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1 Introduction
The dynamic modelling of conditional covariance matrices is the topic of a large number
of contributions in financial econometrics. The literature started by extending the univari-
ate GARCH model (Bollerslev, 1996) to the multivariate case, developing progressively
the family of MGARCH models (for a review, see, e.g., Bauwens et al., 2006). Due to the
availability of intraday prices and the development of realized volatility measures, atten-
tion shifted to the dynamic modelling of realized covariances and correlations. This has
resulted in new classes of models for positive definite matrices, such as the Conditional
Autoregressive Wishart (CAW) models proposed by Golosnoy et al. (2012).

MGARCH and CAW models require to specify a dynamic process for a conditional
covariance matrix (i.e., the conditional expectation of a covariance matrix). In that re-
spect, they use the same kind of BEKK (for covariances) and DCC (for correlations)
formulations of conditional processes: BEKK in MGARCH was introduced by Engle and
Kroner (1995) and adapted to CAW by Golosnoy et al. (2012); DCC was introduced in
MGARCH by Engle (2002) and extended to CAW by Bauwens et al. (2012b, 2016).

In this work, we evaluate empirically the merits of modelling realized covariance
matrices through correlations and variances or through covariances and variances. We
perform this analysis using realized covariance daily data for twenty-nine assets and in-
troducing a set of new parameterizations of the CAW model family which extend the
existing BEKK-type formulation of Golosnoy et al. (2012) and the DCC-type formula-
tion of Bauwens et al. (2102b). The proposed new parameterizations imply a specific
impact parameter of the lagged realized covariance (or correlation) on the next condi-
tional covariance (or correlation) of each asset pair; moreover these impact parameters
are time-varying. They nevertheless guarantee the positive definiteness of the conditional
covariance (or correlation) matrix with simple parametric restrictions, while keeping the
number of parameters fixed or at most linear in the number of assets. In brief, they are
more flexible than existing scalar or rank-1 BEKK and DCC versions, while adding a
single scalar parameter to these models, hence, they remain parsimonious.1

To illustrate the idea, we refer to equation (2.3), a diagonal BEKK-type CAW process
for the conditional covariance matrix St, and we consider the term A!Ct−1 where Ct−1

is the lagged realized covariance matrix. One of the proposed new models parameterizes
the (i, j)-element of the impact matrix A as a exp(φArij,t−1)/ exp(φA), where a and φA

are positive scalar parameters, and rij,t−1 is the lagged realized correlation for the asset
pair (i, j). If φA is set to zero, a scalar model is obtained because each element of A is
then equal to a. When φA is strictly positive, the off-diagonal elements of A differ because
the lagged realized correlations differ between asset pairs, hence contrary to the simple
scalar version, the dynamics of the covariances are asset-pair specific and the coefficients
representing the impacts of the lagged conditional covariances on the next conditional
covariances are time-varying.

These extended parameterizations use the element–by–element (Hadamard) exponen-
tial function of a matrix to define the impact parameter matrix of the lagged realized

1Alternatively, a conditional covariance or correlation process can be parsimoniously parameterized by
assuming that a small number of factors drive its dynamics: see Engle et al. (1990) in the MGARCH case,
and Sheppard and Xu (2019) for realized covariances.
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or conditional covariances (or correlations) on the subsequent conditional covariances (or
correlations). The Hadamard exponential matrix benefits from several mathematical prop-
erties, exploited by Bauwens and Otranto (2020) in the MGARCH framework to develop
DCC models where the conditional correlations also have asset pair-specific and time-
varying dynamics. We adapt these models to the CAW framework. CAW models that use
a Hadamard exponential function in their parameterization, whether in the BEKK-type or
in the DCC-type of specifications, will be named “Hadamard Exponential CAW” (HE-
CAW). Every HE-CAW model can be simplified to a corresponding simpler CAW model
by imposing a parameter restriction that can be tested (φA = 0 in the previous paragraph).

BEKK-type CAW models are estimated by maximizing the Wishart log-likelihood
function in one step, whereas DCC-type CAW models can be estimated in one step and
also in two steps. One-step estimators are in principle efficient statistically, while two-
step ones incur an efficiency loss (see Engle and Sheppard, 2001 for the MGARCH DCC
models). The efficiency issue is complicated by the targeting issue because it is difficult to
define a practical targeting estimator in nonscalar formulations. We adopt the approximate
solution proposed by Hafner and Franses (2009), which uses an average of the unknown
parameters in the targeting estimator. With our dataset of 29 × 29 covariance matrices,
it turns out to be impossible to estimate the robust standard errors, but this evaluation is
possible when we consider more parsimonious models. The latter are obtained by a testing
procedure that eventually reduces the number of parameters of the variance processes,
resulting in a small number of groups of assets that have ‘identical’ (ie, not significantly
different) variance parameters.

An empirical exercise compares the forecasting performance of the CAW models in
their BEKK- and DCC-type simple versions with their HE-CAW extended versions, using
two statistical loss functions (QLIK, a quasi-likelihood loss, and FN, a Frobenius norm)
and an economic one (GMVP, the variance of a global minimum variance portfolio ). The
results reveal that the DCC-type models have smaller in–sample and out–of–sample one-
step ahead forecast losses than the BEKK-type models, whereas the opposite occurs when
the forecasting horizon increases. In estimation results, the parameters of the HE-CAW
models which imply time-varying and pair-specific impact coefficients are statistically
significant at conventional levels. In terms of forecast comparisons, most of these flexible
models produce smaller (or in some cases non-superior) losses than the simpler models,
especially for the FN and GMVP loss functions.

The rest of the paper is organized as follows: the CAW modelling framework is de-
fined in the next section. The HE-CAW models are defined in Section 3. The data set is
described in Section 4. Section 5 presents the empirical results. Final remarks conclude
the paper.

2 CAW Modelling Framework
Let Ct denote the (n × n) realized covariance matrix of day t (t = 1, . . . , T ), and It the
information set at time t, consisting of the current and past values of Ct. Several ways of
defining Ct as a function of intraday returns are available in the literature. In the CAW
framework, the conditional distribution of Ct is a n−dimensional central Wishart with ν
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(> n) degrees of freedom; in symbols:

Ct|It−1 ∼ Wn (ν,St/ν) , (2.1)

where St, of dimension n × n, is the (positive semidefinite) expected value of the con-
ditional distribution of Ct. Under this distributional hypothesis, the marginal conditional
distributions of the realized variances (on the diagonal of Ct) are univariate Gamma dis-
tributions.

The CAW approach consists in specifying St as a function of the information set,
St being indexed by unknown parameters θ, estimated by maximizing the log-likelihood
function (excluding terms that do not depend on θ):

l(θ|C1 , . . . ,CT ) = − ν

2

T∑

t=1

{
log |St(θ)|+ trace

[
St(θ)

−1Ct

]}
. (2.2)

The parameter ν does not affect in (2.2) the estimation of θ, so that it can be set equal to
1.

2.1 BEKK-type Models
There is a large set of options to specify St, inspired by the MGARCH literature; for
example, Golosnoy et al. (2012) adopt a BEKK model. The diagonal BEKK-CAW model
is the following process:

St = C +A!Ct−1 +B ! St−1, (2.3)

where C, A and B are unknown symmetric matrices of parameters, the first positive defi-
nite, the other positive semidefinite, and ! represents the element–by–element (Hadamard)
product. The model is said to be diagonal because each conditional (co)variance St de-
pends only on the corresponding lagged conditional (co)variance and realized (co)variance,
not on other (co)variances. The number of parameters in (2.3), equal to 3n(n + 1)/2,
renders ML estimation unfeasible already for n ≥ 5. The number of parameters is re-
duced by considering the covariance targeting version of (2.3), defined by setting C =
(Jn −A−B)!C̄, where Jn is an n×n matrix of ones and C̄ is the sample mean of the
realized covariances Ct. In the above nonscalar framework, it is not possible to guaran-
tee that the matrix used for targeting is positive definite; a practical solution, proposed by
Hafner and Frances (2009), replaces the possibly non-positive definite matrix Jn−A−B
by the scalar 1− ā− b̄ ∈ (0, 1), where ā and b̄ are the averages of the elements in matrices
A and B, respectively.

