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1 Introduction
The increasing globalization of financial markets and the enduring quest of asset and risk
management techniques have developed a large interest in multivariate volatility modeling
of asset returns, resulting in a long sequence of proposals to represent the interdependence
of financial markets. The seminal paper of Engle (2002) has triggered the development of
models based on a two-step specification and estimation procedure, where the volatility
of each single asset return is estimated in the first step within a univariate model, and the
correlation model is estimated in the second step. Only the second step genuinely consists
of a multivariate model linking a set of financial returns. The multivariate aspect, coupled
with the related difficulty of estimation, justifies that many efforts were devoted to pro-
pose models featuring a small number of parameters (to save the feasibility of estimation)
but able to capture the main stylized facts of the correlations. This evolution has enriched
the models belonging to the GARCH family, working under the conditioning on the past
information: the Constant Conditional Correlation (CCC) model of Bollerslev (1990) has
been followed by the Dynamic Conditional Correlation (DCC) models of Engle (2002)
and the Time-Varying Correlation (TVC) of Tse and Tsui (2002), which provide time-
varying conditional correlations between assets, with a GARCH-type dynamics. Concur-
rently, the smooth transition (STCC) model of Silvennoinen and Teräsvirta (2015) and the
Regime Switching Dynamic Correlation (RSDC) model of Pelletier (2006) were designed
to capture the presence of smooth and abrupt changes in the correlation dynamics, respec-
tively. All the previously mentioned models have been extended by Bauwens and Otranto
(2016) to include the dependence of the correlations on the market volatility, resulting in
the wide class of Volatility Dependent Conditional Correlation (VDCC) models.

A solid body of empirical evidence confirms the presence of regimes in the condi-
tional correlations of financial markets, see e.g. Billio and Caporin (2005), Lee and Yoder
(2007), Silvennoinen and Teräsvirta (2012), and Bauwens and Otranto (2016). In fact, it
is linked to co-movements in volatility, which is frequently subjected to abrupt changes,
as shown by Gallo and Otranto (2015 and 2018). The RSDC model of Pelletier (2006) is
a simple solution to include regime changes in the correlation dynamics, but with some
strong constraints on the parameters. Pelletier distinguishes between the case of at most
three assets and the case of a larger number: only in the former it is possible to estimate
different parameters that characterize the conditional correlation of each pair of assets,
whereas in the latter it is necessary to assume common parameters. This is a strong
constraint that typically limits the performance of the RSDC model. In this respect, the
examples shown by Bauwens and Otranto (2016) are instructive: when they use three as-
sets and estimate the most widespread conditional correlation models (CCC, DCC, STCC,
RSDC) and their VDCC extensions without constraints on the correlation parameters, the
RSDC family clearly outperforms all the others; when they use thirty stocks imposing
a common dynamics to all the correlations, the models with a GARCH-type dynamics
(DCC) have a better in-sample and out-of-sample forecasting performance.

To avoid imposing the constraints of a common dynamics on conditional correlations
in large dimensions, new versions of the DCC model and of the RSDC model are intro-
duced. These models provide a specific dynamics to each correlation. They use parame-
terizations implying a nonlinear autoregressive form of dependence on lagged correlations
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and are based on properties of the Hadamard exponential matrix. The parameterizations
proposed for these new models ensure the positive definiteness of the conditional corre-
lation matrix and in their simplest versions they require the estimation of one parameter
more than the corresponding scalar forms of DCC (Engle, 2002; Aielli, 2013) and the
RSDC (Pelletier, 2006). More flexible versions of the models are also available, with the
introduction of a larger number of parameters, for which a general-to-specific procedure
is proposed to identify a more parsimonious model. The new models, called the NonLin-
ear AutoRegressive Correlation (NLARC) and the Flexible RSDC (FRSDC) models, are
applied to a data set of twenty stock market indices, comparing them to Aielli’s version
of the DCC model (Aielli, 2013) and the RSDC model of Pelletier (2006). The empirical
results show that the new models improve their classical versions in terms of statistical
fit criteria and in-sample forecasting performance, while differences are small in out-of-
sample forecast comparisons.

The paper is structured in five sections. Section 2 sets the modeling framework, re-
minding the DCC and the RSDC models and underlying their constraints. Section 3
introduces the NLARC and FRSDC models and their properties, describing also the pos-
sible parameterizations of the Hadamard exponential of the conditional correlation matrix.
Section 4 illustrates the new models on real data, and compares them to the RSDC and
DCC models both in in-sample and out-of-sample terms. Section 5 concludes the paper.

2 The Modeling Framework
Let us consider a set of time series of n asset returns at time t collected in the vector
y
t

, and available for t = 1, 2, . . . , T . Denoting by  
t

the information set containing
all the values of the returns until time t, y

t

| 
t�1 is assumed to follow a multivariate

Normal distribution with zero mean and covariance matrix H
t

= S
t

R
t

S
t

, where S
t

is the diagonal matrix containing the conditional standard deviations of the returns and
R

t

= (⇢
ij,t

) is the positive definite (PD) matrix containing the conditional correlations
between the returns.

The assumption that the conditional variance of each return depends on the past re-
turns of the considered asset but not on those of the other assets is adopted, so that each
element of S

t

can be specified as a univariate GARCH model and each of these models
can be estimated independently of the other. The first step estimates of the matrices S

t

provide the ‘devolatilized’ (or ‘degarched’) residuals u
t

= S�1
t

y
t

.
After the first step, a dynamic multivariate model for the R

t

matrix can be specified
and estimated in a second step, conditioning on the results of the first step. The second
step estimation becomes prohibitive when n is large enough. The models proposed and
widely used in the literature are specified in such a way that the correlation matrix depends
on the past residuals u

t

through a small number of parameters, to make the estimation
feasible for large n.

