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Abstract

The STAR model is widely used to represent the dynamics of a certain variable recorded

at several locations at the same time. Its advantages are often discussed in terms of parsi-

mony with respect to space-time VAR structures because it considers a single coefficient

for each time and spatial lag. This hypothesis can be very strong; we add a certain de-

gree of flexibility to the STAR model, providing the possibility for coefficients to vary in

groups of locations. The new class of models is compared to the classical STAR and the

space-time VAR by simulations and an application.

Keywords: clustering; forecasting; space–time models; spatial weight matrix.

Jel Codes: C30, C38, C50, J11

1 Introduction

Since the mid-seventies the research in statistical models describing the space–time evolution

of real series has been widely diffused with several methodological contributions and applica-

tions, devoted to capturing both the dynamics along time and the correlations based on spatial

relationships. After the seminal paper of Cliff and Ord (1975), the space-time models were ex-

tended from Pfeifer and Deutsch (1980), who propose the Space–Time ARIMA (STARIMA)

class of models, an extension of the ARIMA class developed for time series to include the linear

dependencies in both space and time dimensions; spatial dependencies are imposed by means

of a spatial weight matrix, which incorporates spatial features such as distances between loca-

tions and neighboring sites. The consideration of the spatial structure in economic, social and

environmental data sets is present in several papers; excellent reviews can be found in Anselin

(1988) and Haining (1990).

The importance of considering the presence of spatial dependencies in the forecasting per-

formance of the models was verified by Giacomini and Granger (2004) and Arbia, Bee and Espa

(2011). They utilized Monte Carlo experiments to show that the use of separate univariate fore-

casts for each region, ignoring spatial dependence (in other words, considering only the time

dimension), leads to highly inaccurate forecasts. They used the most widespread space-time
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model, the so–called STAR(1,1) (the acronym STAR stands for Space–Time AutoRegressive),

where the same coefficients, referred to the time and spatial lag, are used for the full time span

and the full location set.

The success of the STAR model is due to its simple (linear) form and the possibility of

including the effects of spatial autocorrelation in forecasting, because the spatial effects are

considered with a time lag, differently from the purely Spatial AutoRegressive (SAR; Besag,

1974) model, where the spatial relationships are considered only simultaneously. Moreover,

LeSage and Pace (2009) showed that the STAR model implies a long–run steady–state equilib-

rium model equivalent to the SAR model.

The STAR(1,1) model is a very parsimonious representation of space–time series, but im-

poses strong constraints in the behavior of the spatial units over time. An unconstrained model

would consider different spatial and time coefficients for each spatial unit (call it Unconstrained

STAR–USTAR model); as the spatial dimension increases, the estimation becomes unfeasible,

falling under the so–called curse of dimensionality, which causes inaccuracy and uncertainty in

the estimation of the model (see Giacomini and Granger, 2004). A good compromise would be

a more flexible STAR(1,1) model, where the coefficients change only for groups of spatial units

and not for each spatial unit, as in the USTAR model. The groups could be detected on the basis

of information about the similarity of the locations (for example, geographical aggregations),

but this might be subjective.

In the light of the above, in this paper we propose a procedure to detect these groups, based

on a clustering agglomerative algorithm, which has some similarity to the method developed

by Otranto (2010) to detect financial assets with similar conditional dynamic correlation struc-

ture. Following the classification of the methods for time series clustering proposed by Liao

(2005), our approach belongs to the class of model-based clustering, where the time series are

considered similar when the models characterizing them are similar. More precisely, there is a

strong connection with methods devoted to classify panel data, given the two involved dimen-

sions (space and time). A nice review of model-based methods to classify panel data is present

in Fruhwirth-Schnatter (2011). As noted by this author, the purpose in the classification of time

series is to assign each series to a latent class. All time series belonging to the same class are
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characterized by the same data generating process. Following this idea, the density of a mul-

tivariate time series is a mixture of densities. In our approach we follow a similar idea, where

the time series are referred to different spatial units and the purpose is to detect what spatial

units follow the same data generating process. In other words the model we proposed is a sort

of finite mixture STAR model. Again, Fruhwirth-Schnatter (2011) underlines as the model-

based clustering approach is preferable in time series and panel data (and, as a consequence, in

space-time series) with respect to the distance–based approach, difficult to be extended to time

series. Our approach is model-based but uses also some characteristics of the distance–based

approaches: the classification of the time series is based on p-values of statistic tests to verify

the hypothesis of equal coefficients in two STAR models. The p–value is used as a distance

measure to provide the classification; in fact it is a measure of similarity, satisfying properties

of a semi-metric (see Maharaji, 1999). This idea was used in other model–based clustering

approaches for time series, such as Maharaji (1999) and Otranto (2008, 2010).

The performance of this procedure is evaluated in terms of simulation experiments, using

different time spans and number of locations, considering uncorrelated and correlated distur-

bances and different spatial weights. We investigate the ability of the proposed procedure in

identifying the correct clusters and the forecasting performance of our model (called the Flex-

ible STAR–FSTAR), compared with respect to STAR and USTAR models. The same is made

with real data, where also a Sparse Vector AutoRegressive (SVAR) model is added to the com-

parison.

The paper is organized as follows: section 2 recalls the STAR and USTAR models and

discusses the new FSTAR model. Section 3 describes the algorithm for the identification of the

locations with similar STAR structure, leaving the technical details for its implementation to the

final Appendix. Section 4 discusses the Monte Carlo experiments to assess the performance of

the method proposed, whereas section 5 contains a comparison among the competitive models

by using demographic data. Some final remarks complete the article.
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2 The Flexible STAR Model

Let us consider a set of space–time observations, relative to N locations at T different times,

collected in a matrix Y = {yi,t} (i = 1 . . . , N and t = 1, . . . , T ).

The classical STAR(1,1) model follows a particular autoregressive dynamics with one time

lag and one spatial lag:

yi,t = �yi,t�1 +  

NX

j=1

wijyj,t�1 + "i,t (2.1)

where � represents the coefficient of the time–lagged effect, whereas  is the coefficient of

the spatial lagged effect. The number wij is the ij�th element of a N ⇥ N weight matrix

W representing the spatial link between location i and location j (wij = 0 when i = j,

nonnegative otherwise); the matrix W is normalized to have each row summing up to one.

This matrix is generally fixed a priori and reflects the geographical characteristics of the spatial

locations in terms of neighboring, distance, etc.; anyway it can represent other characteristics,

such as economic distance (see. for example, Pinkse and Slade, 1998, Otranto, Mucciardi and

Bertuccelli, 2016). It is evident that, fixing W in advance, the estimation of the model will be

subject to possible misspecification of the weight matrix (see Stetzer, 1982); for this reason, in

our successive applications, we experimented with several weight matrices. A necessary, but

not sufficient, stationarity condition is given by |�+  | < 1 (see, for example, Arbia, Bee and

Espa, 2011); we restrict the discussion to this constraint. Moreover we assume that process

(2.1) is isotropic, so that the joint distribution of the random variables y1,t, . . . , yN,t depends on

the location distance only and not on orientation (see Anselin, 1988).

