rev. 3.1
industry classi�cation.

7 The set of countries, industries and time periods, driving the construction of the two datasets, are dictated by data avail-
ability. The list of countries and industries, as a result of the matching process, is reported in Section B of the Appendix.

8 As in Graetz and Michaels (2018), to check the robustness of our �ndings, the robotic capital variable is also constructed
using depreciation rates of 5 and 15 percent.

9 The complete strategy used to measure robotic capital stock is detailed in section A of the Appendix. As a robustness
check, in the case of the EU KLEMS sample, the robotic capital stock has also been computed using non-ICT and other
machinery and equipment capital de�ators, without a�ecting the core outcomes of the analysis.
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All variables are expressed in real prices and PPP adjusted 2005 international dollars, using the PPP
conversion factor from Inklaar and Timmer (2014). Descriptive statistics, based on both the WIOD
(2015) and EU KLEMS (2009) datasets, are reported in section C of the Appendix.

3.2 Robotic capital penetration in advanced economies

The stock of robotic capital has risen substantially in advanced economies over the past decades. To
have an apples-to-apples comparison, the total real capital evolution in the period 1995-2009 from Penn
World Table 10 (Feenstra et al., 2015) shows an increase on the order of 40% in Spain, 20% for countries
as Italy, Japan and Germany. The same economies on average doubled the robotic capital (in the case
of Spain, it increased more than three times). Additionally, United States witnessed a more substantial
growth around 230%. Such an expansion was driven, in particular, by strong robotic investments in
the rubber and plastic, wood products, electronics and transport equipment industrial sectors.10

1
2

3
4

1995 2000 2005
year

Robotic Capital ICT Capital
Other Capital Total Capital

a) EU Growth Rate Capital Variables (1994 =1)
1

2
3

4

1995 2000 2005
year

Robotic Capital ICT Capital
Other Capital Total Capital

a) US Growth Rate Capital Variables (1994 =1)

Figure 1: Capital stock evolution, 1994-2005

Figure 1 indicates that the evolution of automated capital equipment has been much pronounced
than the rest either in USA or EU, thus providing a clear picture about the strong penetration of au-
tomation and digital technologies within the productive processes.11

10 The robotic capital evolution for a subset of countries and industries is provided in section C of the Appendix.
11 A similar trend is highlighted by Schivardi and Schmitz (2018) for ICT capital in a sample of OECD economies. In our EU

KLEMS sample, the share of ICT capital in total capital recorded an average of about 8.2%, with maxima exceeding 25% in
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Figure 2: Share of robotic capital
in EU KLEMS countries and industries, 1994-2005

On this point, as shown in panel a) of Figure 2 below, in the period under investigation the share
of robotic capital has touched peaks of about 2.5%-3% in Japan, Spain, Italy and Germany, particularly
in wood products, electronics and transport equipment industries (ISIC Rev. 3.1 codes 20, 30t33 and
34t35, respectively), in panel b) of Figure 2.12

What this tells us is that the capital composition of production factors shifted toward a more inten-
sive use of robots, as further highlighted in Figure 3 below. Looking to the stock of robots over workers
deepening - the so-called robot density, as in Graetz and Michaels (2018) - in the period 1995-2017 the
growth continues steadily the tendency, either looking to hours worked, or to number of employees.13
Such descriptive evidence suggests that the share of robotic capital, as pointed out in Figure 1, may have
grown up following a similar trend.

The increased robotization of the production process raises the question about relative prices and
directed technical change. Figure 4 shows that the relative current price ratio of robots versus workers
strongly and steadily decreased in two countries for which we have original price data. The di�erence is
interesting because while in Germany the decrease continued after 2005, in the USA the series became

industries of Austria, Australia, Denmark, Finland, United Kingdom, Slovenia and United States.
12 Code descriptions of the ISIC Rev. 3.1 industries are reported in Table B2 of the Appendix.
13 Being not constrained by robot prices data, the robot density variables are computed using the EU KLEMS (2019) release

(Adarov et al., 2019; Stehrer et al., 2019) to exploit the full length of the IFR series on stock of industrial robots.
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rather �at. One possible interpretation is that in a country with more �exible wages, the usually rigid
nominal �oor is less binding than in another with more stringent labor market institutions.

To sum up, we see how: i) robotic capital grew more than the rest of capital (almost in line with
ICT), ii) the robotic capital deepening was strong, iii) the relative prices of robots went down. These de-
scriptive �ndings suggest a strong pressure on workers that in some countries may be satis�ed through
price reduction (typically in real terms) and in other through quantity reduction, which happens to
be the usual outcome analyzed in the extant literature.

This way we wonder which kind of workers may be more substitutable by robots, with respect their
marginal products (proxied by wages) and their complementarity with respect to robots. The latter
issue follows, for example, the intuition of Acemoglu and Autor (2011) about the mechanized and/or
routinized tasks that may be replaceable by machines. If medium-skilled workers were, for instance,
more replaceable by robotic capital, this process should drive towards wage polarization and increasing
inequality, as pointed out in France by Davis et al. (2020).