The most widespread model is the DCC model of Engle (2002). Using the ‘corrected
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DCC‘ (cDCC) of Aielli (2013), it is given by the following equations:

R
t

=

˜Q�1
t

Q
t

˜Q�1
t

,
Q

t

= (J
n

�A�B)�C +A� ˜Q
t�1ut�1u

0
t�1

˜Q
t�1 +B �Q

t�1,
˜Q
t

= diag(pq11,t
p
q22,t, . . . ,

p
q
nn,t

)

(2.1)

where q
ii,t

(i = 1, . . . , n) are the diagonal elements of Q
t

, � indicates the Hadamard
(element-by-element) product, J

n

is a square matrix with all entries equal to unity, and
C, A and B are square and symmetric parameter matrices of order n. These matrices,
and also J

n

�A�B, must be positive semi-definite (PSD), and at least one of them must
be PD, to ensure that Q

t

be PD. In addition, the diagonal elements of C are set equal to
unity for identification (see Aielli, 2013). This model has potentially [3n(n + 1)/2] � n
parameters, involving nonlinear constraints (due to the positivity constraints), revealing
the estimation difficulty for large n. When n is not small, A and B are restricted to depend
on a small number of parameters. Engle (2002) adopts the scalar restrictions A = aJ

n

and B = bJ
n

, where a and b are non-negative scalars constrained by a+ b < 1, which is
very convenient for estimation but may be considered to be too restrictive for large n.

More flexible, still practically feasible for estimation, alternative parameterizations are
proposed by Billio et al. (2006) where each matrix M of parameters (M = A,B,C) is
restricted to be a rank-one matrix defined as the outer product mm0, where m is a n⇥ 1

vector. Bauwens et al. (2016) extend this idea to rank-two matrices and extend the scalar
model by constraining the elements of the vector m to lie on a polynomial of low degree.
Another approach is to group the assets in a small number of clusters following the same
dynamics (the same parameters in m). Otranto (2010) proposes a clustering algorithm to
detect these groups. Similar ideas are used for the nonlinear models exposed in Section 3.

An alternative to the GARCH-type dynamics of DCC models is to let the correlations
remain constant during different regimes (sequences of periods of random lengths) but let
their levels change between the different regimes. The RSDC model of Pelletier (2006)
with two regimes is of this type, but it imposes the relative change of correlation to be the
same for all correlations. More in detail, the parameterization of the RSDC model (named
RSDC-1�) proposed by Pelletier (2006) is:

R
t

= R
st , st 2 {h, l},

R
h

=

¯R, R
l

=

¯R�
l

+ I
n

(1� �
l

),
�
l

2 [0, 1],
(2.2)

where ¯R = (r̄
ij

) is the sample correlation matrix of the residuals u
t

(t = 1, 2, . . . , T ), and
s
t

is the unobserved regime indicator driven by a two-state Markov chain with transition
probabilities p

gk

= Pr(s
t

= k|s
t�1 = g), g and k 2 {h, l}, where h is the label of the

high correlation regime and l the label of the low correlation regime. R
t

is a PD corre-
lation matrix, being equal to the sample correlation under the regime of high correlation,
and a convex combination of two PD matrices under the low correlation regime.

In this model the relative variation between each element of R
l

and the corresponding
element of R

h

is the same for all pairs of assets (being equal to (1��
l

)/�
l

), and likewise
when the regime changes from h to l (being equal to �

l

�1). This feature imposes a strong
constraint on the model.
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An alternative parameterization (RSDC-2�) was proposed by Bauwens and Otranto
(2016):

R
h

=

¯R�
h

+ I
n

(1� �
h

), R
l

=

¯R�
l

+ I
n

(1� �
l

),
�
l

2 [0, 1], �
h

2 [1, 1/r̄
max

),
(2.3)

where r̄
max

(> 0) is the maximum correlation coefficient in ¯R. This model is more flex-
ible than RSDC-1� because it allows each high correlation to exceed the corresponding
sample correlation. To provide a PD R

h

matrix, it requires the constraint that the smallest
eigenvalue of ¯R be larger than (�

h

� 1) /�
h

, this being easily verified considering that
the eigenvalues of R

h

are equal to (1 � �
h

) plus the eigenvalues of ¯R multiplied by �
h

.
This restriction is not very strong, in particular when r̄

max

is close to unity. Anyway, this
model also implies that the relative variation of each correlation coefficient, switching
from state l to state h, is the same for all correlations (being equal to (�

h

� �
l

)/�
l

), and
likewise, switching from state h to state l (being equal to (�

l

� �
h

)/�
h

).
In other words, the presence of regimes in the correlations between asset returns is a

verified stylized fact, but the constraint of identical dynamics for all the correlations is a
strong hypothesis that justifies our search for more flexible models.

3 Nonlinearities and Different Dynamics in Correlations
New models are proposed, where each correlation coefficient can have a specific dynamics
or relative variation when changing regime. Nevertheless, these models can remain very
parsimonious in parameters. The proposed models include a cDCC model with a nonlin-
ear dependence of the conditional correlations on the past values of the correlations, and
two parameterizations in the regime switching framework, corresponding to extensions
of the models (2.2) and (2.3). These models involve, in their simplest specifications, one
parameter more than the scalar cDCC in the first case, and the same number of parameters
in the regime-switching models. Their formulation uses the entry-wise exponential oper-
ator of a matrix, which has the interesting property to preserve the positive definiteness
of a positive (semi-)definite matrix. The first kind of model is named the NonLinear Au-
toRegressive Correlation (NLARC) model and the second the Flexible RSDC (FRSDC)
model.