The scalar version of (2.3), where A = aJn and B = bJn with a and b unknown,
reduces drastically the number of parameters in A and B, so that the dynamics is common
for all the variances and covariances. A less important reduction is obtained by adopting
a rank-1 parameterization, with A = aa′ and B = bb′, where a = (a1/21 , a1/22 . . . , a1/2n )′

and b = (b1/21 , b1/22 . . . , b1/2n )′. The advantage of this parameterization is to have different
dynamics for the elements of the conditional covariance matrix, even if they are derived
from the parameters of the variances.
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We propose another diagonal BEKK model, the EO (Equal Off-diagonal) one, where
A (or B) is a matrix with diagonal elements a1, . . . , an (or b1, . . . , bn), and equal off-
diagonal elements, all equal to ac (or bc). The constraint 0 ≤ ac ≤ ai < 1 (or 0 ≤ bc ≤
bi < 1) for each i = 1, ...n provides a sufficient condition for A (or B) to be positive
semidefinite, but it is very restrictive and can be relaxed. See the proof and discussion in
Appendix A. For practical targeting, ā and b̄ are set at the averages of the elements of A
and B, respectively, for example ā = (a1 + a2 + · · ·+ an + n(n− 1)ac)/n2.

2.2 DCC-type Models
Bauwens et al. (2012b, 2016) specify St in the CAW framework using the DCC formula-
tion of MGARCH. They name the model “Re–cDCC”. It consists of n univariate models
for the conditional variances and a scalar DCC model for the realized correlation matrix,
The conditional variance models are specified as the GARCH–type model (for each asset
i):

Sii,t = (1− αi − βi)C̄ii + αiCii,t−1 + βiSii,t−1, (2.4)

where C̄ii, Sii,t and Cii,t represent the i−th element of the diagonal of matrices C̄, St and
Ct respectively.

The conditional correlation model is a DCC model with a correction similar to the con-
sistent correction proposed by Aielli (2013) for DCC-MGARCH. As shown by Bauwens
et al. (2012b), the Wishart log–likelihood can be split into two parts (excluding a constant
part):

l(θ|C1 , . . . ,CT ) = lv(θv) + lc(θc)
lv(θv) = −ν

2

[
log |D2

t |+ trace
(
D−1

t CtD
−1
t

)]
= −ν

2

[∑n
i=1 log(Sii,t) +

∑n
i=1 S

−1
ii,tCii,t

]

lc(θc|θv) = −ν
2

{
log

∣∣D−1
t StD

−1
t

∣∣+ trace
[(
DtS

−1
t Dt − In

)
D−1

t CtD
−1
t

]}
,

(2.5)
where In is the (n × n) identity matrix, Dt is a diagonal matrix with elements S1/2

ii,t and
Sii,t are the diagonal elements of St, and Cii,t are the diagonal elements of Ct. The
log–likelihood relative to the variance part, lv(θv), is the sum of the n univariate log-
likelihood functions of the conditional variances, that can be maximized in a first step.
The parameters relative to the correlation part, θc, can be estimated in a second step by
maximizing lc(θc|θv), conditional on the estimator of θv obtained in the first step. Like
for (2.2), ν does not affect the estimation of θ and can be set to 1. Because the term
trace

(
D−1

t CtD
−1
t

)
appearing in the expression of lc(θc|θv) does not depend on θc, it

can be dropped from it in the maximization, so that the second step objective function is
actually the log-likelihood of a Wishart density function for D−1

t CtD
−1
t , with parameters

ν and D−1
t StD

−1
t .

The Re–cDCC model of Rt, in its diagonal version, is defined as the following set of
equations:

Rt = Q̃−1/2
t QtQ̃

−1/2
t ,

Qt = Q+A!
(
Q̃1/2

t−1D
−1
t−1Ct−1D

−1
t−1Q̃

1/2
t−1

)
+B !Qt−1,

Q̃t = diag(Qt),

(2.6)
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where for any square matrix X , diag(X) is the diagonal matrix obtained by setting to
zero all the off-diagonal elements of X . Like for the BEKK formulation, a parsimonious
version of the constant matrix Q replaces it by (1− ā− b̄)R̄, R̄ being the sample corre-
lation matrix, computed from C̄. The scalar version is obtained by setting A = aJn and
B = bJn, and the rank-1 version by A = aa′ and B = bb′.

It is interesting to notice that the EO parameterization for the BEKK formulation
(2.3) is in the spirit of the scalar version of the Re-cDCC model, defined by (2.4) and
(2.6) with A = aJn and B = bJn: firstly, a univariate model with specific parameters
ai and bi holds for each variance, like for the variances in (2.4); secondly, a common dy-
namic model holds for the covariances, with coefficient ac for Cij,t−1 and bc for Sij,t−1.
This is a scalar structure for the covariances, similar to the scalar Re-cDCC structure for
the correlations. Another difference is the scalar used for targeting, which for the EO
model is common to all the variances and covariances and equal to 1− ā− b̄, whereas it
is 1 − αi − βi for the variances and 1 − a − b for the correlations in the scalar Re-DCC
model. Differently from Re-cDCC, the estimation of the EO model must be performed
in one step, but it is feasible for moderate values of n since the number of parameters in
(a1, . . . , an, b1, . . . , bn, ac, bc) is equal to 2n+ 2.

Model names: The following acronyms are used in the rest of the paper: CAW for all
models falling in the framework defined in this section. The CAW model class contains
two families: the first one uses BEKK-type processes for the dynamics of St, such as (2.3)
and (3.3): they are named COV models. The second family uses univariate processes for
the conditional variances (the diagonal elements of St) and DCC-type processes for the
conditional correlation matrix Rt, such as (2.6) and (3.4); they are named COR models.

3 Hadamard Exponential CAW Models
A clear disadvantage of the parameterizations of the matrices A and B in (2.3) and (2.6)
is either that they are too heavy for large n, or that they lack flexibility when they are of
scalar or rank-1 type: the scalar version imposes the same dynamics for all the variances
and covariances, whereas the rank-1 version imposes that the covariances depend on the
product of the corresponding parameters of the variances. Bauwens and Otranto (2020),
in the framework of MGARCH conditional correlation models, provide extensions of the
scalar DCC model of Engle (2002), where the elements of A depend in a nonlinear way
on the lagged conditional correlations. In particular, in their model, called NonLinear
AutoRegressive Correlation (NLARC) model, the effect of the lagged conditional corre-
lations enters through the element–by–element (Hadamard) exponential function.

The objective of adding flexibility in models (2.3) and (2.6), while maintaining a par-
simonious parameterization, can be obtained by extending and generalizing the Bauwens
and Otranto (2020) NLARC parameterization to the CAW model family. The matrices A
and B become time-varying and are denoted, respectively, by At and Bt in the sequel.
Two parameterizations of the time-varying matrices At and Bt for (2.3) and of (2.6) are
introduced below. In our empirical experiments, we find that only A is time–varying for
COV models and only B for COR models. This finding is in contrast with papers which
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assume the scalar restriction B = bJn, as Noureldin et al. (2014), Clements et al. (2018),
Bauwens and Otranto (2020).

Parameterizations of At and Bt

We define two parameterizations of At, which can be applied similarly to Bt (replace a
by b, φA by φb, and a by b). They are:

Sc (Scalar): At = a exp#(φAMt) = aJn ! exp#(φAMt),
R1 (Rank-1): At = aa′ ! exp#(φAMt),

(3.1)

where φA ≥ 0, Mt is a positive definite symmetric matrix known at date t, a ∈ (0, 1)
is a scalar in the first parameterization, and a in the second one is the n-dimensional
vector (a1/21 , . . . , a1/2n )′ in which each element is in (0, 1). Using the square root of ai, the
coefficient of the lagged variance of the i−th conditional GARCH-type variance equation
is ai, like in (2.4).

Notice that if φA = 0, exp#(φAMt) is equal to Jn, so that At is constant, being equal
to aJn (scalar model) or aa′ (rank-1 model). When φA is strictly positive, the elements
of A differ because the elements of Mt differ, hence the dynamics of the variances and
covariances (in the BEKK version) or of the correlations (in the DCC version) are different
and the coefficients representing the impact of the lagged conditional covariances (or
correlations) on the next conditional covariances (or correlations) are time-varying since
Mt is time-varying.

Two time-varying versions of Mt are used in the Hadamard exponential function of
At when φA > 0:

Pt : Mt = Pt−1 − Jn,
Rt : Mt = Rt−1 − Jn,

(3.2)

where Pt−1 is the realized correlation matrix obtained by transforming the realized co-
variance matrix Ct−1 into a correlation matrix, and Rt−1 is the conditional correlation
matrix. In the COV models, the latter is obtained by transforming St−1 into a correlation
matrix, and in the COR models, it is the matrix defined in the first line of (2.6).