4 Estimation strategy and benchmark results

In the light of what has emerged in the descriptive evidence, this section �rstly provides a brief overview
of the framework aimed at deriving the EoS between di�erent types of capital and skill groups. Subse-
quently, by employing nonlinear estimation techniques, we will empirically assess the RCSC hypoth-
esis.
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Figure 4: Relative cost of robots, 1998-2008

A standard formulation which enables incorporating distinct kinds of capital and derive di�erent
substitutability degrees among factor inputs is o�ered by the Krusell et al. (2000) Cobb-Douglas pro-
duction function (removing subscripts for countries, industry and time to ease notation) over capital
structures,Ks, assumed as neutral with respect to skill types, and a constant elasticity of substitution
(CES) over non-neutral capital equipment,Ke, skilled and unskilled labor, S andU , respectively:

Y = Kα
s

[
λ[µ(Ke)

ρ + (1− µ)(S)ρ]
σ
ρ + (1− λ)(U)σ

] 1−α
σ (1)

whereY represents aggregate output;λ andµ are distribution parameters; ρ andσ govern the elasticity
of substitution betweenKe and S, and between theKe-S composite andU , respectively.

By assuming that the markets for inputs are competitive, the �rst-order conditions of pro�t-maximizing
behavior and price-taking �rms imply the following (approximate) skill-premium relationship:

ln

(
wS
wU

)
' λσ − ρ

ρ
ln

(
Ke

S

)ρ
+ (σ − 1) ln

(
S

U

)
(2)

Krusell et al. (2000) replicate the model in (2) on US series of capital and labor over the years 1963-1992
and consistently �nd σ > ρ, suggesting that the relative demand for skilled workers increased with
the stock of capital equipment. Insofar as the skill-biased technical change is re�ected into the rapid
growth of capital equipment, the capital-skill complementarity implies an increase (decrease) of the
marginal product of skilled (unskilled) labor, which in turn exacerbates wage inequality.
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According to the functional form reported in (1), it is possible to get an answer to the question
about more or less complementarity between di�erent types of capital and labor. In the light of this,
our framework might consider two scenarios:

1. The simplest one deals with two types of capital, namely robotic capital equipment, KR and
the remainder, non-robotic capital,KNR. The framework would be similar to (1), but this must
imply the crucial assumption of treating KNR as completely neutral with respect to di�erent
skill groups. Nonetheless, due to data availability - especially from a macro perspective - and
constraints imposed by the functional forms, there are not many ways to overcome this issue. In
carrying out our empirical investigation, we rely on two recent contributions in the spirit of the
four-factors production put forward by Krusell et al. (2000). Speci�cally, Eden and Gaggl (2018,
henceforth abbreviated as EG) and Taniguchi and Yamada (2019, henceforth abbreviated as TY)
implement a Cobb-Douglas aggregate of non-ICT capital and a composite input produced by
a nested CES combination of ICT capital (assumed as a subset of the general category of capital
equipment) and two types of labor. Nonetheless, as we shall show later, EG and TY diverge in
terms of the e�ective estimated models. In any case, these formulations turn out to be suitable
in our case, as we can replace ICT with robotic capital and test our RCSC hypothesis;

2. In the most complete setting, we might be able to explore the capital-skill complementarity hy-
pothesis along multiple dimensions, by disentangling the contributions of three types of cap-
ital - i.e., robotic, ICT and other capital stock - as well as three skill groups. In so doing, the
six-factors production function developed by TY allows to achieve this goal. Speci�cally, in
their model output is produced by a technology using two di�erent forms of non-neutral capi-
tal equipment, ICT and non-ICT, a third, neutral kind of structures capital, and three workers
types (i.e, high-, medium- and low-skilled labor). TY pair ICT with high-skilled and non-ICT
capital with low-skilled labor, providing broad con�rmation of the ICT (plus non-ICT) capital-
skill complementarity hypothesis in a panel of 14 OECD countries over the years 1970-2015. By
accordingly adapting the TY framework and applying it to our case study, we seek for di�erent
EoS stemming from pairing robotic capital equipment with high-skilled and ICT capital equip-
ment with low-skilled workers - i.e., the robotic plus ICT capital-skill complementarity hypoth-
esis.14 Consequently, we avoid overlapping the two types of capital and independently analyze
their complementarity/substitutability e�ects. Additionally, within the six-factors production
function framework, we can relax (at least to some extent) the strong assumption underlying
the four-factors speci�cation built upon the Krusell et al. (2000) formulation.

In what follows, we empirically assess the RCSC hypothesis within the EG and TY frameworks.
According to the EG speci�cation, we simultaneously estimate the following system of two equations:

14 In accordance with the International Standard Industrial Classi�cation of all Economic Activities (ISIC Rev. 4, 2008),
robots are group under ‘general-purpose machinery’, speci�cally under ‘lifting and handling equipment’ and ‘other special-
purpose machinery’. As these are reported within the broader heading of machinery (i.e., non-ICT capital), robots are not
part of ICT capital, which covers computers and telecommunication equipment. We are grateful to Robert Inklaar for his
comment on this point.
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ln

(
KS
R,cit

SScit

)
= ln

(
γ

1− γ

)
+ ρ ln

(
KR,cit

Scit

)
+ ε1,cit (3)

ln

(
UScit
QS

)
= ln

(
β

1− β

)
+ σ ln

(
Ucit
Q

)
+ ε2,cit (4)

where c, i and t represent country, industry and time, respectively; KR is robotic capital; S and U
represent the (shares of) hours worked by skilled and unskilled labor, respectively;

Q =
{
γKρ

R,cit + [1− γ] (Scit)
ρ)
} 1

ρ is the composite term comprising robotic capital and skilled
labor; KS

R, SS , US ,QS denote the income shares ofKR, S, U andQ, respectively; β and γ indicate
distribution parameters, while ε1 and ε2 are the error terms, allowed to be correlated across equations.
The EoS between robotic capital and skilled labor, 1/ (1− ρ), is derived by equation (3), while the
EoS between theKR-S composite (i.e.,Q) andU , 1/ (1− σ), is identi�ed from equation (4).