3.1 The Nonlinear Autoregressive Correlation Model
A feature of the cDCC model in its general version (2.1) is that each correlation pro-
cess has its specific dynamic parameters (a

ij

and b
ij

), so that the dynamics of different
correlations can vary considerably. This interesting property implies that the model be-
comes difficult, if not impossible, to estimate for large n since the number of parameters
is O(n2

). The scalar version of the model, where A is replaced by the scalar a and B by
the scalar b, implies on the contrary that all correlations have the same dynamic properties
and that the model is easy to estimate for large n (when C is replaced by a preliminary
estimator). Although intermediate specifications (mentioned in Section 2) exist, a new
one is proposed. It consists formally of the same equations as (2.1), with a time-varying,
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newly parameterized, matrix A, and the scalar version of B. In this version, the second
equation of (2.1) is:

Q
t

= (1� a� b)C + aA
t

� ˜Q
t�1ut�1u

0

t�1
˜Q
t�1 + bQ

t�1, (3.1)

where
A

t

= exp

�
[�

A

(R
t�1 � J

n

)] . (3.2)
For any matrix M = (m

ij

), exp�
(M ) = [exp(m

ij

)] is the corresponding Hadamard
exponential matrix, so exp

� is the entry-wise exponential operator. In (3.2), the three
scalar parameters of the model are restricted by 0  a < 1, 0  b < 1, b = 0 if a = 0,
a + b < 1, and �

A

� 0. The entry-wise exponential transformation used to obtain A
t

provides a symmetric PD matrix (see Proposition 1 below) with diagonal elements equal
to 1 and non-negative off- diagonal elements smaller than 1. In (2.1), the matrix B could
also be specified to be time–varying, but empirically this turned out not to be useful; this
is consistent with the findings of Bauwens and Otranto (2016) and Clements et al. (2018),
applying the DCC–TVV model proposed by Bauwens and Otranto (2016).

More explicitly, the dynamic equation for a diagonal element of (3.1) with parameter-
ization (3.2) is q

ii,t

= (1�a�b)+a u2
i,t�1qii,t�1+bq

ii,t�1 (C is unit-diagonal) . As shown
by Aielli (2013), this implies that E(q

ii,t

) = 1. For a covariance element q
ij,t

(i 6= j) the
dynamic equation is:

q
ij,t

= (1� a� b)c
ij

+ a exp[�
A

(⇢
ij,t�1 � 1)] u

i,t�1uj,t�1
p
q
ii,t�1qjj,t�1 + bq

ij,t�1. (3.3)

This shows that two separate autoregressive dependences are considered: one of them is
the linear dependence on the lagged covariance q

ij,t�1, with the same parameter b for all
the covariances, as in the scalar cDCC model; the other one is embedded within the matrix
A

t

and adds a nonlinear dependence on the lagged conditional correlation, the latter being
itself a linear function of q

ij,t�1. Computing the derivative of q
ij,t

with respect to q
ij,t�1

gives a�
A

exp[�
A

(⇢
ij,t�1 � 1)]u

i,t�1uj,t�1 + b, where the first term is the nonlinear and
time-varying effect. This effect is illustrated graphically in the empirical study presented
in Section 4 (see Figure 3).

The impact of the lagged covariance shock u
i,t�1uj,t�1

p
q
ii,t�1qjj,t�1 on the next co-

variance q
ij,t

is given by a
ij,t

= a exp[�
A

(⇢
ij,t�1 � 1)] 2 [0, 1). Thus it is both time-

varying and asset-pair specific through the lagged correlation ⇢
ij,t�1. Figure 1 illustrates

the estimated time series a
ij,t

for three asset pairs of the empirical study. The three lines
have different patterns even though they come from a single estimated NLARC model
(see Section 4.1). The corresponding impact for the cDCC model is constant and lower.
In the NLARC model, a given positive (negative) lagged covariance shock increases (de-
creases) more the next covariance when the lagged correlation is strong than when it is
weak. Figure 2 shows several impact curves a

ij,t

= 0.1 exp[�
A

(⇢
ij,t�1 � 1)] as functions

of ⇢
ij,t�1 for values of �

A

ranging from 0 to 1. The impact function is flat (at a = 0.1,
which is a scale coefficient and does not affect the general shape of the curves) for �

A

= 0

and a step function for �
A

approaching infinity; for positive values of �
A

, it is convex, and
increasing �

A

increases the convexity.
Moreover, a

ij,t

+ b is strictly less than 1 for each pair (i, j) such that i 6= j (because
⇢
ij,t�1 < 1 and �

A

� 0). Thus the proposed parameterization satisfies at each t one of the
sufficient conditions for stationarity (|a

ij

+ b
ij

| < 1) of the general cDCC model (2.1).
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The proposed parameterization (3.2) for the cDCC model (3.1) satisfies the required
property that the resulting Q

t

matrix be PD for all t. This result is based on the following
proposition.

Proposition 1: If D is a PSD correlation matrix, then F = exp

�
[� (D � J

n

)], is PD
if � � 0.

This proposition is based on the property according to which the entry-wise expo-
nential function preserves the positive (semi-)definiteness of a matrix. Rewriting F as
exp

�
(�D) / exp(�), since � is non-negative, the argument of the entry-wise exponential

is again PSD and the result is divided by a positive constant, so that F is PSD. Moreover,
another property of the entry-wise exponential of a PSD matrix establishes that it is PD
if no two rows of the matrix are identical (see Theorem 7.5.9 (c) in Horn and Johnson,
2013); hence if D is a PD correlation matrix and its off-diagonal elements are strictly less
than 1, then all its rows are different, so that F is PD.

In (3.2), the matrix R
t�1 is a PSD, and in practice PD, correlation matrix, so that

Proposition 1 can be applied to A
t

.
The parameterization (3.2) of A

t

is named the scalar parameterization; it is very par-
simonious, involving just one parameter. More flexibility can be reached by associating
different parameters to each element of the correlation matrix R

t�1. A natural extension
of (3.2), is given by:

A
t

= exp

�
[�

A

� (R
t�1 � J

n

)] , (3.4)

where �
A

is a square symmetric matrix with strictly non-negative entries; on the diagonal,
any fixed constant can be chosen because the elements on the diagonal of A

t

are equal to
1 by construction. A nice property of the parameterization (3.4) is given by the following
proposition.

