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Abstract

We study a novel mechanism to explain the interaction between banks’ liquidity man-

agement and the emergence of systemic financial crises, in the form of self-fulfilling runs. To

this end, we develop an environment where banks o↵er insurance to their depositors against

both idiosyncratic and aggregate real shocks, by holding a portfolio of liquidity and illiq-

uid productive assets. Moreover, banks’ asset portfolios and the probability of a depositors’

self-fulfilling run are jointly determined via a “global game”. We characterize the su�cient

conditions under which there exists a unique threshold recovery rate, associated with the

early liquidation of the productive assets, below which the banks first employ liquidity and

then liquidate, in order to finance depositors’ early withdrawals. Ex ante, the banks hold

more liquidity than in a full-information economy, where there are no self-fulfilling runs and

risk is only due to idiosyncratic and aggregate real shocks.
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1 Introduction

Why do banks hold excess liquidity when facing systemic financial crises? Many explanations

have been proposed for this observation, from precautionary motivations (Ashcraft et al., 2011;

Acharya and Merrouche, 2013) to counterparty risk (Heider et al., 2015). However, there is

some extensive evidence that the emergence of these events is connected not only to extreme

fluctuations of the fundamentals of the economy, but also to investors’ self-fulfilling expectations

of crises themselves. This is particularly true in the banking system: in fact, liquidity and

maturity transformation, i.e. the issuance of short-term liquid liabilities (most often, deposits)

to finance the purchase of long-term illiquid assets, creates a mismatch in banks’ balance sheets

that makes them vulnerable to self-fulfilling runs by their depositors. Self-fulfilling runs are not

a phenomenon of the past: in fact, Argentina in 2001 and Greece in 2015 are only the two most

recent examples of such systemic events. Moreover, there exists a wide consensus that many

U.S. money market funds and life insurance funds (that, by o↵ering liquidity and maturity

transformation, can be likened to traditional banks) have experienced self-fulfilling runs after

the bankruptcy of Lehman Brothers in 2008 (Foley-Fisher et al., 2015) and, more generally,

that the U.S. financial crisis of 2007-2009 can be interpreted as a systemic self-fulfilling run of

financial intermediaries on other financial intermediaries (Gorton and Metrick, 2012). Therefore,

there is the need to understand how banks’ liquidity management influences the formation of

investors’ self-fulfilling expectations, and how these in turns might lead to systemic financial

crises. This is the aim of the present paper.

To this end, we develop a positive theory of banking with three main ingredients. First, a liq-

uid asset is available to the banks, to store resources and roll them over time. This assumption is

critical for two reasons: first, because it provides a precise definition of liquidity; second, because

it gives content to the two main alternatives that banks face in the presence of possible liquid-

ity shortages, namely (i) holding liquidity ex ante in excess of what the expectations of future

liquidity needs would demand, or (ii) liquidating ex post part of their productive investments.

Second, the concept of excess liquidity is well-defined, by comparison to a benchmark economy

with perfect information, in which the banks engage in precautionary liquidity holdings in order

to insure their depositors against idiosyncratic and aggregate real shocks. Third, banks’ liquidity

management and the probability of self-fulfilling runs are jointly and endogenously determined.
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More formally, we model a Diamond and Dybvig (1983) three-date (0, 1, and 2) economy,

populated by risk-averse agents/depositors. The depositors are hit by idiosyncratic liquidity

shocks, that make them willing to consume in the interim period (at date 1), and by aggregate

productivity shocks, realized in the final period (at date 2), that a↵ect the return on the available

investment technology. In this framework, a banking system arises to provide insurance against

both sources of uncertainty: to this end, the banks collect deposits at date 0, and o↵er a standard

deposit contract, financed by investing in a liquid and safe asset (that we call “liquidity”) and

in a productive – yet risky – one, that can be liquidated in the interim period at a cost.

In the interim period, the depositors also privately observe a noisy signal about the real-

ization of the aggregate productivity shock (which represents the state of the economy) based

on which they form posterior beliefs about the true state as well as about the other depositors’

signals. Because of strategic complementarities in their withdrawal decisions, this information

structure implies that the depositors might all withdraw from the banks, thus triggering a self-

fulfilling run, if they expect everybody else to do the same, and know that the banks do not

hold su�cient liquid resources to fulfill their contractual obligations. This happens whenever

the observed signal falls below some threshold, that endogenously depends on the state of the

economy, and on banks’ deposit contracts and asset portfolios. Facing systemic risk due to both

aggregate productivity shocks and the possibility of self-fulfilling runs, the banks in turn decide

the pecking order with which to employ their assets and serve the depositors at the interim date.

Specifically, the banks can either (i) use liquidity first and then liquidate their productive assets

at a given recovery rate or (ii) liquidate their productive asset first, and then use liquidity.