The variable "i,t is a zero mean white noise. It is possible to relax this hypothesis in several

ways; a common specification considers the presence of correlation in the spatial dimension

with the following parameterization (see Anselin, 1988):

"t = ⇢W⌘t (2.2)

where "t is a vector containing the disturbances relative to the N locations at time t, ⌘t is a

vector of uncorrelated white noise disturbances and ⇢ is a scalar ranging in [�1; 1].
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Collecting the spatial observations at time t in a (N ⇥ 1) vector yt, model (2.1) can be

expressed in a VAR form (see Lütkepohl, 1993):

yt = Ayt�1 + "t (2.3)

where A = �IN +  W.

Notice that this representation is feasible for the isotropic assumption, which implies that

the out–of–diagonal elements of A are  ij =  wij , depending only on the inter–location dis-

tance and not on orientation (Arbia, Bee and Espa, 2011). Model (2.1) is very parsimonious,

adopting the same pair of coefficients (� and  ) for all the locations and time periods, but it has

good forecasting properties, as shown in Giacomini and Granger (2004) and Arbia, Bee and

Espa (2011).

The basic assumption of the STAR model is that each observation yit depends on its lagged

value yi,t�1 and on the lagged values of the neighboring locations; the corresponding coeffi-

cients are constant across the locations and over time. This assumption could be too restrictive,

particularly in terms of fitting of the STAR(1,1) model (for a discussion about the presence of

heterogeneity in the coefficients of spatial models, see Aquaro, Bailey and Pesaran, 2015, and

LeSage and Chih, 2016). A more flexible model could be obtained allowing for changing in

the parameter values corresponding to different locations. In a vectorial form, this model (call

it Unconstrained STAR–USTAR) would assume the form:

yt = �� yt�1 +  � (Wyt�1) + "t (2.4)

where � is the Hadamard (element–wise) product, �0 = (�1, . . . ,�N)0 and  0 = ( 1, . . . , N)0,

with |�i +  i| < 1 (for i = 1, . . . , N ).

Model (2.4) is clearly more flexible but, at the same time, requires a large number of co-

efficients, 2(n � 1) more than model (2.1), involving a curse of dimensionality problem. This

problem could be avoided if we were able to identify a small number of groups of locations

following the same STAR dynamics. In practical terms, the idea of a parsimonious but flexible

STAR(1,1) model is to detect G groups of locations so that the vector of coefficients � and  
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assume the form:

� =

2

66664

�1◆n1

...

�G◆n
G

3

77775
;  =

2

66664

 1◆n1

...

 k◆n
G

3

77775
(2.5)

where nk (k = 1, . . . , G) is the size of the k–th group (
PG

k=1 nk = N ) and ◆j a vector of ones

of dimension j. We call this model the FSTAR(1,1) model, where F stands for Flexible.

A crucial problem is the correct assignment of each location to each group. This problem

can be seen as a problem of time series classification, referring to different spatial units; con-

sidering the FSTAR model as a mixture of STAR models, we want to assign each series to a

class characterized by the same coefficients of the STAR model (same data generating process).

For this purpose we propose a test–based agglomerative algorithm to provide a clustering of

locations.

3 Identifying Locations with Similar STAR Structure

As underlined, the purpose is to group in the same class the spatial units following the same

STAR(1,1) process (see Fruhwirth-Schnatter, 2011); in practice this purpose can be reached by

identifying groups of units with similar coefficients � and  . We develop a hierarchical clus-

tering algorithm based on iterative statistical tests, using in particular the p–value as a distance

measure; this approach can be performed because the p-value is a measure of similarity, satis-

fying the properties of a semi–metric (Maharaji, 1999). For example, it has been successfully

employed in time series clustering in Maharaji (1999) and Otranto (2008, 2010).

The idea of the algorithm is as follows: we compare the coefficients of all the univariate

STAR models (one model for each spatial unit); then we group together the two spatial units

with more similar (not significantly different) coefficients. Then we estimate a new STAR

model with this pair of spatial units and verify if other series have a similar (not significantly

different) STAR structure. This procedure is iteratively applied by adding spatial units with

similar coefficients to the same group until no series present similar characteristics; when this

happens we consider this group completed and restart with the same procedure on the remaining
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series.

To verify the similarity of the coefficients, we adopt a Wald statistic. The validity of this

approach in time series clustering has been corroborated by Otranto (2008 and 2010) with

simulation experiments and it is based on the theory developed by Steece and Wood (1985).

The clustering algorithm requires the testing of several hypotheses and multiple testing

problems could arise1. For this reason we correct the p–value by adopting the Holm (1979)

method. This correction improves the performance of the procedure by reducing the risk of

overfitting, related to the type I error of hypothesis testing. Due to the fact that we adopted the

Holm correction, the correct detections of the number of groups G (shown in the next section)

increased by 5% on average.

Refer to the final appendix for technical details about the clustering procedure adopted in

this work.

4 Simulation Study

In order to verify the capability of the previous algorithm in detecting the correct groups of

locations, we have performed several simulation experiments, with the purpose of evaluating

its validity under several scenarios:

• different sizes of time T hypothesizing to know the weight matrix W : this experiment

has the purpose of evaluating the dependence of the algorithm on the length of the time

series; of course we expect that, in a model–based clustering, the performance of the

algorithm is linked to the efficiency of the estimation procedure, which is strictly linked

to the number of observations;

• fixed T but wrong W : the aim of this experiment is to evaluate the robustness of the

algorithm in the presence of uncertainty about the spatial structure;

• forecasting performance: the purpose is to compare the forecasts obtained with an FS-

TAR model (based on the clustering algorithm proposed) against the STAR and USTAR
1We would like to thank an anonymous referee and the Associate Editor who called this problem to our atten-

tion.
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models described in Section 2.

We simulated data by hypothesizing that the spatial patterns are represented by two alterna-

tive regular lattices of size 3⇥3 (N = 9) and 5⇥5 (N = 25); moreover we have considered six

different number of groups (G = 1, 2, 3, 4, 5, 6) and the weight matrix is based on the classical

rook contiguity criterion for regular lattices. The data are generated from multivariate standard

Normal distributions; we consider both the cases of uncorrelated disturbances "t and spatially

correlated disturbances, transforming the generated "t by (2.2) with ⇢ = 0.7.

The coefficients used to generate data from the FSTAR model (2.5) are chosen to combine

different time and spatial effects in different groups; in detail, they are:

– when G = 1 (STAR model), �1 = 0.5,  1 = 0.3;

– when G = 2, �1 = 0.5,  1 = 0.3, �2 = 0.3,  2 = 0.6;

– when G = 3, �1 = 0.5,  1 = 0.3, �2 = 0.3,  2 = 0.6, �3 = 0.8,  3 = 0.1.

– when G = 4, �1 = 0.5,  1 = 0.3, �2 = 0.3,  2 = 0.6, �3 = 0.8,  3 = 0.1, �4 = 0.1,

 4 = 0.7.

– when G = 5, �1 = 0.5,  1 = 0.3, �2 = 0.3,  2 = 0.6, �3 = 0.8,  3 = 0.1, �4 = 0.1,

 4 = 0.7, �5 = 0.4,  5 = 0.4.

– when G = 6, �1 = 0.5,  1 = 0.3, �2 = 0.3,  2 = 0.6, �3 = 0.8,  3 = 0.1, �4 = 0.1,

 4 = 0.7, �5 = 0.4,  5 = 0.4, �6 = 0.7,  6 = 0.

The spatial units are equally divided among the groups, with at least a difference of one

unit in favor of the first groups. For example, when N = 25 and G = 5, each group contains 5

spatial units; when N = 25 and G = 6, the first group contains 5 spatial units and the others 4

spatial units; when N = 9 and G = 5, the first four groups contains 2 spatial units and the last

group only one.