Proposition 2: If D is a PSD correlation matrix and � is a symmetric PSD matrix
with all strictly positive entries and just one positive eigenvalue, then
F = exp� [�� (D � J

n

)] is PD.
The matrix F is actually the Hadamard product of two entry-wise exponential func-

tions:
F = exp

�
[��D]� exp

�
h
(�)

�(�1)
i
, (3.5)

where �(�1) indicates the Hadamard inverse, so that the element (i, j) of��(�1) is equal
to 1/�

ij

when �
ij

is the element (i, j) of �. � is PSD and, from Schur’s theorem, its
Hadamard product with D is PSD since D is PSD. As a consequence exp

�
[��D] is

PD because it is the entry-wise exponential of a PSD matrix with distinct rows. Bapat
(1988) has proven that the Hadamard inverse of a symmetric matrix with all positive en-
tries and just one positive eigenvalue is PSD. This implies that, under the not restrictive
hypothesis of Proposition 2, (�)

�(�1) is PSD, so that its entry-wise exponential transfor-
mation is PSD. So F is the Hadamard product of a PD matrix and a PSD matrix having
non-zero diagonal entries. By Lemma 2.2 of Reams (1999), this type of Hadamard prod-
uct provides a PD matrix.

Proposition 2 implies that, if �
A

has just one positive eigenvalue, then A
t

is PD.
Setting �

A

= �
A

�0
A

, where �
A

is a vector of n strictly positive elements, the resulting
matrix satisfies the conditions of Proposition 2. The parameterization (3.4) with the matrix
defined in the previous sentence is called the rank–1 parameterization.
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3.2 The Flexible Regime Switching Dynamic Correlation Model
The extension of the model (2.2) of Pelletier (2006) to the FRSDC case (FRSDC-1�) is
simple and given by:

R
t

= R
(st)
t

, s
t

2 {h, l},
R

(h)
t

=

¯R, R
(l)
t

=

¯R�⇤(l)
t

,

⇤(l)
t

= exp

� ⇥
�(l)

(R
t�1 � J

n

)

⇤

p
gk

= Pr(s
t

= k|s
t�1 = g), g and k 2 {h, l}, p

kk

= 1� p
gk

if g 6= k

(3.6)

where ¯R is the sample correlation matrix of the residuals u
t

(t = 1, 2, . . . , T ), assumed
to be PD, �(l) is a scalar parameter restricted to be strictly positive, and ⇤(l)

t

is a time-
varying symmetric PD matrix (by Proposition 1) with all its diagonal elements equal to 1

and other elements �(l)
ij,t

= exp

⇥
�(l)

(⇢
ij,t�1 � 1)

⇤
in [0, 1]. The resulting R

(l)
t

matrix is a
correlation matrix since it is obtained as the Hadamard product of two PD matrices with
the characteristics of correlation matrices (ones on the diagonal and less or equal to 1 in
absolute value otherwise). The last formula of (3.6) implies that each element ⇢

ij,t

of the
correlation matrix R

t

follows a two-state Markov Switching model with a time invariant
transition probability matrix that is common to all correlations.

The first three equations of the model (3.6), written for each element (i, j) of the
correlation matrices, are:

⇢
ij,t

= ⇢
st,t, st 2 {h, l},

⇢(h)
ij,t

= r̄
ij

, ⇢(l)
ij,t

= r̄
ij

�(l)
ij,t

= r̄
ij

exp

⇥
�(l)

(⇢
ij,t�1 � 1)

⇤
.

(3.7)

This model implies constant correlations under the high correlation regime, but dynamic
correlations under the low correlation regime; the classification high/low is justified by the
inequality ⇢(l)

ij,t

 ⇢(h)
ij,t

at each time t. The dynamics of the low correlation has a nonlinear
autoregressive structure of order 1. The main novelty with respect to the specification
(2.2) is that, even if all the correlations are in the same regime at each time, the relative
variations differ at each time and for each pair of assets, being equal to (1 � �(l)

ij,t

)/�(l)
ij,t

when the regime switches from l to h, and equal to �(l)
ij,t

� 1 when the regime changes
from h to l.

A more flexible specification (FRSDC-2�) provides a dynamic structure also for the
high correlation matrix. It is given by:

R
t

= R
(st)
t

, s
t

2 {h, l},
R

(h)
t

= W
t

� (1� ✓)I
n

, R
(l)
t

=

¯R�⇤(l)
t

,

W
t

=

¯R+R⇤ �⇤(h)
t

,
R⇤

= S
�
Jn � ¯R

�
,

⇤(st)
t

= exp

� ⇥
�(st)

(R
t�1 � J

n

)

⇤
,

p
gk

= Pr(s
t

= k|s
t�1 = g), g and k 2 {h, l}, p

kk

= 1� p
gk

if g 6= k

(3.8)

where S(·) is a shrinking function that transforms a symmetric matrix into a PD matrix.
A simple specification of S(A) is a convex combination of A and the identity matrix I

n

:

S (A) = ✓A+ (1� ✓)I
n

, (3.9)
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where ✓ is chosen to be the highest value in (0, 1] such that all eigenvalues of S (A)

are positive (see Devlin et al., 1975; other techniques are illustrated in Rousseeuw and
Molenberghs, 1993). Subtracting (1 � ✓)I

n

from W
t

in the second formula of (3.8) is
necessary to render the diagonal elements of R(h)

t

equal to 1.
The matrix R

(l)
t

is PD by construction (as in the FRSDC-1� model), whereas R(h)
t

is
PD under the constraint expressed in the following proposition.

Proposition 3: R
(h)
t

is PD if the smallest eigenvalue of W
t

is strictly greater than
1� ✓.