Moreover, following TY, we further test the RCSC hypothesis by employing the four- and six-
factors production functions. The four-factors speci�cation is jointly estimated according to the fol-
lowing system of two equations:

∆ ln

(
wS,cit
wU,cit

)
= − (1− σ) ∆ ln

(
Scit
Ucit

)
︸ ︷︷ ︸

quantity e�ect

+
σ − ρ
ρ

∆ ln

[(
KR,cit

Scit

)ρ
+ 1

]
︸ ︷︷ ︸

complementarity e�ect

+ u1,cit (5)

∆ ln

(
wS,cit
rR,cit

)
= − (1− ρ) ∆ ln

(
Scit
KR,cit

)
+ u2,cit (6)

where wS/wU is the skilled-to-unskilled relative wage; rR represents the rental price of robotic cap-
ital, while u1 and u2 are idiosyncratic errors, allowed to be correlated across equations. The EoS be-
tween skilled and unskilled workers, 1/ (1− σ), is identi�ed from equation (5), while the EoS between
robotic capital and skilled workers, 1/ (1− ρ), is derived by equation (6).

Finally, the six-factors production function, proposed by TY as an extension of Krusell et al. (2000),
is obtained using a combination of ICT, robotic and other capital stock (KI ,KR andKO), and hours
worked by high-, medium- and low-skilled labor, (H ,M andL):

Y = AKα
O

{
β [γKρ

R + (1− γ)Hρ]
σ
ρ + (1− β)

[
δ [ζKη

I + (1− ζ)Lη]
ξ
η + (1− δ)Mξ

]σ
ξ

} 1−α
σ

(7)

where A is a Hicks-neutral e�ciency parameter; α, β, γ, δ and ζ are distribution parameters; σ, ρ,
η, ξ < 1 are, respectively, the parameters governing the EoS between the KR-H composite and the
KI -M -L composite,KR andH , theKI -L composite andM , andKI andL.

First-order conditions of pro�t-maximizing and price-takers �rms imply the following system of
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four equations (including subscripts for country, industry and time):

∆ ln

(
wH,cit
wM,cit

)
= − (1− σ) ∆ ln

(
Hcit

Mcit

)
︸ ︷︷ ︸

quantity e�ect

+

σ − ρ
ρ

∆ ln

[(
KR,cit

Hcit

)ρ
+ 1

]
− σ − ξ

ξ
∆ ln

[((
KI,cit

Mcit

)η
+

(
Lcit
Mcit

)η) ξ
η

+ 1

]
︸ ︷︷ ︸

complementarity e�ect

+ v1,cit (8)

∆ ln

(
wM,cit

wL,cit

)
= − (1− ξ) ∆ ln

(
Mcit

Lcit

)
︸ ︷︷ ︸

quantity e�ect

+
η − ξ
η

∆ ln

[(
KI,cit

Lcit

)η
+ 1

]
︸ ︷︷ ︸

complementarity e�ect

+ v2,cit (9)

∆ ln

(
wH,cit
rR,cit

)
= − (1− ρ) ∆ ln

(
Hcit

KR,cit

)
+ v3,cit (10)

∆ ln

(
wL,cit
rI,cit

)
= − (1− η) ∆ ln

(
Lcit
KI,cit

)
+ v4,cit (11)

where wh/wm and wm/w` represent the relative wages of high- to medium- and medium- to low-
skilled labor, respectively; H , M and L indicate, respectively, hours worked by high-, medium- and
low-skilled labor; KI represents ICT capital equipment; rI denotes the rental price of ICT capital
equipment, while v1, v2, v3, and v4 are idiosyncratic errors, allowed to be correlated across equations.
The EoS between high- and medium-skilled labor, 1/ (1− σ), is derived from equation (8), while the
EoS between robotic capital and high-skilled labor, 1/ (1− ρ), is identi�ed from equation (10). The
EoS between medium- and low-skilled labor, 1/ (1− ξ), is derived from equation (9), while the EoS
between ICT capital equipment and low-skilled labor, 1/ (1− η), is identi�ed from equation (11).