Each matrix At obtained by combining (3.1) and (3.2) is the Hadamard product of a
positive definite (Sc case) or semidefinite matrix (R1 case) with strictly positive diago-
nal entries and a positive definite matrix (exp#(φAMt)), so that it is a positive definite
matrix (see Lemma 3 in Bauwens and Otranto, 2020). It can be directly checked that
exp#(φAMt), for each Mt proposed above, is a positive definite matrix. For example,
exp#[φA(Rt−1 − Jn)] = exp#(φARt−1)/ exp(φA), and since Rt−1 is positive definite
and φA > 0, the HE matrix exp#(φARt−1) is positive definite (see Lemma 1 in Bauwens
and Otranto, 2020). Moreover, the diagonal elements of exp#[φA(Rt−1 − Jn)] are equal
to 1, since the diagonal elements of Rt−1 − Jn are equal to zero. Each off-diagonal ele-
ment is of the type exp(φAr)/ exp(φA) and therefore in (0, 1), where r ∈ (−1,+1) is a
correlation coefficient.

Interpretation of the HE term

The question can be raised whether the proposed form of dependence of At on lagged
(conditional or realized) correlations makes sense for the dynamics of conditional covari-
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ances and correlations. In the COV models, an off-diagonal element of At represents the
impact coefficient of the corresponding lagged realized covariance (Cij,t−1) on the next
conditional covariance (Sij,t−1), being for example aij exp(φArij,t−1)/ exp(φA), in the R1

parameterization, where aij = a1/2i a1/2j and rij,t−1 is the lagged conditional or realized
correlation. The use of a lagged correlation in the impact coefficient can be justified in
relation with the phenomenon of volatility clustering. Clustering characterizes financial
market volatility, which itself affects the correlations: when a cluster of high volatility
occurs, correlations increase with a certain persistence, but the changes in correlations
can differ between pairs of assets. Adding a dependence of the impact coefficient on the
past correlation of each asset pair through the exponential function is a way to include the
impact of the clustering effect on the next conditional covariance in a way that is specific
for each asset pair and is time-varying. This time-varying impact element (exp(φArij,t−1))
is an increasing convex function of rij,t−1. Hence, when the lagged correlation increases
(due to volatility clustering or an idiosyncratic factor), the next conditional covariance in-
creases (for given values of aijCij,t−1 and of the other terms); said differently, the higher
(lower) the lagged correlation, the higher (lower) the persistence of the lagged realized
covariance on the current conditional covariance.2 The effect on the next conditional cor-
relation, defined as Sij,t/(Sii,tSjj,t)1/2, is also positive for given values of the conditional
variances; however, in case of increased market volatility in the past (resulting in the in-
creased value of rij,t−1), these variances also increase, so that the positive effect in the
numerator can be countered. Typically, however, according to empirical evidence, the
correlations increase when a strong and persistent volatility clustering episode occurs.

In the COR models (with Bt), the impact coefficient bij exp(φBrij,t−1)/ exp(φB) rep-
resents the impact of the lagged quasi-correlation Qt−1 on the next quasi-correlation Qij,t,
whereas the impact of Cij,t−1/(Sii,t−1Sjj,t−1)1/2, which is a pseudo-correlation, multiplied
by (Qii,t−1Qjj,t−1)1/2 (the Aielli type of correction of the DCC model in this context), is
constant. The time-varying impact is thus similar to what it is for COV models, but it
operates through the quasi-correlation terms.

Regarding the difference between the two choices of correlations (realized or condi-
tional), a conditional correlation is a moving average of the realized correlations of the
past, including the most recent one. Using the conditional correlations implies thus a
smoother dynamic reaction to the past than using the most recent realized correlation. It
is an empirical question whether one or the other kind of correlation is better adapted to
fit the kind of impact embedded via the Hadamard exponential matrix. In our empiri-
cal experiments, we find that the lagged realized correlation provides a better fitting and
out–of–sample performance.

COR and COV practical equations

The combination of the two parameterizations of At for COV (and Bt for COR) with
the two choices of Mt when φA > 0 (φB > 0), and the two cases where exp#(φAMt)

2This is quite different from the asymmetric effects, whereby the impact of the lagged variance on
the next conditional variance is stronger when the lagged return is negative, while the same holds for a
covariance when both lagged returns are negative (Cappiello et al., 2006); in particular, the HE term does
not change the impact of Cii,t−1 on Sii,t.
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(exp#(φBMt)) are equal to Jn, provides a family of six COV models (and six COR
models).

The COV version of CAW models in the empirical applications of Section 5 is spec-
ified as

St = (1− āt − b̄)C̄ +At !Ct−1 +B ! St−1, (3.3)

with At as defined in the Sc and R1 parameterizations shown in (3.1), or with constant A
when φA = 0. In the latter case, āt is constant, being equal to a in the scalar model, and
to the average of the elements of A = aa′ in the rank-1 model. When At is time-varying,
āt, defined the average of its elements, is also time-varying. The matrix B and the scalar
b̄ are constant, with B = bJn and b̄ = b in the scalar model, or B = bb′ and b̄ the average
of the elements of bb′ in the rank-1 model.

For COR models, (2.6) is changed to

Qt = (1− ā− b̄t)R̄+A!
(
Q̃1/2

t−1D
−1
t−1Ct−1D

−1
t−1Q̃

1/2
t−1

)
+Bt !Qt−1, (3.4)

where the two parameterizations defined in (3.1) are applied to Bt, and where A is either
the scalar matrix aJn (with ā = a) or the rank-one matrix aa′ (with ā equal to the average
of the elements of this matrix). When φB > 0, Bt is time-varying, and b̄t is the average
of its elements; when φB = 0, Bt is constant, being either bJn (and b̄t = b), or bb′ (and
b̄t is the average of the elements of this matrix).

The conditional variance dynamic equation of the first step of the COR model for
each i is specified as (2.4).

Parsimonious parameterizations by asset grouping

To reduce the number of parameters in a given model, we form groups of assets having
similar parameters by applying Wald tests using the estimates of the model parameters
(and an estimated covariance matrix of the estimator). If more than one group is formed,
the model can subsequently be estimated under the restrictions that the parameters of the
assets belonging to a group are equal. This enables us to reduce the number of estimated
parameters; for example, for 29 assets, the initial COV −R1 (COR−R1) model has 58
(116) parameters, but if four groups are formed, this is reduced to 8 (66). The reduction
can be useful for two reasons: firstly, for a large number of assets, the estimation algorithm
may fail due to the large number of parameters, or even if it converges, the estimated
asymptotic covariance matrix of the estimator may be singular; secondly, the reduction
typically reduces the estimator variance if the restrictions are valid.

To do this for the four non-scalar COV models and the three non-scalar COR mod-
els, we test the joint hypothesis ai = aj and bi = bj for each pair of assets (i, j) and then
we put in the same group all the assets for which the hypothesis is not rejected consistently
with the other assets belonging to the same group, starting from the pair with highest p-
value. For example, if the pair of assets (i, j) is the one with highest p-value (greater
than the nominal size of 0.05), and then we find that the hypothesis concerning the pair
(i, k) is not rejected, we include the three assets in the same group only if the hypothesis
concerning the equality of the coefficients of the pair (j, k) is not rejected. We continue
this grouping for all the p-values greater than 0.05. Bauwens and Otranto (2020) use a
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very similar algorithm for the DCC MGARCH model and report that it detects suitably
the correct number of groups of several simulated data generating processes.

We can also form groups for the scalar COR model, by testing jointly αi = αj and
βi = βj , the parameters of the variance processes (2.4), and proceeding as described
in the previous paragraph. These parameters can be estimated in the first step of the
2-step procedure, or simultaneously with the parameters of the correlation part in the 1-
step procedure, hence the resulting number of groups and group compositions are not
necessarily identical.

Stationarity conditions

Golosnoy et al. (2012) provide the covariance stationarity conditions (i.e., the conditions
for the existence of the unconditional second-order moments) of the BEKK-type CAW
(or COV ) stochastic process as a function of the model parameters, for a more general
BEKK(1,1) process than in (2.3), i.e., not necessarily a diagonal process. They obtain
the results by writing the vectorized process of Ct as a VARMA(1,1) process and using
the stationarity conditions for such a process. Translating these results to the case of
(3.3) with the constant A parameterizations in (3.1), the stationarity condition is a +
b < 1 in the Sc parameterization, max(aa′ + bb′) < 1 in R1: moreover, in the EO
representation of the COV model, we impose max(A +B) < 1, where max applied to
a matrix selects its largest entry. When the HE matrix depending on the lagged realized
or conditional correlations is added in these parameterizations, the Ct process cannot be
written as a VARMA process with fixed parameters. The process is nonlinear due to the
exponential function, hence the unconditional moments are not known. However, given
that the entries of the HE matrix are all positive, equal to 1 on the diagonal, and smaller
than 1 elsewhere, it is obvious that if the stationarity condition holds for a constant A
version, it holds at each t for the corresponding time-varying version. For example, in the
Sc case, a exp(φAr)/ exp(φA) + b < 1 holds if a + b < 1. Intuitively, these extended
conditions (for each t) seem sufficient for covariance stationarity.