Let V
t

be the orthonormal matrix of eigenvectors of W
t

and L
t

the diagonal matrix
of associated eigenvalues (all positive and different). By definition, W

t

= V
t

L
t

V
0
t

and
V

0
t

V
t

= V
t

V
0
t

= I
n

. As a consequence:

V
0
t

R
(h)
t

V
t

= V
0
t

W
t

V
t

� (1� ✓)V
0
t

I
n

V
t

= V
0
t

V
t

L
t

V
t

V
0
t

� (1� ✓)V
0
t

V
t

= L
t

� (1� ✓)I
n

.
(3.10)

The last matrix of (3.10) is a diagonal matrix. It is obviously PD if the smallest eigenvalue
of W

t

is strictly larger than 1 � ✓. Under this condition, V 0
t

R
(h)
t

V
t

is thus PD, and R
(h)
t

also (since V
t

has full rank), so the proposition is proven.

From (3.8) each element ⇢(l)
ij,t

is smaller than or equal to the corresponding element r̄
ij

of the sample correlation matrix. Each off-diagonal element of the high correlation matrix
R

(h)
t

is larger than the corresponding element of the sample correlation matrix, since it is
equal to r̄

ij

+✓(1� r̄
ij

) exp

�
�(h)

(⇢
ij,t�1 � 1)

�
where the second term is positive. Like the

low correlations, the high correlations follow a nonlinear autoregressive process of order
1, instead of being constant like in (3.6).

The scalar parameterizations of ⇤(st)
t

in (3.6) and (3.8) can be extended to a more
general one, which uses rank-one matrices (a rank–1 parameterization), as exposed in the
next sub-section.

3.3 Groupwise Formulation
The scalar models defined in (3.1)-(3.2), (3.6) and (3.8) provide a practical way to limit
the number of parameters, while ensuring the positive definiteness of the corresponding
conditional correlation matrices. On the other hand they introduce constraints that may be
considered strong, especially when n is very large. A more flexible solution is the rank–1
formulation, which provides also PD correlation matrices but with a larger yet manage-
able number (of O(n)) of parameters. A middle ground can be achieved by a groupwise
formulation, which is a rank–1 parameterization where groups of correlations with simi-
lar dynamics are formed. Of course the detection of groups is a difficult task. A possible
solution consists in adopting model-based clustering algorithms (such as Otranto, 2010,
for DCC models), where a parameter-dependent distance measure is used to identify sim-
ilar correlation dynamics. Extending the Otranto (2010) algorithm to the FRSDC model
does not bring a successful outcome. Alternatively some a priori information about assets
could be used to create groups of assets characterized by a similar correlation structure
(as in Billio et al., 2006, for DCC models), but of course this approach is subjective.
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If the number of assets is not huge (say less than thirty), a heuristic general-to-specific
search procedure to obtain a parsimonious version of the rank–1 models is can be applied.
For the FRSDC-2� case, let us consider a rank–1 version of �(st):

�(st)
= �(st)�(st)0 (3.11)

where �(st) is a n⇥1 vector of strictly positive elements �(st)
i

(i = 1, . . . , n). By Proposi-
tion 2, this formulation provides a PD matrix ⇤(st)

t

. Then the search procedure to reduce
the number of parameters from 2n to 2k with k  n involves the following steps:

1. Estimate the FRSDC-2� model with the parameterization (3.11).

2. Compute the p-value of the joint null hypothesis H0 : �(h)
i

= �(h)
j

, �(l)
i

= �(l)
j

for each pair i, j (i 6= j). This test can be done using a Wald statistic having
asymptotically a �2

(2) distribution under H0.

3. Select all the pairs for which H0 is not rejected with highest p-values (for example
more than 0.9) and set �(h)

i

= �(h)
j

and �(l)
i

= �(l)
j

for these pairs. Of course it
is necessary to check if the different results are consistent: for example if the null
hypotheses �(st)

1 = �(st)
2 and �(st)

2 = �(st)
3 are accepted with a large p-value, the

restriction �(st)
1 = �(st)

2 = �(st)
3 is adopted only if the p-value of the statistic for

�(st)
1 = �(st)

3 is also large.

4. Estimate the model imposing the constraints obtained in step 3.

5. If the constrained model of the previous step is preferred to the initial model in
terms of a loss function (for example BIC or AIC), compute the p-values of the null
hypothesis (as defined in step 2) for all the pairs of parameters in �(st). Select the
new pairs of parameters with highest p-value for which the null hypothesis is not
rejected. Obviously, if no pair is selected, stop the procedure.

6. Constrain the selected pairs of parameters of the previous step to be equal and
estimate the new constrained model.

7. Repeat steps 5 and 6 until the loss function no longer decreases or all the null
hypotheses are rejected.

This procedure partitions each vector �(h) and �(h) into k groups of parameters; the
grouping is the same in both vectors, the elements of a group of �(h) are the same, as are
those of a group in �(l), and the parameters of the same group in �(h) and �(l) differ.

For the NLARC model, the procedure is the same, but substituting �
A

for �(l). For
the FRSDC-1� model, the null hypothesis considered in step 2 involves only the vector
�(l).
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4 Empirical Findings
It is instructive to apply the previous models to a real data set, following some steps to
come to the best specifications of the NLARC and FRDSC models. Twenty daily series
of stock indices have been downloaded from the Oxford-Man Institute Realized Library
version 0.2 (Heber et al., 2009): S&P 500 (abbreviated to SP), FTSE 100 (FTSE), Nikkei
225 (NIK), DAX (DAX), Russell 2000 (RUS), All Ordinaries (AO), Dow Jones Industrial
Average (DJ), Nasdaq 100 (NAS), CAC 40 (CAC), Hang Seng (HS), KOSPI Compos-
ite Index (KOS), AEX Index (AEX), Swiss Market Index (SMI), IBEX 35 (IBEX), S&P
CNX Nifty (CNX), IPC Mexico (IPC), Bovespa Index (BOV), S&P/TSX Composite In-
dex (TSX), Euro STOXX 50 (EU), FTSE MIB (MIB). The time span starts the 8th of July
2002 and ends the 27th of April 2017. This provides 2555 daily observations for each
series, keeping only the dates where all the indices are recorded. The series of the de-
garched returns u

t

= S�1
t

y
t

(t = 1, 2, . . . , 2554) have been obtained after estimating the
conditional variances of the log-returns by univariate GARCH-GJR(1,1) models (Glosten
et al.,1993).