The RCSC hypothesis for the speci�cations in (3)-(4), (5)-(6), and (8) and (10), is veri�ed if

1/ (1− ρ) < 1/ (1− σ) =⇒ σ > ρ

Ultimately, for the six-factors model by Taniguchi and Yamada (2019), the ICT capital-skill comple-
mentarity hypothesis, in (9) and (11), is veri�ed if

1/ (1− ξ) < 1/ (1− η) =⇒ η > ξ

All the speci�cations are estimated using the generalized method of moments (GMM) technique,
treating all the input factors as endogenous and exploiting their lagged values as instruments.15 Table 1

15 The EG procedure can be applied on both the WIOD and EU KLEMS samples, as we can rely upon the constructed
measures of non-robotic capital. By contrast, the TY models can only be estimated by employing the EU KLEMS sample,
due to the disaggregation of capital stocks between ICT and other assets for the six-factors model speci�cation.
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reports the results of our benchmark estimates.16 In this respect, our �ndings provide a broad con�r-
mation of the RCSC assumption. Speci�cally, the EG procedure points to this direction when applied
to both the WIOD and EU KLEMS samples, where the EoS between the robotic-capital and skilled
labor, 1/ (1− ρ), is lower than between theKR-S composite and unskilled labor, 1/ (1− σ), which
implies σ > ρ. Likewise, estimates corroborate the RCSC hypothesis in the TY framework. In par-
ticular, estimation of the four-factors production function speci�cation reveals that the EoS between
the robotic capital equipment and skilled labor is lower than theKR-S composite and unskilled labor.
Additionally, for the six-factors production function, we �nd that the EoS between the robotic capital
equipment and high-skilled labor is lower than between theKR-H composite and theKI -M -L com-
posite. Finally, our �ndings indicate that the estimated EoS between the KI -M composite is higher
than between ICT capital equipment and low-skilled labor, which implies ξ > η. In other terms, from
the six-factors speci�cation, there is evidence supporting the hypothesis that robotic and ICT capital
equipment are associated with a polarization of the wage distribution. As such, being able to perform
repetitive tasks, industrial robots (and ICT) could substitute middle-quali�ed workers, in line with the
so-called routine biased technical change (see, for instance, Autor et al., 2003; Acemoglu and Autor,
2011; Goos et al., 2014).

Table 1: Estimated elasticities of substitution

Production functions 1/ (1− ρ) 1/ (1− σ) 1/ (1− ξ) 1/ (1− η) Obs.

Four-factors KR & S {KR, S}&U
Eqs. (3)-(4) 2.711 3.464 4501

WIOD (1995-2009)
Eqs. (3)-(4) 9.943 30.657 1449

EU KLEMS (1994-2005)
Eqs. (5)-(6) 7.882 8.890 648

Six-factors KR &H {KR, H}& {KI ,M,L} {KI , L}&M KI &L
Eqs. (8)-(11) 1.608 2.073 1.759 1.468 155

Notes: The estimated coe�cients and standard errors are reported in Table D1 of the Appendix.

The robustness of results presented in Table 1 are assessed in several ways. Firstly, in line with sug-
gestions by Graetz and Michaels (2018), we check whether the RCSC hypothesis is sensitive to a di�er-
ent computation of the robotic capital stock, using a 5 and 15 percent depreciation rate. Furthermore,
we replicate the benchmark models, by grouping high- and middle skilled labor within the same cate-
gory.17 In both cases, our main �ndings turn out to be con�rmed, thus providing broad con�rmation
of the robotic (and ICT) capital-skill complementarity hypothesis.

16 As an extended analysis, we also test the total capital-skill complementarity hypothesis, from a country-industry perspec-
tive, in the spirit of Du�y et al. (2004). Estimations performed on both the WIOD and EU KLEMS samples generally
con�rm the hypothesis of a lower EoS between capital stock and skilled labor. Results of this speci�cation are not pre-
sented here for reasons of space, but are available upon request.

17 To save space, the outcomes of these alternative estimated models are relegated in Section D of the Appendix.
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5 Does robotic capital produce polarizing e�ects?

One of the outcomes highlighted so far demonstrates that robotic and ICT capital are associated with a
polarization of the wage distribution. In what follows, we check whether only robotic capital produces
similar, but independent e�ects. To this end, we re-estimate the EG and the TY four-factors produc-
tion function speci�cations by separating middle-skilled from skilled or unskilled workers grouping.
Speci�cally, we consider three di�erent settings. The �rst one involves high- and medium skilled labor,
with robotic capital paired with the former. As for the relationship between medium- and low-skilled
workers, we pair robotic capital with the latter,18 while for the remainder setting, encompassing high-
and low-skilled workers, robotic capital is paired with the former. In so doing, the robotic capital-skill
complementarity hypothesis is assessed devoting a special attention on the “hollowing out” e�ects of
medium-skilled workers.

Table 2: Polarization - Estimated elasticities of substitution

High- vis-à-vis medium-skilled labor
Production functions 1/ (1− ρ) 1/ (1− σ) Obs.

Four-factors KR &H {KR, H}&M
Eqs. (3)-(4) 3.014 10.143 4501

WIOD (1995-2009)
Eqs. (3)-(4) 13.162 74.948 1839

EU KLEMS (1994-2005)
Eqs. (5)-(6) 7.594 9.410 841

Medium- vis-à-vis low-skilled labor

Four-factors KR &L {KR, L}&M
Eqs. (3)-(4) 3.261 60.734 4036

WIOD (1995-2009)
Eqs. (3)-(4) 15.535 21.416 1839

EU KLEMS (1994-2005)
Eqs. (5)-(6) 12.929 23.742 1041

Notes: The estimated coe�cients and standard errors are reported in Table D6 of the Ap-
pendix.