The number of replications is 1000 for each case.

Finally, we also replicated the simulation experiments here on series with the characteristics

of the real data set used in Section 5. This is made to consider a more realistic spatial pattern,

with irregular boundaries, depending on distance–based weights. This experiment provides

some indication about the degree of reliability of the results illustrated in Section 5.
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4.1 Effect of time length

We have generated space–time data with three different time spans (T = 100, 500, 1000). The

performance evaluation is conducted: 1) recording for each replication the number of groups

detected; 2) evaluating the similarity of the composition of the detected group with the true

one. The second point is made because the number of groups could be correctly detected

but the composition of the groups is not equal to the true one; moreover we are interested in

evaluating the magnitude of the differences. For this purpose we adopt the adjusted Rand index

(Rand, 1971; Hubert and Arabie, 1985):

r =

PG
i=1

PG⇤

j=1

�
n̂
ij

2

�
� [

PG
i=1

�
n
i

2

�
][
PG⇤

j=1

�
n̂
j

2

�
]/
�
N
2

�

[
PG

i=1

�
n
i

2

�
+
PG⇤

j=1

�
n̂
j

2

�
]/2� [

PG
i=1

�
n
i

2

�
][
PG⇤

j=1

�
n̂
j

2

�
]/
�
N
2

� (4.1)

where G and G

⇤ represent the number of groups in the true and detected clustering respectively;

ni and n̂j are the number of locations belonging to the group i of the true and group j of the

detected clustering respectively, whereas n̂ij is the number of locations belonging to the group

i in the true pattern and assigned to the group j in the detected clustering. We can use r to

evaluate the performance of the proposed method because r 2 [0, 1], assuming value 0 when

the differences between the groups are at their maximum (worst performance) and 1 in the case

of coincidence between the true and the detected clustering.

In Tables 1–2 we show the performance evaluation relative to the first point; in practice we

show the distribution of the number of groups detected (G⇤) for the 3 ⇥ 3 and 5 ⇥ 5 lattices

respectively. In the 3 ⇥ 3 lattice (Table 1) we notice that the number of groups is correctly

detected for each time span with a large percentage when the number of groups G is 1 or 2;

when G increases the performance rapidly decreases for T = 100, whereas it increases for

T = 500 and T = 1000 until G = 4. The presence of spatial correlation favors the correct

detection of the number of groups, with a general increase of the number of correct cases, in

particular for high G. When G = 5 or 6 only the simulations with a large T seem to provide a

satisfactory result with more than 770 cases where G

⇤ = G.

Considering the 5 ⇥ 5 lattice (Table 2), the algorithm performs better for T = 100 with

respect to the 3 ⇥ 3 lattice (apart the case G = 1). This is explained for the small number of
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Table 1: Simulation results for a 3 ⇥ 3 lattice, with uncorrelated (⇢ = 0) and correlated (⇢ =
0.7) disturbances, and number of groups G: number of groups detected in correspondence to
different time length T .

⇢ = 0 ⇢ = 0.7
T = 100 T = 500 T = 1000 T = 100 T = 500 T = 1000

G

⇤
G = 1

1 832 849 872 894 906 872
2 168 151 127 106 94 127
3 0 0 1 0 0 1
G

⇤
G = 2

1 225 0 0 150 0 0
2 737 878 871 817 905 908
3 38 120 126 33 93 89
4 0 2 3 0 2 3
G

⇤
G = 3

1 1 0 0 0 0 0
2 469 0 0 315 0 0
3 517 894 905 668 935 932
4 13 103 95 16 59 59
5 0 3 0 1 6 9
G

⇤
G = 4

2 195 0 0 143 0 0
3 727 21 0 738 3 0
4 78 933 956 118 953 973
5 0 45 43 1 41 26
6 0 1 1 0 3 1
G

⇤
G = 5

2 222 0 0 179 0 0
3 694 12 0 705 2 0
4 83 692 247 113 602 223
5 1 296 752 3 390 773
6 0 0 1 0 6 4
G

⇤
G = 6

2 285 0 0 219 0 0
3 599 9 0 647 2 0
4 114 181 2 128 42 0
5 2 697 327 6 662 206
6 0 113 667 0 332 781
7 0 0 4 0 2 9
8 0 0 0 0 0 4

Note: Data generated using the rook contiguity matrix, that is supposed known. G⇤ indicates the number of
groups detected by the algorithm described in Section 3. The number of replications is 1000 for each case study.
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Table 2: Simulation results for a 5 ⇥ 5 lattice, with uncorrelated (⇢ = 0) and correlated (⇢ =
0.7) disturbances, and number of groups G: number of groups detected in correspondence to
different time length T .

⇢ = 0 ⇢ = 0.7
T = 100 T = 500 T = 1000 T = 100 T = 500 T = 1000

G

⇤
G = 1

1 712 682 705 734 778 754
2 281 316 290 263 222 243
3 7 2 5 3 0 3
G

⇤
G = 2

1 106 0 0 46 0 0
2 794 711 692 852 793 761
3 100 277 286 102 198 229
4 0 12 22 0 9 10
G

⇤
G = 3

2 251 0 0 158 0 0
3 688 724 700 780 814 784
4 61 252 272 61 170 197
5 0 22 28 1 16 19
6 0 2 0 0 0 0
G

⇤
G = 4

2 70 0 0 38 0 0
3 697 1 0 643 0 0
4 224 763 712 313 835 805
5 9 221 252 6 149 177
6 0 14 35 0 15 17
7 0 1 1 0 1 1
G

⇤
G = 5

2 96 0 0 38 0 0
3 714 2 0 697 0 0
4 188 478 40 247 293 15
5 2 474 785 18 640 844
6 0 46 166 0 64 126
7 0 0 9 0 3 14
8 0 0 0 0 0 1
G

⇤
G = 6

2 83 0 0 25 0 0
3 611 0 0 525 0 0
4 290 11 0 392 2 0
5 16 592 53 55 337 21
6 0 382 805 3 611 848
7 0 15 135 0 50 124
8 0 0 6 0 0 7
9 0 0 1 0 0 0

Note: Data generated using the rook contiguity matrix, that is supposed known. G⇤ indicates the number of
groups detected by the algorithm described in Section 3. The number of replications is 1000 for each case study.
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Figure 1: Simulation results for a 3 ⇥ 3 lattice, with uncorrelated (⇢ = 0) and correlated
(⇢ = 0.7) disturbances, number of groups G and different time length T : distribution of the
Rand index.
⇢ = 0; T = 100; G = 1 ⇢ = 0; T = 500; G = 1 ⇢ = 0; T = 1000; G = 1 ⇢ = 0.7; T = 100; G = 1 ⇢ = 0.7; T = 500; G = 1 ⇢ = 0.7; T = 1000; G = 1

⇢ = 0; T = 100; G = 2 ⇢ = 0; T = 500; G = 2 ⇢ = 0; T = 1000; G = 2 ⇢ = 0.7; T = 100; G = 2 ⇢ = 0.7; T = 500; G = 2 ⇢ = 0.7; T = 1000; G = 2

⇢ = 0; T = 100; G = 3 ⇢ = 0; T = 500; G = 3 ⇢ = 0; T = 1000; G = 3 ⇢ = 0.7; T = 100; G = 3 ⇢ = 0.7; T = 500; G = 3 ⇢ = 0.7; T = 1000; G = 3