The estimated models are: scalar cDCC (see Section 2), NLARC (see Section 3.1),
the RSDC-1� (see eq. (2.2)), RSDC-2� (eq. (2.3)), FRSDC-1� (eq.(3.6)) and FRSDC-2�
(eq. (3.8)). The NLARC and FRSDC-2� models have been estimated both in the scalar,
the rank–1 and the groupwise versions.

4.1 Estimation Results for cDCC and NLARC
The estimation results for the scalar cDCC model and NLARC models are shown in Table
1. These results were obtained by maximizing the second step log-likelihood function
with respect to the remaining parameters, after substituting the sample correlation ¯R for
the constant C. Estimating C at the second step involves 190 additional parameters and
is unfeasible. Nonscalar versions of the cDCC model have also been estimated, using the
rank–1parameterization proposed in Billio et al. (2006). First, the procedure of Otranto
(2010) was applied to detect series with similar cDCC dynamics to reduce the number of
parameters, but this identifies a single group of twenty series. Next a cDCC model with
a rank–1 parameterization of the matrices C and A, and another with also a rank–1 B
matrix, were estimated. In both cases, the estimated elements of the matrices C and A
are all close to zero and in the second case those of the matrix B are comprised in a small
range (between 0.93 and 1). Moreover the BIC of the most general model is equal to
1.888, which is higher than for the scalar model (1.866). Given this evidence, the scalar
cDCC model is adopted as the benchmark for this study. The estimates show a small
a = 0.006 coefficient (with asymptotic standard error 0.001) and a large b = 0.977; they
are comparable to the values found in other empirical studies.

The scalar NLARC shows a clear increase in the log-likelihood and a decrease both in
AIC and BIC with respect to the scalar cDCC model. Since the NLARC model simplifies
to the cDCC if �

A

= 0, this null hypothesis can be tested with a likelihood ratio (LR)
test, but since the restriction �

A

= 0 is on the boundary of the parameter space, the LR
statistic does not follow the standard �2

(1) asymptotic distribution. However, the value
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of the statistic (60.04) seems sufficiently large to provide some evidence in favor of the
NLARC against the cDCC.

Figure 3 illustrates the nonlinear time-varying part of the first derivative of q
ij,t

with
respect to q

ij,t�1 in the estimated scalar NLARC model, for i corresponding to SP and j
to the other 19 stock indices. The time-varying effect, given by
0.008(1.157) exp[1.157(⇢

ij,t�1 � 1)]u
i,t�1uj,t�1, is the effect added by the NLARC spec-

ification with respect to the cDCC one, in which the effect is equal to zero. The time-
invariant effect is given by b = 0.975 (0.977 in the cDCC). The time-varying one is most
often positive, though it is occasionally negative, which happens when u

i,t�1uj,t�1 < 0,
and it can vary substantially. The graphs of the time-varying effects show some simi-
lar features for some groups of correlations, in particular, the strong positive effects on
28/2/2007 (beginning of the Chinese stock bubble) and 16/8/2011 (beginning of the Eu-
ropean contagion) seem common to most of the indices (exceptions are IBEX, EU, HS,
DJ). Other relevant shocks are:
-10/10/2008: positive effect after the collapse of several US banks (DJ, HS, EU, IBEX);
-27/6/2016, some days after the Brexit referendum: all the indices (except IPC) are af-
fected, some with a negative effect (CNX, MIB,AO, CAC, DAX, SMI, KOS, TSX);
-10/11/2016, after the US election: negative effect for DJ, HS, IBEX, EU.

For the rank–1 version of the NLARC model, the number of groups detected by the
algorithm, described in subsection 3.3, is just one, in the sense that all the coefficients
of the vector �

A

are not significantly different. In practice the groupwise specification
is identical to the scalar one, a very parsimonious specification. This is confirmed by a
comparison of the AIC and BIC of the scalar and the rank–1 specifications: they are equal
to 1.45 and 1.46 respectively for the scalar NLARC (see Table 1), whereas they are 1.45
and 1.50 respectively for the rank–1 NLARC. The Wald statistic of the hypothesis that
the twenty different parameters in �

A

are equal (resulting in 19 constraints) has a p-value
of 0.02, not rejecting the null at the 1% nominal size (this test is standard).

4.2 Estimation Results for RSDC and FRSDC
The estimation results of the RSDC and FRSDC models are shown in Table 2. The 2-�
models improve the 1-� in terms of AIC and BIC. Moreover, it is possible to test, using
the LR statistic, the (F)RSDC-1� model against the corresponding 2-�, by defining the
null hypothesis as �

h

= 1 for the RSDC 2-� model and �(h)
= 0 for the scalar FRSDC

2-� model. In the first case, the test is standard and the null is rejected with a p-value
very close to zero. In the second case the null is on the frontier but the statistic suggests
that it can be rejected. For this reason only the 2-� version of the rank–1 and groupwise
parameterization of FRSDC are reported. The estimates of the parameters of the FRSDC
2-� with rank–1 parameterization are shown in Figure 4; several estimated parameters
seem similar and some are not significantly different from zero. The grouping algorithm
determines three groups:

Group 1: SP, RUS, DJ, NAS, IPC, TSX;
Group 2: FTSE, DAX, CAC, AEX, SMI, IBEX, EU, MIB;
Group 3: NIK, AO, HS, KOS, CNX, BOV
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It is interesting to notice that the three groups correspond to natural geographical parti-
tions: the first group collects the North American indices, the second group the European
indices, the third one all the rest (Asian, Australian and Brazilian markets).

The comparison in terms of AIC shows a very similar fitting of the groupwise and the
rank–1 parameterizations, whereas the BIC clearly favors the more parsimonious group-
wise representation.

In terms of AIC and BIC, the correlation models belonging to the Markow Switching
family of Table 2 outperform the cDCC and NLARC models of Table 1, and all the 2-�
models outperform the 1-� models.