Results of these alternative estimated models are presented in Table 2.19 In particular, our �ndings
indicate the presence of RCSC, as the EoS between robotic capital and high-skilled labor, 1/(1 − ρ)
is lower than between the KR-H composite and medium-skilled labor, 1/(1 − σ), as shown in the
�rst panel of Table 2. Similarly, in the second panel of Table 2 the EoS between robotic capital and

18 As the null hypothesis of σ ≥ 1 cannot be rejected when robotic capital is paired with medium-skilled labor, being
inconsistent with a CES production function formulation, we are required to pair robotic capital with low-skilled labor.

19 In line with our expectations, the robotic capital-skill complementarity hypothesis is con�rmed when tested on high- vis-
à-vis low-skilled labor, with a lower degree of substitutability between robotic capital high-skilled workers. To save space,
these additional results are reported in Tables D7 and D8 of the Appendix.
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low-skilled labor, 1/(1 − ρ), is lower than between the KR-L composite and medium-skilled labor,
1/(1− σ).

Overall, the polarizing e�ects arising from these results, coupled with those involving ICT capital
equipment within the six-factors production function, reinforce the view that automation technolo-
gies heavily penalize middle-quali�ed workers. In addition, these outcomes re�ect those of de Vries
et al. (2020), among others, and shed further light on the replaceability of middle-skilled labor with
robots.

6 Concluding remarks

The rising concerns stemming from the intensive use of automation in production are driving many
scholars towards a better understanding of its labor market implications. Furthermore, the pressure
exerted by the COVID-19 pandemic for a complete rethinking of the productive process is fueling a
heated debate on whether robots, computerization and digital technologies will lead either to a job
destruction or creation.

In this paper, we participate to the current discussion by investigating the extent of complementar-
ity between robotic capital and di�erent skill types. Speci�cally, relying upon a constructed measure
of robotic capital stock , we study whether robotic capital is complementary to skilled workers and
substitute to unskilled labor - as envisaged by Tinbergen (1974) in the so-called “race between tech-
nology and education”. The empirical analysis is carried out using two distinct samples of countries
and industries, mainly based upon the IFR, WIOD and EU KLEMS datasets, over the years 1994-2009
and 1994-2005, respectively. Our main �ndings consistently point to a lower elasticity of substitution
between robotic capital and skilled labor, compared to unskilled employees.

As our �ndings highlight, middle-skilled workers might be the most hit by automation technolo-
gies, insofar as robots will become increasingly important in the production process and able to repro-
duce even more complex tasks. Additionally, we �nd evidence of polarizing e�ects produced by robotic
and ICT capital, according to which middle-skilled workers are a�ected the most by the current wave
of automation, with results that turn out to be robust both with respect to a di�erent computation
of robotic capital stock and workers grouping. By and large, policymakers face numerous challenges.
In the short run, the focus should be placed in new organizational needs of production, exceedingly
in�uenced by the ongoing COVID-19 pandemic. Moreover, the advent of improved robots as well
as new technological developments, typically incorporated in intangible assets, such as those related
to the arti�cial intelligence, may dramatically impact workers in the medium- and long-run. Thus, in
terms of policy implications, the robotic (plus ICT) capital-skill complementarity suggests measures
aimed at improving productivity, wage and education di�erentials for lower-skilled labor.

Overall, our study casts additional light on understanding the mechanisms underlying the current
forces operating in the labor markets, especially in manufacturing industries of advanced and transition
economies. If on the one hand industrial robots, as a subset of the broader category of automation
technologies, turn out to be a powerful engine of economic growth, on the other hand they appear to
be associated with intensifying inequalities.
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Appendix
A The measurement of the robotic capital stock

The robotic capital measure employed throughout the analysis is built upon two variables: the stock
of industrial robots and their price.

As for the robot stock variable construction, the procedure largely follows that proposed by Graetz
and Michaels (2018), which we refer to for more detailed information.

Data on average unit price of robots are retrieved from the IFR reports. This is computed as the
ratio of the turnover of total robot systems to the number of robots delivered in a speci�c country. The
IFR provides a series of average unit price of robots (in current, thousand dollars) for a small group of
countries.20 Speci�cally, robot prices are available for Japan, United States, Germany, Rep. of Korea,
United Kingdom and France, from 1995 to 2008; whereas, for Italy, robot prices are available from 1995
to 2006. Therefore, the 2007 and 2008 Italy’s robot price observations are computed using the average
robot price growth rate for countries for which we have original prices data.

At this point, the main necessary assumption we need to impute the average unit price of robots for
the remaining countries (in both the WIOD and EU KLEMS samples) relies upon the geographical,
economic proximity. In particular:

• European countries take on average robot prices of Germany, United Kingdom, France and
Italy;

• American countries take on robot prices for the United States;

• Asian countries (plus Australia) take on average prices of Japan and Rep. of Korea.

In order to obtain robot prices data for the years 1994 and 2009, the series are smoothed by em-
ploying uniformly weighted moving averages, with 1 lagged term, 1 forward term and the current ob-
servation in the �lter.21

The robotic capital stock, KR, is calculated by multiplying the number of industrial robots, RS ,
by their price, RP , and converted in real terms applying the country-sector speci�c capital de�ator,
D:

KR,cit =
RScit ∗RPct
Dcit

(A1)

Finally, the constructed robotic capital measure in (A1) is expressed in real PPP 2005 adjusted in-
ternational dollars using the PPP conversion factor from Inklaar and Timmer (2014).