⇢ = 0; T = 100; G = 4 ⇢ = 0; T = 500; G = 4 ⇢ = 0; T = 1000; G = 4 ⇢ = 0.7; T = 100; G = 4 ⇢ = 0.7; T = 500; G = 4 ⇢ = 0.7; T = 1000; G = 4

⇢ = 0; T = 100; G = 5 ⇢ = 0; T = 500; G = 5 ⇢ = 0; T = 1000; G = 5 ⇢ = 0.7; T = 100; G = 5 ⇢ = 0.7; T = 500; G = 5 ⇢ = 0.7; T = 1000; G = 5

⇢ = 0; T = 100; G = 6 ⇢ = 0; T = 500; G = 6 ⇢ = 0; T = 1000; G = 6 ⇢ = 0.7; T = 100; G = 6 ⇢ = 0.7; T = 500; G = 6 ⇢ = 0.7; T = 1000; G = 6

elements present in a large number of groups when the lattice is relative to only 9 spatial units.

For T = 500 and 1000 the performance increases when G is 5 or 6. Again, the presence of

spatial correlation favors the correct detection of the number of groups.

The evaluation of the second point (correct assignment of the spatial units to the group)

is conducted in graphical terms, plotting the empirical distribution of the Rand index for each

case. These distributions are illustrated in Figures 1 (lattice 3⇥ 3) and 2 (lattice 5⇥ 5). When

the data generating process is the STAR(1,1) (G = 1), the detection of the true model is very

frequent independently of the time length: the Rand index (4.1) is equal to 1 in more than

13



Figure 2: Simulation results for a 5 ⇥ 5 lattice, with uncorrelated (⇢ = 0) and correlated
(⇢ = 0.7) disturbances, number of groups G and different time length T : distribution of the
Rand index.
⇢ = 0; T = 100; G = 1 ⇢ = 0; T = 500; G = 1 ⇢ = 0; T = 1000; G = 1 ⇢ = 0.7; T = 100; G = 1 ⇢ = 0.7; T = 500; G = 1 ⇢ = 0.7; T = 1000; G = 1

⇢ = 0; T = 100; G = 2 ⇢ = 0; T = 500; G = 2 ⇢ = 0; T = 1000; G = 2 ⇢ = 0.7; T = 100; G = 2 ⇢ = 0.7; T = 500; G = 2 ⇢ = 0.7; T = 1000; G = 2

⇢ = 0; T = 100; G = 3 ⇢ = 0; T = 500; G = 3 ⇢ = 0; T = 1000; G = 3 ⇢ = 0.7; T = 100; G = 3 ⇢ = 0.7; T = 500; G = 3 ⇢ = 0.7; T = 1000; G = 3

⇢ = 0; T = 100; G = 4 ⇢ = 0; T = 500; G = 4 ⇢ = 0; T = 1000; G = 4 ⇢ = 0.7; T = 100; G = 4 ⇢ = 0.7; T = 500; G = 4 ⇢ = 0.7; T = 1000; G = 4

⇢ = 0; T = 100; G = 5 ⇢ = 0; T = 500; G = 5 ⇢ = 0; T = 1000; G = 5 ⇢ = 0.7; T = 100; G = 5 ⇢ = 0.7; T = 500; G = 5 ⇢ = 0.7; T = 1000; G = 5

⇢ = 0; T = 100; G = 6 ⇢ = 0; T = 500; G = 6 ⇢ = 0; T = 1000; G = 6 ⇢ = 0.7; T = 100; G = 6 ⇢ = 0.7; T = 500; G = 6 ⇢ = 0.7; T = 1000; G = 6

83% of cases for the 3 ⇥ 3 lattice and this value increases with spatial autocorrelation of the

disturbances. This percentage decreases sensitively in the 5⇥5 lattice, with a higher percentage

of 2 groups detected, but the difference with respect to the true pattern is not relevant; in fact

the percentage of cases with r � 0.85 is always around 96%. The procedure seems to fail

when a FSTAR(1,1) model is the true data generating process and T is small; we can notice

the small number of cases with the correct pattern detection, whereas the performance is good

when T increases and 2  G  4, with percentages of r � 0.85 near to 100%. When G = 5, 6,

the performance of the clustering algorithm strongly depends on the time dimension, reaching
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sufficiently good performances only when T = 1000 for the 3⇥3 lattice (Figure 1), in particular

in presence of spatial autocorrelation of disturbances; these cases show a poor performance in

the 5⇥ 5 lattice (Figure 2).

In practice the algorithm does work for large T , whereas the correct pattern is difficult to be

detected when T is small and G > 1. Larger numbers of groups require a longer length of time;

also the increase of the number of spatial units implies a longer length of time, consistently with

the findings of Otranto and Gallo (1994), investigating balanced space–time patterns to avoid

estimation problems in STARMA models.

4.2 Effect of the weight matrix

Previous experiments were performed supposing that the weight matrix was known; in practi-

cal cases it is not fixed a priori. In order to understand how important the knowledge of the true

matrix W is, we run the same set of simulations of the previous subsection, fixing T = 1000 to

avoid time dependence, but using a wrong contiguity matrix in the estimation (i.e. data gener-

ated using one type of spatial weight matrix, but estimated using another type of spatial weight

matrix). In particular we used the queen contiguity matrix, which considers more neighbours

with respect to the rook case.2 In Table 3 we show the results of this experiment. Comparing the

results of Table 3 with the corresponding results of Tables 1 (for the 3⇥ 3 lattice) and 2 (for the

5⇥ 5 lattice), it is clear that the identification of the number of groups depends on the adoption

of the correct weight matrix; anyway this difference is less relevant in the case of the absence

of spatial correlation among disturbances, whereas the decline is dramatic when ⇢ = 0.7; in

this case we generally obtain an overestimation of the number of groups. The result is not

surprising: the absence of spatial correlation between disturbances implies that the weight ma-

trix enters more weakly in the data generating process, so that its correct identification is less

relevant in the estimation process. Vice versa, when the spatial correlation among disturbances

increases, the correct detection of the weight matrix provides a more accurate classification of

the spatial units.

Figure 3 shows the distribution of the Rand index for the simulated series. It confirms the
2We have also used the bishop contiguity matrix and the results are similar and in many cases worse than the

queen case. Results available on request.
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Table 3: Simulation results: Number of groups detected (G⇤) for 3⇥ 3 and 5⇥ 5 lattices, with
uncorrelated (⇢ = 0) and correlated (⇢ = 0.7) disturbances, time length T = 1000 and different
number of groups G, adopting a wrong weight matrix.