The probability to stay in the high correlation regime and, as a consequence, the per-
sistence of that regime, is higher in the RSDC models than in the FRSDC models, the
latter involving as a consequence more frequent changes from high to low correlations.
The inverse occurs for changes from low to high for the 2–� case.

4.3 In-sample Forecasting
A complementary comparison among non nested models can be made by evaluating the
in-sample and out-of-sample forecasting performance of the models, using a statistical
criterion and an economic one. The former is the Model Confidence Set (MCS) of Hansen
et al. (2003), with the purpose to detect a set of models having the best forecasting per-
formance. This is done in the way proposed by Becker et al. (2015), by adopting the
Quasi-Likelihood loss function with the semi-quadratic statistics. The important finding
of this experiment is that the set of models with the best in-sample forecasting perfor-
mance is given by the FRSDC-2� models, which outperform the RSDC models and the
FRSDC-1� (upper part of Table 3). The approach excludes first the models belonging to
the cDCC family; it is interesting to notice that the models with 1-� parameterization are
excluded before the RSDC 2-�.

The economic criterion is based on theoretical portfolio performances, following the
approach of Engle and Colacito (2006). The purpose is to compare the sample volatility
of portfolios with weights depending on the alternative correlation matrices, having the
same variances (obtained in step 1 of the estimation procedure), and fixing the expected
returns equal to 1/

p
n (so the corresponding vector has length equal to one). In practice

the difference between the portfolios depends only on the correlation matrix, and the
model with the smallest portfolio volatility is the best model in economic terms. In the
second part of Table 3 the result is the opposite with respect to the MCS experiment;
the best model is the scalar NLARC and the cDCC family outperforms the RSDC family
which provides an increase of 1 to 3% in the portfolio variance. The bottom part of Table
3 reports the results of the Diebold-Mariano (DM) test proposed by Engle and Colacito
(2006) to verify the equality of each pair of models, comparing the differences between
the squared returns within each pair of portfolios. Using the 5% significance level, the
scalar NLARC model, which provides the minimum variance portfolio, and the cDCC
model outperform only the FRSDC–2� models. The groupwise FRSDC–2� model does
not provide a significantly different performance with respect to the scalar version.

In summary, the in-sample forecast comparisons indicate that the two alternative fami-
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lies have different performances if evaluated with statistical or economic criteria, favoring
the RSDC family in the former, the cDCC family in the latter.

4.4 Out–of–sample Forecasting
The out–of–sample performance of the models is evaluated by generating one-step ahead
forecasts of the correlation matrices for the last 441 days of the sample. Thus the esti-
mation sample ends on the 30th of December 2014 and the estimated parameters of each
model are frozen in the forecast sample until the end (27th of April 2017). The forecasts
are used to compute the MCS and MVP as in the in-sample comparisons.

The results in Table 4 show that the MCS includes all the FRSDC and RSDC models
(with p-values over 0.27), whereas the NLARC and cDCC models are excluded by this
procedure.

In terms of MVP evaluation, an opposite order of the best performing models is ob-
served: NLARC (closely followed by cDCC) provides the smallest portfolio minimum
variance, the FRSDC–2� models (scalar and groupwise) provide the largest values (5%
and 8% higher), and the other models provide variances between 2 and 3% higher than
NLARC. According to the DM tests, NLARC performs significantly better than the other
models at the 2.5% significance level, and than FRSDC–1� at 10%.

To check the importance of fixing the estimates at the end of the estimation sample,
the parameter estimates were updated every fifth day (updating every day was too costly)
during the forecast period before computing the next five forecasts. Table 5 contains the
results. The MCS includes all models, meaning that their forecast performances are not
significantly different at usual nominal sizes. In terms of MVP, the models also do not
show significantly different performances.

5 Concluding Remarks
The proposed new versions of the DCC and RSDC models enrich the existing versions
by allowing the correlation dynamics to be different for different pairs of assets, with-
out implying a big increase in the parameter dimension. Indeed, in the scalar versions,
the NLARC model has one parameter more than cDCC, and the flexible RSDC models
have the same number of parameters as the corresponding less flexible versions. This is
achieved by parameterizing some matrices as the Hadamard exponential transformations
of a lagged correlation matrix. The Hadamard exponential of a matrix has some math-
ematical properties that might prove useful in other modeling contexts. The empirical
results presented in Section 4, though contingent on the data set used, illustrate that the
new parameterizations may be useful in practice.
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Tables and Figures

Table 1: QML estimation results for scalar DCC and NLARC models
(robust standard errors in parentheses)

Model a b �
A

Log–Lik AIC BIC
cDCC 0.006 0.977 -1876.1 1.472 1.476

(0.001) (0.004)
NLARC 0.008 0.975 0.157 -1851.9 1.454 1.461

(0.001) (0.004) (0.068)

Table 2: QML estimation results for RSDC and FRSDC models
(robust standard errors in parentheses)

RSDC FRSDC
1–� 2–� 1–� scalar 2–� scalar 2–� rank–1 2–� group

phh 0.980 0.974 phh 0.967 0.895 0.905 0.898
(0.004) (0.006) (0.006) (0.013) (0.013) (0.013)

pll 0.340 0.323 pll 0.305 0.453 0.397 0.406
(0.066) (0.061) (0.098) (0.094) (0.060) (0.060)

�h 1.004 �(h)
1 1.461 1.517 (SP) 0.928

(0.001) (0.195) (0.243) (0.065)
�l 0.552 0.591 �(h)

2 1.259
(0.095) (0.097) (0.178)

�(h)
3 0.317

(0.128)
�(l)
1 1.907 1.058 0.969 (RUS) 1.464

(0.522) (0.300) (0.124) (0.182)
�(l)
2 0.586

(0.079)
�(l)
3 5.251

(1.301)
Log–Lik -1744.0 -1719.2 -1734.5 -1577.9 -1453.0 -1494.8
AIC 1.369 1.350 1.362 1.240 1.172 1.178
BIC 1.376 1.360 1.369 1.249 1.268 1.196