We characterize the equilibrium by backward induction. First, we study the equilibrium in

the interim period, when liquidity shocks hit the depositors, and they decide whether to join

a run or not, based on their posterior beliefs. This decision crucially depends on the deposit

contract and asset portfolio chosen by the banks at date 0. On the one side, by increasing the

amount of early consumption o↵ered to those withdrawing in the interim period, the banks

open themselves to the possibility of not being able to repay all depositors in the case of a run:

in other words, high interim consumption induces a high probability of a self-fulfilling run. On

the other side, by increasing the amount of liquidity held in portfolio, the banks are able to

serve more depositors before declaring bankruptcy, thus lowering their incentives to join a run:
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in other words, high liquidity induces a low probability of a self-fulfilling run.

Second, we characterize the optimal pecking order followed by the banks, given depositors’

optimal decisions about whether to run or not. The equilibrium pecking order trades o↵ the

opportunity cost of financing withdrawals at a run either by liquidating the productive asset,

in terms of (i) forgone resources in the interim period due to a low recovery rate and (ii)

forgone consumption in the final period in the good state of the world, or by using liquidity,

in terms of lower insurance against the aggregate productivity shock. Our first result shows

that the banks optimally choose the pecking order that minimizes the threshold signal below

which a signal triggers a self-fulfilling run. Moreover, with su�ciently high constant relative risk

aversion, the banks employ liquidity first and then liquidation as long as the productive asset

is su�ciently illiquid, i.e. the recovery rate associated with its early liquidation is su�ciently

low. Accordingly, the model predicts the typical chain of events that we observe in the real

world during a self-fulfilling run, as the number of depositors withdrawing increases: at first,

banks are liquid; then, they become illiquid but solvent, when they run out of liquidity and

start liquidating the productive asset, but are still able to serve their depositors; finally, they

become insolvent, thereby going into bankruptcy.

Third, taking into account the withdrawal decisions of the depositors and the optimal pecking

order of the interim period, in the initial period the banks solve for the optimal composition of

their asset portfolios, in terms of liquidity and productive assets, and for the deposit contract.

The equilibrium is characterized by a distorted Euler equation, featuring a wedge between

the marginal rate of substitution, between consumption in the interim period and in the final

period, and the expected return on the productive asset (equivalent to the marginal rate of

transformation of a productive technology). This wedge is due to two distinctive properties of

the banking equilibrium: first, the composition of the asset portfolios and the deposit contract

indirectly a↵ect depositors’ expected welfare, by altering the threshold signal below which a run

is triggered; second, the amount of liquidity a↵ects the utility of the depositors in the case of

a run. The optimal composition of the asset portfolios implies that the banks hold liquidity in

excess of the amount that they would choose in a benchmark no-run economy, where liquidity

shocks are observable and the signals about the state of the economy are perfectly informative.

More precisely, we are able to show that insurance against idiosyncratic liquidity shocks is
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lower (i.e. interim consumption is lower), while insurance against systemic risk due to self-

fulfilling runs and aggregate productivity shocks is higher (i.e. higher liquidity) compared to

the benchmark case, so that excess liquidity emerges.

The approach of connecting banks’ liquidity management to aggregate productivity shocks

and self-fulfilling runs is novel in the literature on banking and financial crises. In fact, in the

first-generation models of bank runs, Cooper and Ross (1998) and Ennis and Keister (2006)

also study banks’ liquidity management, but in an environment without aggregate productivity

shocks. In there, self-fulfilling runs arise as a consequence of multiple equilibria, and the de-

positors select an equilibrium following the realization of an extrinsic event, commonly named

“sunspot”, completely uncorrelated to the fundamentals of the economy. In such a framework,

banks do hold excess liquidity in equilibrium, but only to be able to serve all depositors in the

case of a run, thus making themselves “run-proof”. In other words, contrary to the empirical ev-

idence, these models do not exhibit excess liquidity and self-fulfilling runs simultaneously. Allen

and Gale (1998) also study banks’ liquidity management, but in an environment with aggregate

productivity shocks and no multiple equilibria. Moreover, the banks in their model do not hold

excess liquidity, but o↵er a standard deposit contract coupled with the possibility to default

in the bad states of the world, thus allowing optimal risk sharing against idiosyncratic and

aggregate real uncertainty. In the second-generation models of bank runs (Rochet and Vives,

2004; Goldstein and Pauzner, 2005), instead, the economy does feature aggregate productiv-

ity shocks, and the equilibrium selection mechanism, in the presence of multiple equilibria, is

endogenously determined via a “global game”. Yet, in these models, there is no liquidity man-

agement: in Rochet and Vives (2004), because banks do not provide insurance against systemic

shocks; in Goldstein and Pauzner (2005), because the productive asset in which banks invest

always dominates liquidity, as they can liquidate it at zero cost. To the best of our knowledge,

the work of Anhert and Elamin (2014) is the only example of a second-generation model where

the banks have the possibility to invest in a liquid asset, but only ex post (i.e. during a run),

to transfer the proceeds from early liquidation of the productive asset to possible bad states of

the world. In other words, there is no liquidity management ex ante, to hedge against aggregate

productivity shocks as well as self-fulfilling runs.