20 See, for instance, IFR (2005).
21 The speci�ed procedure is only applied to the WIOD sample. As for the EU KLEMS sample, whose series ends in 2005,

only the observation referring to 1994 is computed.
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B Countries and industries

Table B1: List of WIOD and EU KLEMS countries

Code Country WIOD EU KLEMS
AUS Australia

√ √

AUT Austria
√ √

BEL Belgium
√

BGR Bulgaria
√

BRA Brazil
√

CHN China
√

CZE Czech Republic
√ √

DEU Germany
√ √

DNK Denmark
√ √

ESP Spain
√ √

EST Estonia
√

FIN Finland
√ √

FRA France
√

GBR United Kingdom
√ √

GRC Greece
√

HUN Hungary
√

IDN Indonesia
√

IND India
√

IRL Ireland
√

ITA Italy
√ √

JPN Japan
√ √

KOR Korea, Republic of
√ √

LTU Lithuania
√

LVA Latvia
√

MLT Malta
√

NLD Nederlands
√ √

POL Poland
√

PRT Portugal
√

ROU Romania
√

RUS Russian Federation
√

SVK Slovakia
√

SVN Slovenia
√ √

SWE Sweden
√ √

TUR Turkey
√

USA United States
√ √
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Table B2: List of WIOD and EU KLEMS industries

Code Label Description
AtB Agriculture Agriculture, hunting, forestry, and �shing
C Mining Mining and quarrying
15t16 Food products Food, beverages and tobacco
17t19 Textiles Textiles, textile products, leather and footwear
20 Wood products Wood and products of wood and cork
21t22 Paper Pulp, paper, paper products, printing and publishing
23 Fuel Coke, re�ned petroleum and nuclear fuel
24 Chemical Chemicals and chemical products
25 Rubber and plastics Rubber and plastics
26 Other Mineral Other non-metallic mineral
27t28 Metal Basic metals and fabricated metal
29 Machinery Machinery, nec
30t33 Electronics Electrical and optical equipment
34t35 Transport equipment Transport equipment
E Utilities Electricity, gas and water supply
F Construction Construction
M Education, R&D Education

Notes: Industries codes are ISIC Rev. 3.1.
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C Descriptive statistics and �gures

Table C1a: Main variables’ average by Country

Country Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

AUS 46.293 .03 302.022 1.491 10509.93 255
AUT 130.188 .206 225.864 .975 4987.27 221
BEL 211.233 .268 284.293 1.243 5785.329 255
BGR .652 0 2.472 9.646 100.169 255
BRA 70.557 .009 79.819 5.593 16133.6 255
CHN 413.073 .003 32.716 2.154 202000 176
CZE 49.487 .04 83.914 1.084 2269.901 221
DEU 3588.96 .349 159.498 1.086 48120.88 221
DNK 67.447 .238 508.95 .91 2956.056 221
ESP 595.599 .148 196.129 3.142 16602.87 221
EST .061 .001 42.473 .901 181.45 255
FIN 92.983 .159 206.993 1.01 3847.649 221
FRA 866.935 .187 186.31 1.359 28331.04 221
GBR 474.093 .112 258.041 1.352 27731.79 221
GRC 2.538 .006 131.87 2.11 2927.796 255
HUN 13.179 .016 56.833 1.562 1397.541 221
IDN 4.567 0 23.395 155.909 9550.066 253
IND 25.997 .002 46.724 2.504 47121.29 255
IRL 1.759 .008 166.377 1.127 2814.42 208
ITA 1364.387 .363 220.465 2.442 25709.43 221
JPN 15316.05 .757 614.343 .85 113000 136
KOR 1603.355 .111 228.519 .925 22805.63 255
LTU .076 .001 187.915 .951 1868.649 255
LVA .05 0 26.134 1.08 184.874 251
MLT .065 .003 98.179 9.725 117.693 240
NLD 83.204 .112 358.798 1.305 7809.654 221
POL 32.308 .011 46.532 1.114 5621.846 221
PRT 45.144 .095 151.37 9.917 2960.333 238
ROU 1.737 0 4.364 9.646 431.732 255
RUS 502.529 .027 13.309 1.228 7647.916 255
SVK 27.51 .053 89.841 .98 1136.932 255
SVN 18.35 .074 99.434 1.396 557.447 255
SWE 256.437 .224 234.57 1.035 7393.451 221
TUR 16.337 0 17.82 5.408 1812.973 255
USA 3599.99 .22 459.937 1.044 173000 255

Source: Authors’ calculations based on IFR (2019) and WIOD (2015).
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Table C1b: Main variables’ average by Industry

Industry Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

15t16 310.424 .053 85.367 2.571 20659.5 485
17t19 28.779 .032 77.63 2.572 10048.35 474
20 167.245 .096 59.604 2.523 4150.209 485
21t22 39.865 .007 75.895 2.427 12819.83 485
23 1.505 .006 501.609 2.272 8336.451 453
24 65.474 .013 151.32 2.478 19740.53 485
25 479.463 .187 71.364 2.426 7804.844 485
26 104.729 .052 123.465 2.582 9660.287 485
27t28 963.747 .141 75.124 2.442 24972.12 485
29 393.695 .065 60.914 2.421 18970.35 485
30t33 2773.199 .205 86.08 2.403 47502.88 485
34t35 5733.377 .79 80.099 2.4 19849.87 485
AtB 8.719 .002 107.896 7.994 45295.3 485
C 2.515 .02 455.86 2.774 13749.1 485
E 3.757 .001 664.415 1.492 20505.67 485
F 16.889 .001 22.798 3.748 43029.93 485
M 69.259 .003 36.228 80.151 23083.03 483