The coefficients �(h) and �(l), in the case of the FRSDC models with rank–1, are the medians of the
estimates (in parentheses the corresponding indices), considering, as median, the 10-th index in increasing
order. For the FRSDC 2–� models, the shrinking coefficient ✓ is equal to 0.21.
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Table 3: In–sample forecast evaluation

Model Confidence Set
NLARC cDCC RSDC 1–� FRSDC 1–� RSDC 2–� FRSDC 2–� g FRSDC 2–�
0.000 0.000 0.000 0.000 0.000 0.691 1.000

Minimum Variance Portfolio
FRSDC 2–� g FRSDC 2–� FRSDC 1–� RSDC 2–� RSDC 1–� cDCC NLARC
102.76 102.34 101.60 101.27 101.15 100.30 100.00

Diebold–Mariano p-values for MVP
RSDC 2–� FRSDC 1–� FRSDC 2–� FRSDC 2–� g cDCC NLARC

RSDC 1–� -0.074 -0.143 -0.008 -0.030 0.149 0.087
RSDC 2–� -0.245 -0.013 -0.039 0.102 0.065
FRSDC 1–� -0.039 -0.077 0.087 0.055
FRSDC 2–� -0.329 0.010 0.007
FRSDC 2–� g 0.007 0.005
cDCC 0.117

For the MCS criterion: the models are in the order (from left to right) in which they are removed from the MCS and the corresponding
p-value is indicated below the model name. The letter g indicates the groupwise version (all other are scalar). For the MVP: the models
are shown (from left to right) in decreasing MVP order, setting to 100 the smallest MVP, so a number like (100 + x) means that the
corresponding model provides, on average, a x% higher MVP than the model having the lowest MVP. The bottom panel shows the
p-values of the Diebold and Mariano statistics to compare the model in row with the model in column. A negative sign means that the
model in row is better than the model in column.
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Table 4: Out–of–sample evaluation of 441 forecasts (fixed estimates)

Model Confidence Set
NLARC cDCC FRSDC 2–� g RSDC 1–� RSDC 2–� FRSDC 1–� FRSDC 2–�
0.000 0.005 0.273 0.839 0.703 0.873 1.000

Minimum Variance Portfolio
FRSDC 2–� g FRSDC 2–� FRSDC 1–� RSDC 1–� RSDC 2–� cDCC NLARC
108.48 105.05 102.93 102.40 102.22 100.19 100.00

Diebold–Mariano p-values for MVP
RSDC 2–� FRSDC 1–� FRSDC 2–� FRSDC 2–� g cDCC NLARC

RSDC 1–� 0.229 -0.376 -0.013 -0.000 0.031 0.021
RSDC 2–� -0.340 -0.009 -0.000 0.029 0.020
FRSDC 1–� -0.020 -0.001 0.090 0.073
FRSDC 2–� -0.001 0.002 0.002
FRSDC 2–� g 0.000 0.000
cDCC 0.024

The models are estimated using the sample from 8th July 2002 to 30th December 2014; then the estimated models are fixed and the
successive 441 correlations are forecasted. The letter g indicates the groupwise version (all other are scalar). For a description of the
table contents, see the note below Table 3.

Table 5: Out–of–sample evaluation of 441 forecasts (updated estimates)

Model Confidence Set
FRSDC 2–� RSDC 2–� RSDC 1–� FRSDC 1–� FRSDC 2–� g cDCC NLARC
0.060 0.139 0.108 0.073 0.036 0.087 1.000

Minimum Variance Portfolio
FRSDC 2–� g RSDC 2–� RSDC 1–� FRSDC 1–� FRSDC 2–� cDCC NLARC
104.37 102.32 102.31 101.92 101.20 101.05 100.00

Diebold–Mariano p-values for MVP
RSDC 2–� FRSDC 1–� FRSDC 2–� FRSDC 2–� g cDCC NLARC

RSDC 1–� -0.450 0.172 0.176 -0.013 0.303 0.086
RSDC 2–� 0.152 0.191 -0.026 0.285 0.067
FRSDC 1–� 0.292 -0.017 0.369 0.114
FRSDC 2–� -0.001 -0.498 0.295
FRSDC 2–� g 0.128 0.030
cDCC 0.129

The first models are estimated using the sample from 8th July 2002 to 30th December 2014; then the estimates are updated each 5
observations and the last 441 correlations are forecasted. The letter g indicates the groupwise version (all other are scalar). For a
description of the table contents, see the note below Table 3.
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Figure 1: Estimated time series of a
ij,t

= a exp[�
A

(⇢
ij,t�1 � 1)] in the NLARC model

(see eq. (3.3)) for i = SP and j = FTSE (solid line), for i = SP and j = CNX (dotted
line) and for i = SP and j = BOV (dashed line). The horizontal line corresponds to the
estimated a parameter of the cDCC model.

.

.
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Figure 2: Impact of the lagged covariance shock on the covariance q
ij,t

in the NLARC
model, see eq. (3.3). An impact curve is defined by a

ij,t

= a exp[�
A

(⇢
ij,t�1 � 1)] as a

function of ⇢
ij,t�1. Impact curves are shown for a = 0.1 and values of �

A

= 0, 0.5, 1, ..5.
The horizontal line at 0.1 corresponds to �

A

= 0, the first curve below it to �
A

= 0.5, the
next one to �

A

= 0.5, etc. The step function is obtained when �
A

approaches infinity.
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Figure 3: Time-varying part of the derivative of q
ij,t

with respect to q
ij,t�1 in the NLARC

model for the conditional correlations between SP and the other 19 indices. The last graph
represents the average of the 19 other.
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Figure 4: Estimated vectors �(l) (continuous line, left axis) and �(h) (dotted line, right
axis) of the FRSDC–2� model with rank–1 parameterization. The x axis refers to the
corresponding financial indices.
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