3⇥ 3 lattice 5⇥ 5 lattice 3⇥ 3 lattice 5⇥ 5 lattice
⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7

G

⇤
G = 1 G = 2

1 847 10 680 247 0 0 0 0
2 153 833 311 676 846 13 647 9
3 0 157 9 76 149 559 329 356
4 0 0 0 1 5 410 24 547
5 0 0 0 0 0 18 0 85
6 0 0 0 0 0 0 0 3
G

⇤
G = 3 G = 4

3 873 18 622 244 0 0 0 0
4 121 872 334 519 884 295 245 22
5 6 104 43 213 113 631 574 396
6 0 6 1 24 3 74 168 454
7 0 0 0 0 0 0 13 123
8 0 0 0 0 0 0 0 5
G

⇤
G = 5 G = 6

4 274 181 219 4 78 1 0 0
5 708 613 633 452 446 20 197 0
6 18 193 142 457 456 166 594 198
7 0 13 6 84 0 777 193 611
8 0 0 0 3 0 36 15 177
9 0 0 0 0 0 0 1 13

10 0 0 0 0 0 0 0 1
Note: Data generated using the rook contiguity matrix, but estimated using the queen contiguity matrix. G⇤

indicates the number of groups detected by the algorithm described in Section 3. The number of replications is
1000 for each case study.

previous comments, underlying as we have good chances to detect the correct groups when

⇢ = 0 and the lattice is 3 ⇥ 3, whereas it is more difficult to have success in the 5 ⇥ 5 lattice.

In general the groups are similar to the true ones for 1  G  4, given a Rand index generally

higher than 0.8.

4.3 Forecasting performance

In the previous experiments we have evaluated the capability of the algorithm to identify the

groups of spatial units with similar STAR structure. Another important task is to compare the

FSTAR model with respect to alternative models, in particular in terms of out–of–sample fore-

casting performance. This could be a good point in favor of the FSTAR model if its estimation,
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Figure 3: Simulation results for 3⇥3 and 5⇥5 lattices, with uncorrelated (⇢ = 0) and correlated
(⇢ = 0.7) disturbances, time length T = 1000 and different number of groups G, adopting a
wrong weight matrix: distribution of the Rand index.

⇢ = 0; G = 1; 3 ⇥ 3 ⇢ = 0.7; G = 1; 3 ⇥ 3 ⇢ = 0; G = 1; 5 ⇥ 5 ⇢ = 0.7; G = 1; 5 ⇥ 5

⇢ = 0; G = 2; 3 ⇥ 3 ⇢ = 0.7; G = 2; 3 ⇥ 3 ⇢ = 0; G = 2; 5 ⇥ 5 ⇢ = 0.7; G = 2; 5 ⇥ 5

⇢ = 0; G = 3; 3 ⇥ 3 ⇢ = 0.7; G = 3; 3 ⇥ 3 ⇢ = 0; G = 3; 5 ⇥ 5 ⇢ = 0.7; G = 3; 5 ⇥ 5

⇢ = 0; G = 4; 3 ⇥ 3 ⇢ = 0.7; G = 4; 3 ⇥ 3 ⇢ = 0; G = 4; 5 ⇥ 5 ⇢ = 0.7; G = 4; 5 ⇥ 5

⇢ = 0; G = 5; 3 ⇥ 3 ⇢ = 0.7; G = 5; 3 ⇥ 3 ⇢ = 0; G = 5; 5 ⇥ 5 ⇢ = 0.7; G = 5; 5 ⇥ 5

⇢ = 0; G = 6; 3 ⇥ 3 ⇢ = 0.7; G = 6; 3 ⇥ 3 ⇢ = 0; G = 6; 5 ⇥ 5 ⇢ = 0.7; G = 6; 5 ⇥ 5

based on an acceptable detection of groups of spatial units, provides a better forecasting per-

formance with respect to a classical STAR model and a similar performance with respect to an

overparameterized USTAR model.

We follow the lines of the experiment performed in Frühwirth-Schnatter and Kaufmann

(2008), who evaluate a model–based clustering procedure for multiple time series. We start

from the previous simulated space–time series, adding 4 observations for each spatial unit;

then, using the first T observations for estimation, we forecast the successive 4 observations

for each spatial unit; call them ŷi,T+h. Finally we calculate the Root Mean Squared Error

17



Table 4: Simulation results: Average RMSE of out—of sample forecasts for alternative models.
G=1 G=2 G=3 G=4 G=5 G=6

⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7 ⇢ = 0 ⇢ = 0.7
T = 100

STAR 0.998 0.398 1.008 0.404 1.037 0.416 1.060 0.424 1.048 0.419 1.046 0.421
USTAR 1.008 0.402 1.007 0.402 1.008 0.403 1.007 0.403 1.007 0.403 1.008 0.403
FSTAR 0.998 0.399 1.007 0.403 1.014 0.405 1.015 0.405 1.013 0.405 1.014 0.406

T = 500
STAR 0.997 0.401 1.006 0.406 1.038 0.419 1.057 0.427 1.046 0.421 1.046 0.423

USTAR 0.999 0.402 0.999 0.401 0.999 0.401 0.999 0.402 0.999 0.402 0.999 0.401
FSTAR 0.997 0.401 0.997 0.401 0.997 0.401 0.998 0.401 0.999 0.401 0.999 0.401

T = 1000
STAR 0.998 0.402 1.008 0.407 1.038 0.419 1.058 0.427 1.047 0.422 1.046 0.424

USTAR 0.999 0.402 0.999 0.402 0.999 0.402 0.999 0.402 0.999 0.402 0.999 0.402
FSTAR 0.998 0.402 0.998 0.402 0.998 0.402 0.998 0.402 0.999 0.402 0.999 0.402

T = 1000 and wrong W
STAR 1.005 0.404 1.023 0.412 1.046 0.423 1.075 0.434 1.061 0.431 1.055 0.430

USTAR 1.006 0.404 1.016 0.406 1.012 0.407 1.024 0.411 1.020 0.410 1.015 0.409
FSTAR 1.006 0.404 1.015 0.406 1.011 0.407 1.023 0.411 1.020 0.410 1.015 0.409

Note: Data generated using the rook contiguity matrix; wrong W means that the models are generated using the
rook contiguity matrix, but estimated using the queen contiguity matrix. The number of replications is 1000 for
each case study.

(RMSE):

RMSE =

vuut 1

4N

NX

i=1

4X

h=1

(yi,T+h � ŷi,T+h)
2 (4.2)

We evaluate (4.2) for the alternative models STAR, USTAR and FSTAR for all the combina-

tions of T , N and ⇢ described in this section, adopting the true weight matrix (rook contiguity

matrix) and also in the case of wrong weight matrix (queen contiguity matrix).3 The average

of the RMSE obtained in the 1000 replications of each case are showed in Table 4.

When T = 100 the overparameterized USTAR model performs better than FSTAR and

STAR if the number of groups G is higher than 2 and ⇢ = 0; in the other cases the FSTAR

has a similar behavior, confirming that the presence of spatial correlation between disturbances

and the use of the true weight matrix help in the identification of the clusters. When G = 1

STAR and FSTAR outperform USTAR. Increasing the number of observations the performance

of USTAR and FSTAR is very similar, with a clear superiority with respect to the STAR model

(excluding the case G = 1, where STAR is the data generating process). The same holds when

the weight matrix is wrong; of course there is a higher RMSE with respect to the case of true

weight matrix, but this wrong choice affects all three models in a similar way.

This experiment seems to suggest that the FSTAR model has a similar forecasting perfor-

mance with respect to an overparameterized model as USTAR and it is clearly better than the
3In the wrong weight matrix case, we fix T = 1000 as in the previous subsection.
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classical STAR, when the data generating process includes groups of spatial units with similar

STAR structure. Of course the performance of FSTAR depends on the capability of the clus-

tering algorithm to detect the correct groups, and this result is linked to the length of the time

series. The choice of the correct weight matrix affects the goodness of forecasting of all the

models, not altering the ranking of the forecasting performance.