For the COR models, the stationarity condition for each variance process (2.4) is
αi + βi < 1. For the correlation process (3.4), the stationarity conditions are the same as
for the COV parameterizations, and if the stationarity condition holds for a constant B
parameterization, it holds for the corresponding time-varying one.

4 The Dataset
To investigate empirically the questions we are interested in, we use a time-series of daily
realized covariance matrices computed from a high-frequency dataset for 29 stocks of the
Dow Jones Industrial Average (DJIA) index; the 30th stock was dropped since it is not
permanently in the index during the sample period. The data source is the TAQ database.
The sample period is 3 January 2001–16 April 2018, resulting in 4319 observations. Each
daily realized covariance matrix is computed as the sum of the outer products of the one
minute (log-)returns of the day. The one minute returns are obtained from synchronized
intra-day prices. The synchronization was done globally for the 29 stocks, using one
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minute intervals, the price closest (from the left) to the respective sampling point was
taken; the first and last 15 minutes of the day (9:30-16:00) were excluded. The data are
annualized in percentage (multiplied by 25,200).

The stock names and tickers are: Apple Inc.(AAPL), American Express Company
(AXP), The Boeing Company (BA), Caterpillar Inc. (CAT), Cisco Systems, Inc. (CSCO),
Chevron Corporation (CVX), The Walt Disney Company (DIS), DowDuPont Inc. (DWDP),
General Electric Company (GE), The Goldman Sachs Group, Inc. (GS), Home Depot
Inc.(HD), International Business Machines Corporation (IBM), Intel Corporation(INTC),
Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), The Coca-Cola Company
(KO), McDonald’s Corporation (MCD), 3M Company (MMM), Merck &Co., Inc. (MRK),
Microsoft Corporation (MSFT), NIKE, Inc. (NKE), Pfizer Inc.(PFE), The Procter &
Gamble Company (PG), The Travelers Companies, Inc.(TRV), United Health Group In-
corporated (UNH), United Technologies Corporation (UTX), Verizon Communications
Inc. (VZ), Walmart Inc. (WMT), Exxon Mobil Corporation (XOM).

Table 1 shows some summary statistics of realized variances, covariances and correla-
tions. The variances have larger (time series) average levels and standard deviations than
the covariances. The average variances are more heterogenous across assets than the co-
variances: the minimum and maximum averages are 2.44 and 9.56 for the variances: for
covariances, without averaging over 28 values (i.e., for the 406 average covariances), they
are 0.57 and 3.73. The average correlations of each stock with the other stocks fluctuate
around 0.22 with little variation. The minimum and maximum average correlations (over
the 406 average correlations) are 0.097 and 0.443.

5 Empirical Results
We estimate and evaluate the performance of fourteen models on the dataset for n = 29
stocks of the Dow Jones Industrial Average (DJIA) index described in section 4:

• Seven correlation models as in (2.6) modified by (3.4):
-COR-S-1s (2n+2): the scalar version with A = aJn, B = bJn and the variance
coefficients estimated in one step (simultaneously);
-COR-S (2n+ 2): the same model as above, but estimated in two steps;
-COR-S-Pt (2n+3): the scalar version with A = aJn and Bt = b exp# [φB(Pt − Jn)];
-COR-S-Rt (2n+3): the scalar version with A = aJn and Bt = b exp# [φB(Rt − Jn)];
-COR-R1 (2n+ 2ng): the rank-1 version with A = aa′ and B = bb′;
-COR-R1-Pt (2n + 2ng + 1): the rank-1 version with A = aa′ and Bt =
bb′ ! exp# [φB(Pt − Jn)];
-COR-R1-Rt (2n + 2ng + 1): the rank-1 version with A = aa′ and Bt =
bb′ ! exp# [φB(Rt − Jn)].

• Seven covariance models as in (3.3):
-COV -S (2): the scalar version with A = aJn and B = bJn;
-COV -S-Pt (3): the scalar version with At = a exp# [φA(Pt − Jn)] and B =
bJn;
-COV -S-Rt (3): the scalar version with At = a exp# [φA(Rt − Jn)] and B =
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Table 1: Descriptive statistics for the dataset of 29 DJIA Stocks

Stock RVar RCov RCor
Ticker Mean SD Mean SD Mean SD
AAPL 9.557 16.727 1.548 4.683 0.196 0.133
AXP 7.450 17.623 1.641 5.112 0.220 0.136
BA 5.221 8.002 1.332 3.967 0.208 0.136
CAT 5.867 10.893 1.578 5.043 0.229 0.140
CSCO 7.476 12.721 1.656 4.585 0.227 0.136
CVX 4.197 9.972 1.353 5.082 0.224 0.152
DIS 5.665 9.851 1.480 4.266 0.234 0.147
DWDP 4.869 8.259 1.516 4.577 0.245 0.145
GE 6.123 14.871 1.663 5.004 0.247 0.140
GS 8.040 30.538 1.797 6.283 0.242 0.139
HD 5.567 10.353 1.597 4.867 0.245 0.145
IBM 3.652 7.564 1.351 4.066 0.259 0.143
INTC 7.389 10.853 1.770 4.478 0.249 0.140
JNJ 2.405 4.340 0.938 2.865 0.231 0.146
JPM 8.828 21.905 1.978 6.037 0.261 0.145
KO 2.620 4.724 0.991 3.070 0.221 0.141
MCD 3.656 6.542 1.090 3.553 0.215 0.143
MMM 3.369 8.549 1.315 4.024 0.272 0.151
MRK 4.259 9.504 1.171 3.889 0.214 0.144
MSFT 4.909 7.290 1.474 3.864 0.243 0.143
NKE 4.355 6.543 1.189 3.454 0.210 0.142
PFE 4.276 5.930 1.087 3.213 0.195 0.136
PG 2.440 5.779 0.860 3.246 0.201 0.135
TRV 4.716 12.319 1.071 4.265 0.185 0.141
UNH 5.345 9.910 0.955 3.543 0.153 0.125
UTX 3.865 7.334 1.103 4.044 0.206 0.136
VZ 4.208 7.906 1.002 3.833 0.164 0.128
WMT 3.284 6.047 0.884 3.346 0.165 0.124
XOM 4.034 9.946 1.062 4.748 0.177 0.131
Column Mean 5.091 10.441 1.326 4.242 0.218 0.139
Column SD 1.875 5.566 0.310 0.835 0.030 0.007

Columns 2-3: time series mean and standard deviation (SD) of realized variances
Column 4-5: mean of 28 time series means and SD of realized covariances between
stock in column 1 and the other 28 stocks
Column 6-7: like in columns 4-5, but for realized correlations
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bJn;
-COV -R1 (2ng): the rank-1 version with A = aa′ and B = bb′;
-COV -R1-Pt (2ng +1): the rank-1 version with At = aa′ ! exp# [φA(Pt − Jn)]
and B = bb′;
-COV -R1-Rt (2ng +1): the rank-1 version with At = aa′! exp# [φA(Rt − Jn)]
and B = bb′;
-COV -EO (2ng + 2): The EO version (see Section 2) of matrices A and B with
equal elements out of the diagonal.

After each model acronym, the number of parameters is indicated between parentheses;
ng is the number of groups with equal coefficients identified by the grouping procedure
defined in Section 3. In the COR models we count also the 2n coefficients of the first step
estimation, where n univariate models as (2.4) for variances are estimated.

5.1 Estimation Results
5.1.1 Groups and synthesis of estimation results for 14 models

Each non-scalar model is estimated in its full parameterization, then the grouping algo-
rithm of the parameters described in Section 3 is applied. The obtained groups are shown
in Table 2. The algorithm detects different numbers of groups: 4, 6 or 8 for the COR
models, 4 for the COV models. The ‘first step’ column shows the groups obtained from
the first step estimation of the COR models (or, equivalently, from univariate estimations
of the variance equations): the number of groups is 5 and the grouping is very similar
to the grouping (in 4 groups) obtained from the one-step estimation (COR-S-1s). Using
the first column as a benchmark, it is interesting to notice that the groups obtained for the
COV models are more similar to it than the groups obtained from the second step estima-
tion of the non-scalar COR models; this is due to the fact that the grouping procedure of
these COR models does not depend on the parameters of the variance processes, contrary
to the procedure for the COV models.