The rest of the paper is organized as follows: in section 2, we lay down the basic features
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of the environment; in section 3, we study the withdrawing decisions of the depositors, and

characterize the optimal pecking order with which the banks employ their assets to finance

depositors’ withdrawals; in section 4, we solve for the banking equilibrium; finally, section 5

concludes.

2 Environment

The economy lives for three periods, labeled t = 0, 1, 2, and is populated by a continuum of ex-

ante identical agents, all endowed with 1 unit of a consumption good at date 0, and 0 afterwards.

At date 1, all agents are hit by a privately-observed idiosyncratic liquidity shock ✓, taking value

0 with probability � and 1 with probability 1 � �. The law of large numbers holds, hence the

probability distribution of the idiosyncratic liquidity shocks is equivalent to their cross-sectional

distribution: at date 1, there is a fixed fraction � of agents in the whole economy whose realized

shock is ✓ = 0, and a fraction 1 � � whose realized shock is ✓ = 1. The idiosyncratic liquidity

shocks a↵ect the point in time when the agents want to consume, according to the welfare

function U(c
1

, c
2

, ✓) = (1 � ✓)u(c
1

) + ✓u(c
2

). In other words, those agents receiving a shock

✓ = 0 are only willing to consume at date 1, and those receiving a shock ✓ = 1 are only willing

to consume at date 2. Thus, in line with the literature, we refer to them as early (or impatient)

consumers and late (or patient) consumers, respectively. The utility function u(c) is increasing,

concave and twice-continuously di↵erentiable, and is such that u(0) = 0 and the coe�cient of

relative risk aversion is strictly larger than 1. Importantly, it also satisfies the Inada conditions:

limc!0

u0(c) = +1 and limc!+1 u0(c) = 0.

There are two technologies available in the economy to hedge against the idiosyncratic

liquidity shocks. The first one is a storage technology, here called “liquidity”, yielding 1 unit of

consumption at date t+1 for each unit invested in t. The second one is instead a productive asset

that, for each unit invested at date 0, yields a stochastic returnA at date 2. This stochastic return

takes values R > 1 with probability p, and 0 with probability 1�p. The probability of success of

the productive asset p represents the aggregate state of the economy, and is distributed uniformly

over the interval [0, 1], with E[p]R > 1. Moreover, the productive asset can be liquidated at date

1 via a liquidation technology, that allows to recover r < 1 units of consumption for each unit

liquidated. Intuitively, this means that the economy features a liquid asset, with low but safe

yields, and a partially illiquid asset, that yields a low return in the short run, but a possible
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high return in the long run, which is subject to the realization of an aggregate productivity

shock.

The economy is also populated by a large number of banks, operating in a perfectly-

competitive market with free entry. The banks collect the endowments of the agents in the

form of deposits, and invest them so as to maximize their profits, subject to agents’ participa-

tion. Perfect competition and free entry ensure that the banks solve the equivalent problem of

maximizing the expected welfare of the agents/depositors, subject to their budget constraint.

To this end, they o↵er a standard deposit contract {c, cL(A)}, stating the uncontingent amount

c that the depositors can withdraw at date 1, and the state-dependent amount cL(A) that they

can withdraw at date 2.1 As the realizations of the idiosyncratic types are private information,

the deposit contract must be incentive compatible, i.e. the depositors must have the incentives

to truthfully report their types. This implies that the deposit contract must satisfy the incentive

compatibility constraint c  cL(R).

To finance the deposit contract, the banks invest the deposits – which are the only liability on

their balance sheets – in an amount L of liquidity and 1�L of the productive asset, respectively.

Then, given the deposit contract and asset portfolio chosen at date 0, the banks commit to pay

c to whoever depositor comes to withdraw at date 1, until their resources are exhausted. To this

end, the banks also choose the “pecking order” with which to use the assets in order to finance

the early withdrawals: {Liquidation, Liquidity} or {Liquidity, Liquidation}. When resources

are exhausted, and the banks are not able to fulfill their contractual obligations anymore, they

instead go into bankruptcy, at which they must liquidate all the productive assets in portfolio,

and serve their depositors according to an “equal service constraint”, i.e. such that all depositors

get an equal share of the available resources. Finally, at date 2 the depositors who have not

withdrawn at date 1 are residual claimants of an equal share of the remaining resources.