4.4 Distance–based weight matrices

The previous simulations were based, as usual, on regular lattices, adopting the typical binary

weight matrices derived from contiguity criteria. We complete the simulation study reproposing

the previous exercises for a more realistic pattern, derived from the space–time structure of the

data set used in the successive section. The data set contains T = 576 observations along

the time and N = 12 spatial units; we generate 1000 space–time series of this length with

the FSTAR coefficients shown in Table 7 for G = 2 and a weight matrix depending on the

geographical distance between each pair of spatial units. It is worthwhile to mention that the

coefficients of the two distinct groups are close (in particular the  coefficients). The data

are generated by a multivariate Normal distribution with constant variance equal to 0.093 and

⇢ = 0.157.4

The weight matrix used to generate data is a particular kernel matrix, where the weight wij

is a continuous and monotonic decreasing function of the (Euclidean) distance dij (Fothering-

ham, Brunsdon and Charlton, 2002). The choice of kernel functions is particularly appropriate

because the bandwidth h provides a control for the circular area of influence of each observation

i. We adopt Gaussian distance-decay-based functions as:

wij = exp

"
�1

2

✓
dij

h

◆2
#

(4.3)

with h = max(dij) and call it the Kmax weight matrix. As in the previous experiments,

we will consider both the cases of knowing the weight matrix and adopting wrong weight

matrices; in particular we will consider another kernel matrix with a lower area of influence
4The value of the variance is the estimated variance of the FSTAR model shown in Table 7; the coefficient ⇢ is

the average of the 12 Moran indices (see Anselin, 1988) of each spatial unit.
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Figure 4: Simulation results for series generated from the FSTAR model of Table 7: distribution
of the Rand index using three different weight matrices.

W = Kmax W = BM W = K20p

Table 5: Simulation results for series generated from the FSTAR model of Table 7: Average
RMSE (multiplied by 1000) of out–of sample forecasts for alternative models in correspon-
dence with different weight matrices .

Kmax BM K20p
STAR 13.744 13.764 13.754

USTAR 13.694 13.715 13.704
FSTAR 13.678 13.701 13.689

Note: Data generated using the Kmax matrix. The number of replications is 1000 for each case study.

(h = 0.2max(dij)), called K20p, and a Boundary matrix (BM ). The latter is a binary matrix,

with weight equal to 1 if the corresponding units have a common boundary, 0 otherwise.

In Figure 4 we show the distribution of the Rand index for the 1000 replications and the

three alternative weight matrices. The results seem very positive with 96% correct detections

of groups in the case of true weight matrix and more than 90% in the wrong cases.

We have also compared the forecasting performance of the STAR, USTAR and FSTAR

models, as in the previous subsection, under the new experimental design (Table 5). The dif-

ferences are small, but FSTAR always shows the lowest MSE.

5 Application

Let us consider the data set of the Crude Birth Rate (henceforth CBR) relative to the 12 health

districts of the city of Caserta (Italy) from January 1st 1995 to January 28th 2017; the data

are recorded every two weeks, for a total of T = 576 time observations.5 On the left side

of Figure 5 the map of the geographical area considered is shown, distinct in the 12 health
5We are very grateful to Francesco Giorgianni and Gianluca Trifirò who have produced and made available

this data set.
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districts, labeled HD12, . . . , HD23. On the right side of Figure 5, we show the time dynamics

of one of the 12 spatial units;6 the presence of a decreasing linear trend is clear. In order to

obtain a stationary space–time series we have subtracted a linear trend (of the form ai + bit,

t = 1, . . . , T , i = 1, . . . , N ) from each time series.

Figure 5: Map of the 12 health districts of Caserta (left side) and time series of the district
HD21 (right side).

As previously explained, the choice of the spatial weight matrix could play a crucial role in

the inference of the model. It seems to lose importance in the space–time structure considered

in this application, as shown in the simulation results of subsection 4.4. So in order to obtain the

robustness of the results with respect to the W spatial matrix chosen, we chose eight different

weight specifications (for a review see Cliff and Ord, 1973, 1981; Getis and Ord, 1992; Cressie,

1993), distinguishing between binary and kernel spatial weight matrices:

• Binary matrix: the weight wij is equal to 1 if i and j are neighbors, 0 otherwise. The in-

terconnection system is defined in terms of boundaries or distance under a certain thresh-

old.

1. Boundary Matrix (BM ): it is the classical contiguity binary matrix based on the
6The other time series have a very similar behaviour; they are available on request.
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common boundary; in practice the weight is 1 when the two locations share a com-

mon boundary; by convention wii = 0 for i = 1, . . . , N .

2. Maxmin matrix (Mm): the neighbors are detected by the Maxmin distance (Muc-

ciardi and Bertuccelli, 2012). It is defined as

dMm = max(e1, . . . , eN)

where ei (i = 1, . . . , N ) represents the minimum Euclidean distance of the generic

location i and the other locations j (i 6= j). As a consequence all locations have at

least one connection and the neighbors of location i are the locations with Euclidean

distance lower than dMm.

• Kernel matrix: the weight wij is obtained adopting the Gaussian distance-decay-based

functions (4.3). For our experiments we have selected the following kernel weight matri-

ces:

3. Kmin: with h = min(dij) (in our application it corresponds to 3.77 Kilometers) ;

4. K10p: with h = 0.1max(dij) (4.80 KM);

5. K20p: with h = 0.2max(dij) (9.61 KM);

6. KMm: with h = dMm (21.20 KM);

7. Kmea: with h = mean(dij) (22.32 KM);

8. Kmax: with h = max(dij) (48.05 Km)

In Figure 6 the behavior of the Maxmin distance and the six kernel functions are illustrated.

The Maxmin binary criterion is a step function which assigns weight 1 to the locations with

Euclidean distance lower than the Maxmin distance; the Kernel weights decrease with the

distance (in Kilometers) and the area of influence increases with h. Each weight matrix is

successively standardized by row. The curves relative to Kmin and K10p as well those relative

to KMm and Kmea are very closed, given the similar bandwidth adopted.

We applied the clustering algorithm using alternatively each weight matrix, obtaining dif-

ferent clustering. Using the Rand index (4.1) to measure the similarity of each pair of classifi-
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Figure 6: Weights of the spatial matrix derived from the Maxmin criterion and five Kernel
functions.

Table 6: CBR data set: Rand index for each pair of classification derived from the hierarchical
algorithm with different spatial weight matrices.

Mm Kmin K10p K20p KMm Kmea Kmax

BM 0.480 0.759 0.645 0.677 0.444 0.444 0.444
Mm 0.430 0.396 0.455 0.275 0.275 0.275
Kmin 0.430 0.445 0.380 0.380 0.380
K10p 0.899 0.551 0.551 0.551
K20p 0.435 0.435 0.435
KMm 1.000 1.000
Kmea 1.000

cations, we obtain a synthetic representation of the different results derived from the different

W matrices, as shown in Table 6. It seems clear that the kernel matrices with a large bandwidth

(KMm, Kmea and Kmax) provide the same classification (Rand index equal to 1), whereas

the classification seems sensitive to changes in the bandwidth when it is small, showing dif-

ferent clusters when comparing Kmin and K10p. The smallest Rand index is equal to 0.275,

obtained comparing Mm and the kernel matrices with high bandwidth h. As expected, the

BM matrix provides results more similar to kernel matrices with the smallest h.