We have estimated the 14 models 1) in their full parametrizations; 2) in their reduced
ones, using the grouping shown in Table 2; 3) in reduced parameterizations using for each
model the grouping in 5 groups shown in the first column of Table 2 (obtained in the first
step estimation of COR models). The third set of estimations is interesting because the
grouping is simple and quick to obtain since it does not require the estimation of a full pa-
rameterization, which, for large n, is time consuming and may not be feasible. Actually,
we were able to get the parameter estimates of all models, but for the full parameteriza-
tions of COR-S-1s, COR-R1-Pt, COR-R1-Rt, COV -R1-Rt and COV -EO, we could
not get a proper Hessian and hence the ‘sandwich’ (robust) covariance estimator; for this
model we use the OPG (outer-product of gradient) covariance estimator. The gradient and
Hessian are computed by numerical differentiation (using GAUSS).

In Table 3 we report a synthesis of the three sets of estimations. The table shows for
each model the number of estimated parameters (including those of the first step for COR
models), the maximized log-likelihood value (MaxLL), and the Akaike and Bayesian
information criteria (AIC and BIC).
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Table 2: Groups of parameters (identified by the stock ticker) for non-scalar models

COR Models COV Models
Stock first step S-1s R1 R1-Pt R1-Rt R1 R1-Pt R1-Rt EO
AAPL 1 1 1 1 1 1 1 1 1
AXP 2 2 2 1 2 2 2 2 2
BA 3 3 2 2 1 3 3 3 3
CAT 3 3 1 1 2 3 3 3 3
CSCO 4 4 2 2 1 4 4 4 4
CVX 1 1 1 1 2 1 1 1 1
DIS 1 1 2 1 1 1 1 1 1
DWDP 3 3 1 1 2 1 1 4 3
GE 2 4 2 1 1 2 4 1 4
GS 1 1 1 3 3 1 1 1 1
HD 1 1 2 1 1 4 1 4 1
IBM 1 3 2 2 1 1 1 1 1
INTC 1 1 2 2 1 3 1 4 3
JNJ 3 3 3 4 4 1 1 4 1
JPM 2 2 1 3 3 2 2 2 4
KO 3 3 2 4 4 3 3 3 3
MCD 5 1 2 4 4 3 3 3 4
MMM 1 1 3 4 4 1 1 4 3
MRK 3 3 4 5 5 3 3 3 3
MSFT 3 3 3 6 4 3 3 3 3
NKE 3 3 3 6 4 3 3 3 1
PFE 3 3 5 7 5 3 3 3 3
PG 3 3 3 6 4 1 1 4 3
TRV 4 4 5 7 5 4 4 4 2
UNH 3 3 6 8 6 3 3 3 1
UTX 3 3 3 6 4 3 1 4 3
VZ 5 1 6 8 6 3 3 3 3
WMT 3 3 6 8 6 3 3 3 3
XOM 1 1 3 6 4 1 1 4 3
number of groups 5 4 6 8 6 4 4 4 4

For each model, the group to which a stock belongs is identified by a value from 1 to the number indicated
in the last row of the table.
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Table 3: Number of estimated parameters (Np), maximized log–Likelihood (MaxLL),
Akaike (AIC) and Bayesian (BIC) information criteria of fully parameterized models,
reduced models with ng groups and with the five groups shown in Table 2, column 2

Full Parameterization ng groups 5 groups
Np MaxLL AIC BIC ng Np MaxLL AIC BIC Np MaxLL AIC BIC

COR-S-1s 60 -116916 54.181 54.269 4 10 -116922 54.160 54.175 12 -116922 54.161 54.179
COR-S 60 -116945 54.194 54.282 12 -116949 54.174 54.192
COR-S-Pt 61 -116938 54.191 54.281 13 -116942 54.171 54.190
COR-S-Rt 61 -116940 54.192 54.282 13 -116945 54.172 54.191
COR-R1 116 -116935 54.215 54.387 6 70 -116937 54.195 54.298 20 -116948 54.177 54.206
COR-R1-Pt 117 -116930 54.214 54.386 8 75 -116932 54.194 54.302 21 -116941 54.174 54.205
COR-R1-Rt 117 -116932 54.215 54.387 6 71 -116934 54.194 54.299 21 -116942 54.174 54.205
COV -S 2 -117444 54.398 54.401
COV -S-Pt 3 -117404 54.380 54.385
COV -S-Rt 3 -117384 54.371 54.376
COV -R1 58 -117409 54.408 54.494 4 8 -117418 54.389 54.401 10 -117420 54.391 54.406
COV -R1-Pt 59 -117385 54.397 54.484 4 9 -117389 54.376 54.389 11 -117390 54.378 54.394
COV -R1-Rt 59 -117372 54.391 54.478 4 9 -117372 54.368 54.381 11 -117373 54.370 54.386
COV -EO 60 -117177 54.302 54.390 4 10 -117183 54.281 54.296 12 -117187 54.284 54.302

It is clear that each full parameterization provides a MaxLL value that hardly improves
that of the corresponding reduced model and, as a consequence, the reduced models have
higher AIC and BIC values. For example, COR-R1-Pt has 117 parameters in the full pa-
rameterization, but its MaxLL is only 2 points greater than in the model with 8 groups and
75 parameters, and 11 points greater than the 5 groups model with 21 parameters. In gen-
eral, for the COR models, each 5-group model identified from the variance parameters is
a valid alternative to the same model with groups identified from the correlation param-
eters: the AIC and BIC are lower, except for COR-S-1s model (where the difference is
0.001 for AIC and 0.004 for BIC), which identifies the groups again from the variance
parameters. The opposite is true for COV models: the models with 5 groups have higher
AIC and BIC than the models with ng = 4 groups, but the differences between the two
reduced alternatives are rather small. We conclude that in practice, it is acceptable to use
the reduced models obtained by the grouping based on the variance parameters, which is
good news since this type of grouping is feasible even with a large number of assets.

In the set of COR models, the COR-S-1s models have much higher MaxLL than
the other models. The two restricted COR-S-1s models are acceptable reductions of
the unrestricted one according to likelihood ratio (LR) chi-square statistics (both equal to
12, with 56 or 48 degrees of freedom); this is confirmed by their lowest AIC and BIC.
Among the models estimated in two steps, the unrestricted COR-R1-Pt has the highest
MaxLL. LR tests do not reject each unrestricted S version against the corresponding R1
version, all p-values being larger than 0.99; considering the 5-group models, the same
holds, except that S − Rt is rejected against R1-Rt at the 7% level (p-value = 0.067).
Interestingly, each model with constant B matrix is rejected against the corresponding
HE model, the largest p-value being 0.047 for S versus S-Rt in the 5-group case, all the
other being less than 0.014.

Among the COV models, the three COV -EO models have much higher MaxLL
and lower AIC and BIC than the other models. COV -EO can be considered the COV
version of COR-S-1s in term of specification and estimation, since both have specific
parameters for each variance process, and equal parameters for the covariances in the
case of COV and the correlations in the case of COR; moreover, they are estimated in

14



one step. Nevertheless, COV -EO is dominated by COR-S-1s in term of AIC and BIC.
Concerning the comparison of COV -R1 and COV -S models, the result is quite dif-

ferent from what it is for COR models: each S model is rejected against the correspond-
ing R1 and against EO, both for unrestricted models as for 5-group ones (all p-values
being less the 0.001, except one that is equal to 0.10 for unrestricted S against unrestricted
R1). Like for COR models, each model with constant A matrix is rejected against the
corresponding HE model, all p-values being less than 0.001.

Globally, COR models have lower AIC and BIC than COV models. The MaxLL
values of COV and COR models are not comparable because the models have different
parameterizations, in particular of the constant terms of the variance processes – compare
(2.4) and (3.3). Other model comparisons, in terms of forecasting performances, are
presented in subsections 5.2 and 5.3.

5.1.2 Estimation results for COR and COV models with 5 groups

COR models

The estimation results for the scalar COR models and the rank-one (R1) models with
5 groups are reported in Table 4. The upper part of the Table shows the parameters of
the variance equations estimated with the COR-S-1s model and in the first step of 2-
step estimation for the other models. Each lagged realized variance impact coefficient
(αi) is smaller in joint estimation than in univariate estimation (with differences between
0.08 and 0.04), whereas each lagged conditional variance coefficient (βi) is larger (with
differences between 0.09 and 0.04), hence the estimates of the persistence effect (αi+βi)
is almost the same in both estimations. One can also notice the smaller standard errors of
the 1-step estimation.