Source: Authors’ calculations based on IFR (2019) and WIOD (2015).
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Table C2a: Main variables’ average by Country

Country Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

AUS 33.525 .019 260.077 1.501 9456.825 192
AUT 75.392 .115 210.899 1.207 4929.727 192
CZE 14.65 .015 75.474 1.238 1998.928 176
DEU 3258.643 .31 150.146 1.294 45400.91 204
DNK 66.922 .209 435.599 1.158 3242.643 156
ESP 501.656 .13 184.237 2.789 15767.8 204
FIN 80.883 .137 190.975 1.171 3359.581 204
GBR 453.913 .104 267.929 1.067 25726.79 204
ITA 1258.485 .316 206.255 .563 24663.34 204
JPN 14931.87 .788 435.317 .909 102000 187
KOR 778.618 .05 219.753 .963 19126.85 192
NLD 62.753 .076 346.264 .998 7605.651 192
SWE 290.93 .24 215.718 1.125 6730.833 168
USA 1391.272 .082 430.585 1.039 175000 192

Source: Authors’ calculations based on IFR (2019) and EU KLEMS (2009).

Table C2b: Main variables’ average by Industry

Industry Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

15t16 643.016 .08 103.547 1.403 29174.68 166
17t19 80.12 .067 103.166 1.519 17470.11 166
20 750.922 .294 80.596 1.219 6312.17 166
21t22 114.551 .014 90.668 1.105 25216.76 166
23 2.569 .006 605.189 1.144 9461.048 142
24 124.42 .015 218.475 1.146 31984.63 142
25 500.475 .217 90.864 1.173 13027.24 142
26 303.234 .096 148.213 1.209 14964.87 166
27t28 2429.709 .298 108.637 1.176 40231.81 166
29 1539.644 .159 87.917 1.079 35004.82 166
30t33 9556.847 .541 113.203 1.071 90054.86 166
34t35 21106.19 2.313 154.337 1.073 38009.5 83
AtB 18.332 .003 182.642 1.926 38032.15 166
C 5.155 .044 916.473 1.252 15236.69 166
E 10.398 .002 1245.522 .961 32416.68 166
F 27.586 .001 24.575 1.247 66625.78 166
M 157.536 .006 59.239 .959 41514.68 166

Source: Authors’ calculations based on IFR (2019) and EU KLEMS (2009).
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D Estimation results

Table D1: Benchmark GMM parameter estimates

ρ σ ξ η β γ Obs.

Eqs. (3)-(4) 0.631*** 0.711*** 0.415*** 0.231*** 4501
WIOD (1995-2009) (0.012) (0.013) (0.013) (0.006)

Eqs. (3)-(4) 0.899*** 0.967*** 0.306*** 0.305*** 1449
EU KLEMS (1994-2005) (0.014) (0.019) (0.009) (0.011)

Eqs. (5)-(6) 0.873*** 0.887*** 648
(0.059) (0.053)

Eqs. (8)-(11) 0.378** 0.517*** 0.431*** 0.318** 155
(0.147) (0.134) (0.092) (0.111)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All the models are simultaneously estimated
using GMM estimation techniques, with lagged values of input factors as instrumental variables and HAC robust standard
errors.

Table D2: Robustness checks: Estimated elasticities of substitution

Robotic capital δ = 5%

Production functions 1/ (1− ρ) 1/ (1− σ) 1/ (1− ξ) 1/ (1− η) Obs.

Four-factors KR & S {KR, S}&U
Eqs. (3)-(4) 2.764 3.310 4501

WIOD (1995-2009)
Eqs. (3)-(4) 9.776 15.557 1449

EU KLEMS (1994-2005)
Eqs. (5)-(6) 4.397 5.343 727

Six-factors KR &H {KR, H}& {KI ,M,L} {KI , L}&M KI &L
Eqs. (8)-(11) 1.188 3.362 1.347 1.275 125

Robotic capital δ = 15%

Production functions 1/ (1− ρ) 1/ (1− σ) 1/ (1− ξ) 1/ (1− η) Obs.

Four-factors KR & S {KR, S}&U
Eqs. (3)-(4) 2.657 3.696 4501

WIOD (1995-2009)
Eqs. (3)-(4) 8.455 67.369 1255

EU KLEMS (1994-2005)
Eqs. (5)-(6) 7.049 7.636 581

Six-factors KR &H {KR, H}& {KI ,M,L} {KI , L}&M KI &L
Eqs. (8)-(11) 1.192 5.895 1.389 1.303 162

Notes: The estimated coe�cients and standard errors are reported in Table D3.
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Table D3: Robustness checks: GMM parameter estimates

Robotic capital δ = 5%

ρ σ ξ η β γ Obs.