We have estimated, separately for each weight matrix, the STAR(1,1), the USTAR(1,1) and

the FSTAR(1,1) models. Moreover, given the relationship between STAR and VAR models,

as shown in equation (2.3), we estimate also a Sparse VAR (SVAR) model, shrinking some

coefficients toward 0. We adopt a Lasso-penalized approach, using the coordinate descent
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algorithm for its estimation (see Friedman, Hastie and Tibshirani, 2008). The amount of penalty

is driven by a scalar tuning parameter; for this purpose we use the Elastic Net approach of Zou,

Hastie and Tibshirani (2004).7 The estimated SVAR model involves 84 nonzero coefficients in

the A matrix in (2.3); to save space we do not show these coefficients, that are available on

request.

As an example, in Table 7 we show the estimates of USTAR and FSTAR models using

the Kmax weight matrix, which, in terms of Mean Squared Error, show the best results (the

estimates of all the other models are available on request). The horizontal line separates the two

groups identified by the hierarchical algorithm. It is evident as the coefficients of the USTAR

model are not significant; this is the typical problem of this model which makes it not efficient

in real cases. On the other hand, the coefficients of the two groups of the FSTAR model are

significantly different from zero, with the exception of the � coefficient of the second group,

which is equal to zero.

In the last two columns of Table 7 we show the average of the weights wij of each row i

(referred to the spatial unit in the first column) corresponding to the spatial units j belonging to

the same cluster of i, and the average of the weights of the spatial units j which do not belong

to the same cluster of i. This is a useful exercise to understand if spatial units sharing a large

weight tend to be clustered together into one group, and if spatial units sharing a small weight

are clustered into different groups. The two averages are very similar and, in five cases, the

second average is higher than the first one. These results are similar for all the eight weight

matrices adopted in this work. In practice the clustering depends on the weight matrix adopted,

as shown in this application and in the previous simulations; in fact this choice affects the

estimates of the coefficients because it enters directly into the equation (2.4), averaging the

lagged observations of the spatial units; but a direct relationship between the composition of

the cluster and the magnitude of the weight does not seem to exist.

Comparing the goodness of the fit of the four alternative models we find that the lowest

RMSE is in SVAR, followed by USTAR, FSTAR and STAR. This ranking is the same for

all the estimations with a different weight matrix. It is an expected result; in fact it is well
7We utilize the sparcevar package (ver. 0.0.10) in R language for the estimation of this model.
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Table 7: CBR data set: Estimation (standard errors in parentheses) of the coefficients of FSTAR
and USTAR models, using the Kmax weight matrix, and in correspondence to each spatial
unit, the average of the weights of the units belonging to the same cluster and the average of
the weights of the units belonging to the other cluster.

Health District � FSTAR � USTAR  FSTAR  USTAR Av. wij in cluster Av. wij out of cluster
HD13 0.121 0.026 0.484 0.461 0.092 0.088

(0.048) (0.170) (0.094) (0.280)
HD15 0.064 0.355 0.088 0.099

(0.180) (0.270)
HD16 0.212 0.381 0.092 0.088

(0.159) (0.302)
HD17 0.041 0.385 0.092 0.087

(0.133) (0.268)
HD18 0.241 0.364 0.092 0.088

(0.145) (0.300)
HD19 0.135 0.624 0.092 0.088

(0.138) (0.306)
HD20 0.125 0.546 0.092 0.089

(0.124) (0.285)
HD22 0.057 0.647 0.090 0.093

(0.144) (0.289)
HD23 0.127 0.576 0.090 0.093

(0.148) (0.282)
0
HD12 0.000 0.046 0.412 0.336 0.085 0.092

(0.107) (0.228) (0.158) (0.280)
HD14 0.004 0.374 0.093 0.090

(0.189) (0.273)
HD21 -0.034 0.529 0.087 0.092

(0.166) (0.284)
Note: The horizontal lines separate the groups identified by the procedure described in section 3. The parameters
estimated with the STAR(1,1) model are � = 0.103 (0.044) and  = 0.407 (0.081). Av. wij in cluster is the
average of the weights of row i (corresponding to the spatial unit in the first column of the table) corresponding
to the spatial units belonging to the same cluster of i, whereas Av. wij out of cluster is the average of the weights
of row i (corresponding to the spatial unit in the first column of the table) corresponding to the spatial units
belonging to the cluster which does not contain i.
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Table 8: Out–of–sample forecasting of the CBR data: percentage variation in RMSE of STAR,
USTAR, and SVAR models with respect to the FSTAR model.

W STAR USTAR SVAR
BM 15.42 15.38 61.95
Mm 20.32 30.64 68.68
Kmin 20.39 20.32 71.90
K10p 24.82 26.89 77.97
K20p 17.93 27.54 66.59
KMm 15.65 23.12 60.33
Kmea 15.62 22.90 60.09
Kmax 15.96 22.37 58.59

known that overparameterized models show a better in–sample performance than simpler mod-

els, which could be not confirmed in out–of–sample terms (see, for example, Hansen, 2010,

who provides an analytical proof of this result). For this reason the out–of–sample evaluation

is particularly interesting. We re–estimate the models on a reduced data set, excluding the last 4

observations for each unit, re–applying the clustering algorithm to estimate the FSTAR model;

then we perform the one–step ahead forecasts for the out–of–sample period (12⇥4 space–time

observations). In Table 8 we show the percentage variations in RMSE of STAR, USTAR and

SVAR with respect to FSTAR with the eight different weight matrices.8 It is clear that the

FSTAR model performs better than the alternatives and a bad SVAR performance with a very

high RMSE. The STAR performs better than USTAR in six cases, but all its RMSEs are larger

than 15% with respect to the RMSE of FSTAR.

6 Final Remarks

The use of a parsimonious model, as the STAR(1,1), to represent space–time series is a common

practice in statistical modeling because the alternative VAR model (we called it USTAR model)

causes inefficiency in the estimation and overparameterization. We have proposed a flexible

model (FSTAR) with a reduced number of parameters, which allows spatial units with similar

dynamics to have the same coefficients. The identification of the locations can be done through

a hierarchical clustering algorithm, based on a Wald test which verifies the similarity of the

coefficients of different locations. Consequently, the advantage of the FSTAR model is twofold:
8The RMSE of the SVAR model is constant, not depending on the weight matrix.
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the model is a good compromise between the parsimony of the STAR model and the flexibility

of the overparameterized USTAR model; the model building procedure identifies groups of

locations with a similar space–time behavior and this result can be used for spatial aggregation

or clustering analysis.

The simulation results show a good capability for identifying the true patterns for high time

dimension, whereas this result is poor when the time length is short. Anyway, the out–of–

sample performance of the FSTAR model, in our practical application, seems to provide results

outperforming the overparameterized USTAR model and the simple STAR model, but also a

Sparse VAR model involving several coefficients.

One of the crucial problems of space–time models is the choice of the spatial weight ma-

trix; in our application we have used eight exogenous weight matrices, which provide some

differences in clustering for the FSTAR model; but the results, in terms of in–sample and out–

of–sample performance, seem sufficiently robust. Alternatively, in the case of kernel spatial

matrices, we could estimate the bandwidth h with the other unknown coefficients, considering

an exogenous W matrix (see Otranto, Mucciardi and Bertuccelli, 2016).