Considering the correlation parameters (bottom part of the Table), the differences are
small within the scalar models and within the R1 models, and they are slightly stronger
between them. The small but significant3 estimates of φB imply a time-varying impact
coefficient for the lagged Qt matrix in (3.4); in particular the impact coefficient varies
between 0.864 and 0.876 in the COR-S-Pt model and between 0.866 and 0.875 in the
COR-S-Rt model. For the R1 models, we can notice slightly different coefficients for the
different groups; in particular for COR-R1-Pt (COR-R1-Rt) the bi minimum coefficient
is 0.867 (0.866) for group 2, and the maximum is 0.886 (0.885) in group 4. Actually, the
scalar model (estimated in two steps) is not rejected against any R1 version: the largest
likelihood ratio statistic between R1 and S occurs for R1-Pt and is about 6, for 9 degrees
of freedom (see last column of Table 3 for MaxLL values).

3The z-ratios are 3.5, 2.5, 3 and 1.66. LR tests also point to the same conclusion (see subsection 5.1.1).
However, the test is not standard, the null (φB = 0) being at the boundary of the parameter admissible
values (φB ≥ 0). Bauwens and Otranto (2020) show by a Monte Carlo study that in the DCC MGARCH
model (with the HE extension), the distribution of the z-ratio is close to N(0,1) if the sample size is ’large
enough’ and the true value is not ‘too close’ to zero.
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Table 4: Estimation results of scalar COR model and R1 versions with 5 groups (robust
standard errors in parentheses)

Variance Part
Parameters S-1s first step

α1 0.390 0.469
(0.024) (0.031)

α2 0.425 0.508
(0.022) (0.029)

α3 0.372 0.434
(0.021) (0.024)

α4 0.377 0.446
(0.021) (0.029)

α5 0.339 0.376
(0.026) (0.027)

β1 0.591 0.508
(0.025) (0.033)

β2 0.562 0.476
(0.023) (0.031)

β3 0.603 0.537
(0.023) (0.027)

β4 0.611 0.539
(0.023) (0.031)

β5 0.645 0.608
(0.028) (0.029)

Correlation Part
S-1s S S-Pt S-Rt R1 R1-Pt R1-Rt

a1 0.096 0.099 0.101 0.102 0.108 0.107 0.108
(0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006)

a2 0.108 0.110 0.110
(0.009) (0.008) (0.008)

a3 0.095 0.097 0.098
(0.008) (0.007) (0.007)

a4 0.090 0.096 0.096
(0.010) (0.009) (0.009)

a5 0.092 0.093 0.093
(0.006) (0.006) (0.006)

b1 0.881 0.875 0.876 0.875 0.866 0.870 0.868
(0.007) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008)

b2 0.865 0.867 0.866
(0.012) (0.011) (0.011)

b3 0.880 0.880 0.879
(0.011) (0.009) (0.010)

b4 0.891 0.885 0.886
(0.013) (0.012) (0.012)

b5 0.878 0.881 0.880
(0.008) (0.008) (0.008)

φB 0.007 0.005 0.006 0.005
(0.002) (0.002) (0.002) (0.003)

The models are defined in the beginning of Section 5. All models except COR-S-1s
are estimated in two steps, the first step results being the same (given in the third col-
umn of the upper part). For COR-S-1s, all parameters are estimated simultaneously.
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COV models

The estimation results for the scalar COV models and the non-scalar ones with 5 groups
are shown in Table 5. The positive and significant4 estimated φA imply time–varying
impact coefficients for the lagged realized covariances through the At matrix in (3.3); in
particular the coefficients vary between 0.250 and 0.274 for COV -S-Pt, and between
0.253 and 0.279 for the COV -S-Rt.

In the R1 models, the (ai, bi) parameters vary between groups, for example between
(0.225, 0.759) for group 5 and (0.296,0.683) for group 2 in the R1 model of the fifth col-
umn of the table. One can notice that when ai > aj is higher, bj > bi, so that persistence
(ai + bi) is more stable across the groups than each of the two parameters.

The EO estimates vary less between groups than in the R1 models. It can be noticed
that ac < ai but that bc > bi for each i; nevertheless, cacb < aibi , so that as discussed in
Appendix A, the conditional covariance matrices St are positive definite (for all t) at the
QML estimates.

Graphical illustration of time-varying impacts

The pattern of the time–varying coefficients is illustrated in the example of Figure 1,
where the time-varying coefficient bij,t (for i = AXP , j = JPM ) for the COR-R1-Pt
and COR-R1-Rt models (upper part of the figure) is shown, whereas in the bottom part
aij,t is shown for COV -R1-Pt and COV -R1-Rt. Obviously, the dynamics is smoother
when the driving variable is the conditional correlation (Rt models) than the realized
correlation (Pt models).

Comparison of estimated A and B matrices

The comparison of the estimated B matrices (of size 29) of the different COR models and
the estimated A matrices of the different COV models is not easy by inspection of Tables
4 and 5. For each model the implied matrix of size 29 is computed using the estimated
parameters. Table 6 shows the squared Frobenius distances for all pairs of B of the seven
COR models and for all pairs of A of the seven COV models. For the time–varying
models (S-Pt, S-Rt, R1-Pt, R1-Rt), the value used in the distance computations is the
average of the time-varying matrices.

For the COR models the distances are very small and in some cases practically null,
as between the two time–varying models S-Pt and S-Rt and between R1-Pt and R1-Rt;
the largest (but also contained) differences occur when one of the terms of the comparison
is S-1s (in which all the parameters are estimated simultaneously). Higher differences
are present between the A matrices in the COV models, where there are no common
estimations (whereas the first step estimation is common in six COR models). The A
matrix which seems really different from the other is that of the COV -EO model, where
the covariance part has proper parameters, not dependent on the parameters of the variance
part as in the R1 models.

4Three z-ratios are larger than 4.45, the fourth one being equal to 2.56. LR tests also point to the same
conclusion (see subsection 5.1.1). The caveat discussed in footnote 3 applies.
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Table 5: Estimation results of scalar COV model and non-scalar versions with 5 groups
(robust standard errors in parentheses)

Parameters S S-Pt S-Rt R1 R1-Pt R1-Rt EO
a1 0.251 0.274 0.279 0.277 0.290 0.291 0.274

(0.010) (0.014) (0.016) (0.016) (0.020) (0.019) (0.014)
a2 0.296 0.300 0.303 0.287

(0.015) (0.017) (0.016) (0.016)
a3 0.235 0.262 0.267 0.282

(0.009) (0.019) (0.016) (0.016)
a4 0.249 0.266 0.286 0.302

(0.013) (0.015) (0.013) (0.021)
a5 0.225 0.255 0.264 0.283

(0.011) (0.018) (0.013) (0.019)
b1 0.736 0.725 0.721 0.712 0.710 0.709 0.721

(0.011) (0.013) (0.014) (0.016) (0.016) (0.016) (0.012)
b2 0.683 0.691 0.689 0.704

(0.016) (0.015) (0.015) (0.015)
b3 0.754 0.737 0.733 0.716

(0.010) (0.016) (0.014) (0.015)
b4 0.731 0.726 0.713 0.691

(0.013) (0.014) (0.012) (0.020)
b5 0.759 0.742 0.736 0.712

(0.011) (0.015) (0.012) (0.017)
ac 0.201

(0.009)
bc 0.786

(0.010)
φA 0.045 0.049 0.041 0.046

(0.009) (0.011) (0.016) (0.009)
The models are defined in the beginning of Section 5.
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Figure 1: Time series of the bij,t coefficients (upper graphs) estimated with the COR-R1-
Pt and the COR-R1-Rt models, and of the aij,t coefficients estimated with the COV -
R1-Pt and the COV -R1-Rt models. The coefficients are for the asset pair AXP–JPM.
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Table 6: Distances between the B matrices of the different COR models and the A
matrices of the different COV models

Distance between B matrices in COR models
S S − Pt S −Rt R1 R1− Pt R1−Rt

S − 1s 0.500 1.119 1.200 0.948 1.302 1.399
S 0.129 0.155 0.404 0.323 0.377

S − Pt 0.002 0.525 0.211 0.248
S −Rt 0.545 0.211 0.245

R1 0.149 0.149
R1− Pt 0.003

Distance between A matrices in COV models
S − Pt S −Rt R1 R1− Pt R1−Rt EO

S 2.470 3.915 3.434 4.055 5.285 30.394
S − Pt 0.166 4.819 1.346 1.295 50.044
S −Rt 5.995 1.458 1.072 55.982

R1 2.161 3.635 37.307
R1− Pt 0.300 52.272
R1−Rt 58.040

Each value is 100 times the squared Frobenius norm (= traceX ′X) of the difference (X) be-
tween the estimated matrices of the models in the row and column headers.