Eqs. (3)-(4) 0.638*** 0.697*** 0.416*** 0.248*** 4501
WIOD (1995-2009) (0.011) (0.012) (0.006) (0.006)

Eqs. (3)-(4) 0.897*** 0.935*** 0.319*** 0.308*** 1344
EU KLEMS (1994-2005) (0.014) (0.020) (0.009) (0.011)

Eqs. (5)-(6) 0.772*** 0.812*** 727
(0.009) (0.092)

Eqs. (8)-(11) 0.158** 0.702** 0.258*** 0.215** 195
(0.046) (0.131) (0.053) (0.069)

Robotic capital δ = 15%

ρ σ ξ η β γ Obs.

Eqs. (3)-(4) 0.623*** 0.729*** 0.411*** 0.215*** 4501
WIOD (1995-2009) (0.012) (0.013) (0.006) (0.006)

Eqs. (3)-(4) 0.881*** 0.985*** 0.2999*** 0.295*** 1255
EU KLEMS (1994-2005) (0.015) (0.018) (0.008) (0.012)

Eqs. (5)-(6) 0.858*** 0.869*** 581
(0.057) (0.057)

Eqs. (8)-(11) 0.161*** 0.830*** 0.280*** 0.233** 195
(0.045) (0.101) (0.059) (0.075)

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses. All the models are simultaneously estimated using
GMM estimation techniques, with lagged values of input factors as instrumental variables and HAC robust standard errors.

Table D4: Robustness checks: Estimated elasticities of substitution
(high- and medium-skilled vis-à-vis low-skilled labor)

Production functions 1/ (1− ρ) 1/ (1− σ) Obs.

Four-factors KR & S {KR, S}&U
Eqs. (3)-(4) 4.421 37.704 4502

WIOD (1995-2009)
Eqs. (3)-(4) 12.638 29.094 1839

EU KLEMS (1994-2005)
Eqs. (5)-(6) 7.750 15.508 857

Notes: The estimated coe�cients and standard errors are reported in Table D5.
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Table D5: Robustness checks: GMM parameter estimates
(high- and medium-skilled vis-à-vis low-skilled labor)

ρ σ β γ Obs.

Eqs. (3)-(4) 0.773*** 0.973*** 0.329*** 0.210*** 4501
WIOD (1995-2009) (0.012) (0.090) (0.003) (0.009)

Eqs. (3)-(4) 0.920*** 0.965*** 0.294*** 0.292*** 1839
EU KLEMS (1994-2005) (0.014) (0.014) (0.008) (0.013)

Eqs. (5)-(6) 0.870*** 0.935*** 857
(0.081) (0.058)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All the models are
simultaneously estimated using GMM estimation techniques, with lagged values of input factors as
instrumental variables and HAC robust standard errors.

Table D6: Polarization: GMM parameter estimates

High- vis-à-vis medium-skilled labor

ρ σ β γ Obs.

Eqs. (3)-(4) 0.668*** 0.901*** 0.328*** 0.233*** 4501
WIOD (1995-2009) (0.012) (0.012) (0.004) (0.007)

Eqs. (3)-(4) 0.924*** 0.986*** 0.305*** 0.321*** 1839
EU KLEMS (1994-2005) (0.015) (0.022) (0.009) (0.011)

Eqs. (5)-(6) 0.868*** 0.893*** 841
(0.112) (0.097)

Medium- vis-à-vis low-skilled labor

ρ σ β γ Obs.

Eqs. (3)-(4) 0.693*** 0.953*** 0.423*** 0.340*** 4036
WIOD (1995-2009) (0.009) (0.006) (0.004) (0.009)

Eqs. (3)-(4) 0.935*** 0.953*** 0.463*** 0.323*** 1839
EU KLEMS (1994-2005) (0.015) (0.022) (0.009) (0.013)

Eqs. (5)-(6) 0.922*** 0.957*** 1041
(0.0115) (0.086)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All the models are
simultaneously estimated using GMM estimation techniques, with lagged values of input factors as
instrumental variables and HAC robust standard errors.
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Table D7: Polarization: Estimated elasticities of substitution
(high- vis-à-vis low-skilled labor)

Production functions 1/ (1− ρ) 1/ (1− σ) Obs.

Four-factors KR &H {KR, H}&L
Eqs. (3)-(4) 2.219 10.533 4504

WIOD (1995-2009)
Eqs. (3)-(4) 8.181 10.858 1839

EU KLEMS (1994-2005)
Eqs. (5)-(6) 6.443 10.215 841

Notes: The estimated coe�cients and standard errors are reported in Table D8.

Table D8: Polarization: GMM parameter estimates
(high- vis-à-vis low-skilled labor)

ρ σ β γ Obs.

Eqs. (3)-(4) 0.549*** 0.905*** 0.280*** 0.183*** 4504
WIOD (1995-2009) (0.012) (0.010) (0.002) (0.005)

Eqs. (3)-(4) 0.877*** 0.907*** 0.282*** 0.198*** 1839
EU KLEMS (1994-2005) (0.015) (0.014) (0.003) (0.009)

Eqs. (5)-(6) 0.844*** 0.902*** 841
(0.058) (0.043)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All the models are
simultaneously estimated using GMM estimation techniques, with lagged values of input factors as
instrumental variables and HAC robust standard errors.
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