Furthermore, the clustering and identification procedure can be extended to larger time and

spatial lags, implying the consideration of a larger number of coefficients and a Wald test with

several constraints to be jointly verified. Similar considerations could be made extending the

methodology to STARMA models; in fact the clustering procedure is based on the Steece and

Wood (1985) equivalence test, which was developed for general ARMA models. We leave

these extensions to future research.
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Appendix: The clustering algorithm

The algorithm we propose can be synthesized in the following steps:

1. estimate all the N univariate STAR(1,1) models and put N⇤ = N and G = 0;

2. verify the joint null hypothesis �h = �i and  h =  i for each h and i and, if at least one

hypothesis is not rejected, select the two series with maximum p-value (corrected with

the Holm, 1979, procedure) and put G = G + 1 and N

⇤ = N

⇤ � 2; otherwise stop the

algorithm and put G = G+N

⇤;

3. estimate the STAR(1,1) model with the series selected in group G; call the coefficients

�G and  G;
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4. verify the joint null hypothesis �G = �i and  G =  i for each remaining location i and,

if at least one hypothesis is not rejected, select the series i which provides the maximum

corrected p-value, add it to the previous group and put N⇤ = N

⇤ � 1;

5. if at least one hypothesis is not rejected, repeat steps 3. and 4.; if all the null hypotheses

are rejected, the series selected until step 4. form a group of locations with the same

coefficients.

6. repeat steps 2.–5. with the remaining series until no series remain.

It is important to emphasize some points.

There are two counters (N⇤ and G) to record the number of series remaining and the number

of groups identified respectively. Notice that the number of groups G is identified by the algo-

rithm and does not need to be fixed a priori. When, in step 2., we reject all the null hypotheses,

we will obtain N

⇤ groups of size 1.

If all the elements of the row i of matrix W are equal to zero, the previous hypotheses, in-

volving location i, are relative only to the � coefficient because the  coefficient is not identified

and is a nuisance parameter.

In step 2. the p–value is adopted to establish the order in which the locations enter into the

groups. The Holm correction consists in ordering the unadjusted p–values such that p1  p2 

· · ·  pm and then applying:

p̃j = min[(m� j + 1)pj, 1]

The corrected p–value p̃j is used as measure of similarity between STAR models in the algo-

rithm

The test of the hypothesis in steps 2. and 4. can be performed by the Wald statistic. The

validity of this approach in time series clustering has been supported by the simulation exper-

iments of Otranto (2008 and 2010) and based on the theory developed by Steece and Wood

(1985). More in detail, let us suppose that, in step 4., we compare the parameters of a group of
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locations with the parameters of a location i; let us consider:

✓ = (�G, G,�i, i)
0; ⌃ =

2

64
⌃G 0

0 ⌃i

3

75 (6.1)

where ⌃G is the covariance matrix of the parameters estimator of group G, ⌃i the covariance

matrix of the parameters estimator of the location i and 0 a matrix with all the elements equal

to 0. Each matrix has dimension (2⇥ 2). Moreover let:

C =

2

64
1 0 �1 0

0 1 0 �1

3

75

be a constant matrix; the Wald statistic is expressed by:

⌅ = (C✓)0 (C⌃C0)�1 (C✓) (6.2)

and follows a chi–squared distribution with 2 degrees of freedom.

In step 2., the same statistic is adopted, but in (6.1) we have to substitute �G,  G and ⌃G

with �h,  h and ⌃h, respectively.

32



Ultimi Contributi di Ricerca CRENoS 
 
I Paper sono disponibili in: Uhttp://www.crenos.itU 
 

17/06 Simone Franceschini, Gerardo Ettore Marletto, “The dynamics of social 
capital during public participation: new knowledge from an on-
going monitoring”  

17/05 Luca G. Deidda, Ettore Panetti, “Banks’ Liquidity Management and 
Systemic Risk” 

17/04 Luca Frigau, Tiziana Medda, Vittorio Pelligra, “From the Field to the 
Lab�An Experiment on the Representativeness of Standard 
Laboratory Subjects”  

17/03 William Addessi, Manuela Pulina, “Sectoral Composition of 
Consumption Expenditure: A Regional Analysis” 

17/02 Claudio Detotto, Marta Meleddu, Marco Vannini, “Cultural identity 
and willingness to protect and preserve art” 

17/01 Adriana Di Liberto, Laura Casula, “Teacher assessments versus 
standardized tests: is acting “girly” an advantage?” 

16/16 Massimo Del Gatto, Carlo S. Mastinu, “Sequentiality and Distance(s) 
in Cross-Border Mergers and Acquisitions: Evidence from Micro 
Data”  

16/15 Angelo Antoci, Simone Borghesi, Gianluca Iannucci, “Green licenses 
and environmental corruption: a random matching model” 

16/14 Vit t o r i o  P e l l i g ra ,  Tommaso  Reg g ian i ,  Dan i e l  J ohn  Z izzo ,  
“Responding  to  (un)reasonab le  requests”  

16/13 Pasqua l ina  Arca  Gian f ran co  Atzen i ,  Luca  De idda ,  “Asset  
exempt ion in  entrepreneurs ’  bankruptcy  and the  
informat ive  ro le  of  co l la tera l”  

16/12 Migue l  Casa r e s ,  Luca  De idda ,  J o s e  E .  Ga ldon -San ch ez ,   
 “Loan product ion and monetary  po l icy”   

16/11 Manue la  Pu l ina ,  Va l en t ina  San ton i ,  “An ana lys i s  on  the  
I ta l i an  agr icu l tura l  f i rms :  e f fec ts  of  publ ic  subs id ies”  

16/10 Tiz iana  Medda ,  Vi t t o r i o  P e l l i g ra ,  Tommaso  Reg g ian i ,  
“Does  Exper ience  Affect  Fa i rness ,  Rec iproc i ty  and 
Coopera t ion  in  Lab Exper iments?”   

16/09 Bian ca  B ia g i ,  Mar ia  Giovanna  Brandano ,  Manue la  Pu l ina ,  
“The ef fect  of  tour ism taxat ion :  a  synthet ic  contro l  
approach” 

16/08 Edoardo  Ot ran to ,  Mass imo  Muc c ia rd i� ,  “A Flex ib le  
Spec i f ica t ion  of  Space–Time AutoRegress ive  
Models”  

16/07 Leonardo  Be c ch e t t i ,  Vi t t o r i o  P e l l i g ra ,  Fran c e s c o  Sa lu s t r i ,  
“Test ing  for  Heterogene i ty  of  Preferences  in  
Randomized Exper iments :  A Sat i s fac t ion-Based 
Approach Appl ied  to  Mult ip layer  Pr i soners ’  
Di lemmas”   

16/06 Anna Bo t ta s s o ,  Maur iz i o  Con t i ,  G iovann i  Su l i s ,  “Firm 
Dynamics  and Employment  Protect ion :  Evidence  
f rom Sectora l  Data”  

16/05 Oliv i e r o  A.  Carbon i ,  G iu s epp e  Medda ,  “R&D, Export ,  
and Investment  Dec is ion”  

16/04 Leonardo  Be c ch e t t i ,  Germana  Cor rado ,  Vi t t o r i o  P e l l i g ra ,  
F iamme t ta  Ros s e t t i ,  “Happiness  and Preferences  in  a  
Lega l i ty  Soc ia l  Di lemma Compar ing  the  Direct  and 
Ind irec t  Approach”  

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

www.crenos.it 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 