In practice, it seems that when the correlation and covariance coefficients do not de-
pend on the variance coefficients, their estimation is a bit different with respect to the
models containing this constraint.

5.2 Covariance Matrix In–sample Fit Evaluation
An additional ’in-sample’ comparison of the estimated models is performed using loss
functions that allow us to compare the fitted and realized covariance matrices. The statis-
tical loss functions adopted are the means of the Quasi-Likelihood function (QLIK) and
of the squared Frobenius norm (FN); both functions are consistent in the sense of Patton
(2011), Patton and Sheppard (2009), and Laurent et al. (2013). They are defined as

QLIK =
1

T

T∑

t=1

{
ln |Ŝt|+ trace

(
Ŝ−1

t Ct

)}
, (5.1)

FN =
1

T

T∑

t=1

trace
[(

Ŝt −Ct

)′ (
Ŝt −Ct

)]
=

1

T

T∑

t=1

n∑

i=1

n∑

j=1

(ŝij,t − cij,t)
2, (5.2)

where Ŝt is the estimated conditional covariance at time t and T is the sample size.5
Moreover, we consider an economic loss function, based on theoretical portfolio perfor-
mances, following the global minimum variance portfolio approach of Engle and Colacito
(2006). In practice, the loss consists in evaluating the variance of a portfolio with weights

5The QLIK loss function (5.1) is equal to the estimation objective function (2.2) (setting St(θ) = Ŝt),
multiplied by −2/ν, to make it a loss and remove the nuisance parameter ν. Another estimation criterion
consists in minimizing the FN loss function (5.2) where Ŝt is replaced by the specified St(θ).
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obtained as in the classical portfolio problem combining expected returns and the covari-
ance matrix, setting all the expected returns to 1/

√
n (so that the corresponding vector has

length equal to one). In this way the portfolios are compared only in terms of covariance
matrix and not of return dimension. The GMVP loss function is defined as

GMVP =
1

T

T∑

t=1

ŵt
′Ŝtŵt (5.3)

where ŵt =
√
nŜ−1

t jn/(j ′nŜ
−1
t jn) (with jn a vector of ones) is the global minimum vari-

ance weight vector associated to Ŝt when the expected return vector is equal to jn/
√
n.6

For each loss function, the Model Confidence Set (MCS) procedure of Hansen et al.
(2003, 2011) is used to identify the best models with a chosen level of confidence. To
compute it, we adopt the semi-quadratic test statistic

∑
i $=j∈M[l̄2ij/V̂ ar(l̄ij)], where l̄ij is

the mean of the loss differences between model i and model j belonging to the set of
models M; the variance of l̄ij is obtained by the bootstrap procedure of Hansen et al.
(2003), with 10,000 replications.

Figure 2 shows the values of the three losses for the fourteen models listed in the
beginning of this section, using their 5-group versions (ie, with the grouping resulting
from the algorithm applied to the univariate models for the variances). The results for the
models using their full parameterizations are not shown because they are almost identical.
The COR models clearly provide lower QLIK losses than the COV models, with the
lowest value for COR-S-1s. The 95% (confidence level) MCS consists of COR-S-1s,
COR-S-Pt and COR-R1-Pt (the black squares in the graph identify the models with non
significant differences of the losses at the 5% nominal size of the tests). The COR-S-1s
model and the non time–varying COV models have the lowest FN losses, but all models
belong to the 95% MCS, meaning they cannot be discriminated in terms of in–sample fit
performance of this kind. For the GMVP loss, the COR models have lower values than
the COV models, and COR-R1-Pt has the lowest one and is alone in the 95% MCS.

5.3 Covariance Matrix Out–of–sample Forecast Evaluation
To compare the model performances in out–of–sample forecasts of the covariance matrix,
the models (in their 5-group versions) have been estimated once for all on the reduced
period from January 2, 2001 to December 31, 2015 (T = 3744). The remaining 575
realized covariance matrices serve for the out–of–sample evaluations. They are compared
to the 1-, 5- and 22-step forecasted covariance matrices. The QLIK, FN and GMVP losses
are computed for the 575 forecasts (a few less at horizons 5 and 22). Figure 3 shows the
values of the losses and the 95% MCS for the three forecast horizons.

Regarding QLIK, we notice an improved performance, compared to the in-sample re-
sults, of the simplest models. This is in line with the empirical observation that more
sophisticated models have a better in–sample performance, whereas simpler models tend

6GMVP as defined by (5.3) does not seem to be a loss function: actually it should be defined as
1
T

∑T
t=1(ŵt

′Ŝtŵt −w′
tΣtwt) where Σt is the true covariance matrix and wt is defined like ŵt but using

Σt. Because ŵt
′Ŝtŵt

′ ≥ w′
tΣtwt (see Theorem 1 of Engle and Colacito, 2006) and w′

tΣtwt does not
depend on a model, neglecting these terms does not change the ranking of different models.
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Figure 2: In–sample evaluation of 5-group models: QLIK, FN and GMVP losses and
95% MCS (shown by the black squares) for the covariance matrices

The models are defined in the beginning of Section 5.

Figure 3: Out–of–sample evaluation of 5 group models for 1-, 5- and 22-step forecasts:
QLIK, FN and GMVP losses and 95% MCS (shown by the black squares) for the covari-
ance matrices

The models are defined in the beginning of Section 5.
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to perform better in out–of–sample forecasts (see, for example, Hansen, 2010). In par-
ticular COR-S and COR-R1 are in the 95% MCS of the 1–step forecasts for covariance
matrices. Increasing the forecast horizon, all COV models reverse their performance with
respect to COR models. The model with the smallest number of parameters (COV -S) is
alone in the 95% MCS.

The FN loss values are clearly the lowest for the COR models in the 1–step forecasts,
but as for the in–sample results, all the models belong to the 95 % MCS. Increasing the
forecast horizon, the COV models reverse their performance with respect to the COR
models. COR models are completely ejected from the 95% MCS at horizon 22 (and
partly at horizon 5), which contain all COV models (except one at horizon 22).

The GMVP loss provides the most stable results across the three horizons: the COR-
S-Pt is included in the 95% MCS at the three horizons. COR-R1-Pt model is the best
model in the in–sample results, and it is again the best one in the 1–step–ahead covariance
forecasts, together with the simpler COR-S-Pt. The latter is in the 95% MCS also in the
5- and 22-step cases, with the analogous COV -S-Pt (and also COV -S-Rt in the 5-step
case).

In short, the simplest models are favoured in out–of–sample evaluations, in particular
the more parsimonious COV models when the forecast horizon increases. Interestingly,
the HE parameterizations provide added value significantly (see the MCS), in particular
using the realized correlations as driving variables of the time–varying coefficients.

5.4 Decomposing FN and GMVP between variance and covariance
contributions

For given weight vectors, the GMVP loss function (5.3) can be decomposed as the sum
of the variance contribution and the covariance one:

GMVP =
1

T

T∑

t=1

ŵt
′V̂tŵt +

1

T

T∑

t=1

ŵt
′Ŵtŵt, (5.4)

since Ŝt = V̂t+Ŵt, where the first matrix is the diagonal matrix containing the variances
and the second one has zero values on its main diagonal and the covariances elsewhere.
Likewise, the FN loss function (5.2) can be decomposed as

FN =
1

T

T∑

t=1

(
∑

i

(ŝii,t − cii,t)
2 + 2

∑

i<j

(ŝij,t − cij,t)
2). (5.5)

The QLIK function cannot be broken down into a part that depends only on the covari-
ances and a part that depends only on the variances.

Table 7 shows the variance and covariance contributions to FN and GMVP values for
each model. Considering the 5- and 22-step results, two observations emerge about the
FN results: 1) the covariance contributions of the COV models are much lower (by about
30%) than those of the COR models; 2) the models in the MCS sets always correspond to
lower covariance contributions compared to the excluded models; notice that in the 5-step
case this happens also for the COR models that are in the MCS, but much less than for
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the COV models. Hence, it seems that at the larger forecasting horizons, the covariances
determine more than the variances which models belong to the MCS sets.

For GMVP, the COR models have systematically a lower variance loss and a higher
covariance loss than the COV models; the differences are of the order of 10% in-sample
and out-of-sample at horizon 1, and 10 to 30% at the larger horizons. Since the total losses
of the COR and COV models are close (they differ by 4% in-sample and out-of-sample
at horizon 1, and by less than 1% at horizons 5 and 22), there is a kind of substitution
effect between the two parts. Moreover, the shares of covariance contributions increase
with the forecast horizon: they are on average (across models) 44% for COV and 51%
for COR at horizon 1, 51 and 68 at horizon 5, and 62 and 74 at horizon 22.

6 Concluding Remarks
In the family of CAW models for realized covariance matrices, we have proposed a new
class of models, with the characteristics of a greater flexibility than previous models, pro-
viding the possibility to estimate different and changing dynamics for each element of the
realized covariance matrix. The new models just add one parameter with respect to their
classical versions. This is obtained thanks to parameterizations based on the Hadamard
exponential matrix function, which possesses the nice property to guarantee the positive
definiteness of the matrix of parameters. The HE-CAW models show, in most cases, a
better performance, both in–sample and out–of–sample for different forecasting horizons,
with respect to the classical CAW models, both in the COV (BEKK-type) version and the
COR (DCC-type) one. The COR models have the advantage to be estimable in two steps,
which is useful since they are heavily parameterized for a large number of assets. This
heaviness occurs because the dynamic variance processes have asset specific parameters,
which is clearly an advantage in terms of fitting quality. The HE COR parameterizations
provide empirically a better out–of–sample forecasting performance than the scalar COR
model estimated in one step (called COR-S-1s) which can be considered as a benchmark
model but has the disadvantage of being difficult to estimate for a large number of assets.

We have proposed a parameterization of the HE term of the new models based on
lagged realized or conditional correlations, but in principle any positive definite matrix
Mt in (3.1) can be used provided it can be justified by an economic argument. The models
can be extended to include so-called asymmetric effects, whereby the impact of the lagged
variance on the next conditional variance is stronger when the lagged return is negative,
while the same holds for a covariance when both lagged returns are negative. For COV
models, this asymmetric effect is captured by adding the term G ! dt−1d′

t−1 ! Ct−1 to
(3.3), where di,t−1 = 1 if the daily return ri,t−1 is negative, and di,t−1 = 0 if it is positive.
The HE parameterization can also be used in other models such as of HAR-type (Chiriac
and Voev, 2010; Oh and Patton, 2016). An extensive horse-race between CAW, HAR, and
other models was not the goal of this paper and would be of interest in a different paper.
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Table 7: Variance and covariance contributions to the FN and GVMP loss functions for
the 5-group models

FN
in-sample out-of-sample forecasts

1 step 5 steps 22 steps
Model var cov var cov var cov var cov
COR-S-1s 2081.0 9350.5 160.6 843.2 231.4 1355.0 214.6 1318.5
COR-S 2062.8 9475.5 160.8 828.5 231.3 1384.9 214.4 1334.2
COR-S-Pt 2062.8 9489.7 160.8 829.0 231.3 1369.6 214.4 1295.3
COR-S-Rt 2062.8 9487.0 160.8 828.7 231.3 1373.9 214.4 1302.6
COR-R1 2062.8 9477.9 160.8 828.6 231.3 1382.6 214.4 1331.1
COR-R1-Pt 2062.8 9491.7 160.8 829.0 231.3 1368.2 214.4 1294.5
COR-R1-Rt 2062.8 9489.0 160.8 828.7 231.3 1372.3 214.4 1301.6
COV-S 2065.2 9427.0 164.3 883.8 167.8 891.3 192.1 914.8
COV-S-Pt 2083.9 9494.1 165.7 885.2 171.4 893.5 215.9 895.4
COV-S-Rt 2085.3 9491.3 165.6 883.5 171.6 892.3 221.3 895.5
COV-R1 2060.2 9428.5 164.1 881.8 167.9 889.2 195.9 917.7
COV-R1-Pt 2077.8 9487.0 165.4 883.7 171.1 891.5 216.2 896.6
COV-R1-Rt 2078.9 9485.5 165.4 882.1 171.3 890.4 221.1 895.8
COV-EO 2072.9 9418.6 165.3 907.1 171.4 917.8 222.8 945.9

GMVP
in-sample out-of-sample forecasts

1 step 5 steps 22 steps
Model var cov var cov var cov var cov
COR-S-1s 13.00 7.66 4.98 5.09 3.79 7.81 4.10 11.40
COR-S 13.00 7.41 4.84 4.98 3.74 7.85 4.16 11.74
COR-S-Pt 12.69 7.41 4.71 4.88 3.59 7.64 3.93 11.22
COR-S-Rt 12.75 7.41 4.74 4.90 3.62 7.67 3.97 11.31
COR-R1 12.93 7.46 4.83 4.98 3.72 7.88 4.13 11.78
COR-R1-Pt 12.64 7.44 4.71 4.88 3.58 7.66 3.91 11.25
COR-R1-Rt 12.70 7.44 4.74 4.90 3.61 7.70 3.96 11.35
COV-S 14.63 6.21 5.60 4.52 5.66 5.70 6.03 9.38
COV-S-Pt 14.26 6.75 5.61 4.34 5.61 5.49 5.82 9.23
COV-S-Rt 14.12 6.90 5.55 4.37 5.56 5.54 5.81 9.33
COV-R1 14.45 6.60 5.61 4.62 5.62 5.95 6.05 9.95
COV-R1-Pt 14.20 6.96 5.60 4.45 5.59 5.72 5.83 9.74
COV-R1-Rt 14.06 7.11 5.55 4.47 5.54 5.76 5.78 9.91
COV-EO 13.45 8.20 5.96 4.63 5.47 6.47 5.89 10.54

The gray cells identify the models belonging to the 95% MCS (see Figures 2 and 3).
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Appendix: Positive semidefiniteness of the matrices A and
B of the COV -EO model
We discuss the issue when the matrix A, and therefore also the scalar ā, of (3.3) are
constant, but the discussion is valid also for B. The equation is

St = (1− ā− b̄)C̄ +A!Ct−1 +BSt−1.

In the EO parameterization, A is a matrix with diagonal elements a1, . . . , an, and equal
off-diagonal elements ac, with 0 ≤ ac ≤ ai < 1 for each i = 1, ...n. By expressing A as
DA + acJn, where DA = diag(A)− acIn, an application of the Sherman and Morrison
formula (see, for example, Hager, 1989) gives

det(A) = det(DA) + acj
′
nadj(DA)jn =

n∏

i=1

(ai − ac) + ac

n∑

i=1

∏

j $=i

(aj − ac),

where jn is a column of ones. It is straightforward to check that 0 ≤ ac ≤ ai for each
i = 1, ...n, is a sufficient condition to obtain a non-negative determinant. Moreover, the
nonnegativity of ac is a logical requirement: considering a generic off-diagonal element of
St (one of the conditional covariances), a negative ac implies that an increase (decrease)
in the corresponding lagged realized covariance decreases (increases) the conditional co-
variance, which does not make sense. The constraint ac ≤ ai for each i is a bit more
restrictive, but in line with the constraints of a rank-1 parameterization, where the coef-
ficient of the covariance in position (i, j) is given by the product of ai and aj , both less
than 1, so that this covariance coefficient is smaller than ai and aj .

In our estimations, we noticed that the positive semidefinitess of the matrix A can be
obtained with weaker constraints. If we substitute St−1 with its expression we obtain

St = (1− ā− b̄)C̄+A!Ct−1+(1− ā− b̄)(C̄!B)+(A!B)!Ct−2.+(B!B)!St−2.

We always obtain in estimations that cacb < aibi for each i; this implies that A ! B is
positive definite because its diagonal elements are greater than its off–diagonal elements.
Moreover C̄ !B is also positive definite because C̄ and B are positive definite. Contin-
uing the substitution of the lag of St in the previous equation, we obtain:

St = (1− ā− b̄)
t−1∑

k=1

(C̄ !B#k) +A! (
t−1∑

k=1

B#k !Ct−i−1) +
t∑

k=1

B#k ! S0

where B#k = B !B ! · · ·!B (k times). The last term is negligible for large t; using
a starting matrix as S0 = C̄, the previous comments apply as well.

In brief, the previous developments explain that imposing cacb < aibi for each i did
not result in non-positive definite St matrices during our estimations.
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