We assume that depositors cannot observe the true value of the realization of the fundamen-

tal p, but receive at date 1 a “noisy” signal � = p+ e about it. The term e is an idiosyncratic

noise, indistinguishable from the true value of p, that is uniformly distributed over the interval

[�✏,+✏], where ✏ is positive but small. Given the received signal, each late consumer decides

1In order to rule out uninteresting run equilibria, the amount of early consumption c must be smaller than
min{1/�, R}. The fact that the banks have to o↵er a standard deposit contract here is assumed. However,
Farhi et al. (2009) show that a standard deposit contract, with an uncontingent amount of early consumption,
endogenously emerge as part of the banking equilibrium, in the presence of non-exclusive contracts.
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whether to withdraw from her bank at date 2, as the realization of her idiosyncratic shock would

command, or “run on her bank” and withdraw at date 1, in accordance to the scheme to be

described in the incoming section.

The timing of actions is as follows: at date 0, the banks collect the deposits, and choose

the deposit contract {c, cL(A)} and asset portfolio {L, 1 � L}; at date 1, the banks choose

the pecking order with which to finance early withdrawals; then, all agents get to know their

private types and private signals, and the early consumers withdraw, while the late consumers,

once observed the signals, decide whether to run or not; finally, at date 2, those late consumers

who have not withdrawn at date 1 withdraw an equal share of the available resources left. We

solve the model by backward induction, and characterize a pure-strategy symmetric Bayesian

Nash equilibrium. Hence, we focus our attention on the behavior of a representative bank. The

definition of equilibrium is the following:

Definition 1. Given the distributions of the idiosyncratic and aggregate real shocks and of

the individual signals, a banking equilibrium is a deposit contract {c, cL(A)}, an asset portfolio

{L, 1 � L}, a pecking order and depositors’ decisions to run such that, for every realization of

signals and idiosyncratic types {�, ✓}:

• the depositors’ decisions to run maximize their expected welfare;

• the pecking order, the deposit contract and the asset portfolio maximize the depositors’

expected welfare, subject to budget constraints.

2.1 Equilibrium with Perfect Information

As a benchmark for the results that follow, we start our analysis with the characterization of

the equilibrium with perfect information, provided by a social planner who can observe the

realization of the idiosyncratic liquidity shocks hitting the depositors, and maximizes their

expected welfare subject to budget constraints. More formally, the social planner solves:

max
c,cL(A),L,D

�u(c) + (1� �)E[u(cL(A))], (1)

subject to the resource constraints:

L+ rD � �c, (2)
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(1� �)cL(A) + �c = A(1� L�D) + L+ rD, (3)

where the last constraint has to hold for any A 2 {0, R}, and to the non-negativity constraint

D � 0.2 At date 0, the planner collects all endowments, and invests them in an amount L

of liquidity and 1 � L of productive assets. At date 1, the liquidity constraint (2) states that

the amount of liquid assets, given by the sum of liquidity plus the extra resources generated

by liquidating an amount D of productive assets at rate r, must be su�cient to pay early

consumption c to the � early consumers. Any resources left are rolled over to date 2 and,

together with the return from the remaining productive assets, pay late consumption cL(A)

to the 1 � � late consumers in any state A. Plugging the resource constraints in the objective

function, the planner’s problem can be rewritten as:

max
c,L,D

�u(c) + (1� �)

Z
1

0


pu

✓
R(1� L�D) + L+ rD � �c

1� �

◆
+

+(1� p)u

✓
L+ rD � �c

1� �

◆�
dp, (4)

subject to the liquidity constraint L + rD � �c and D � 0. In this framework, we can prove

the following:

Lemma 1. The equilibrium with perfect information exhibits no liquidation of the productive

asset (D = 0) and excess liquidity (L > �c). The deposit contract and asset portfolio satisfy the

Euler equation:

u0(c) = E[p]Ru0
✓
R(1� L) + L� �c

1� �

◆
. (5)

Proof . In Appendix A. ⌅

Intuitively, the lemma shows that liquidating the productive asset to create liquidity at date

1 is never part of an equilibrium with perfect information, because the recovery rate r is too

low. Moreover, the planner provides the optimal amount of insurance against the aggregate

productivity shock by engaging in precautionary savings, i.e. by holding more liquidity than

the one needed to cover early consumption and insure against the idiosyncratic liquidity shock.

In equilibrium, this is achieved with an allocation satisfying an Euler equation, i.e. so that the

2The non-negativity constraints on the other choice variables are clearly satisfied in equilibrium, given the
assumption that the Inada conditions hold.
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marginal rate of substitution between consumption at date 1 and consumption at date 2 is

equal to the marginal rate of transformation of the productive asset. Finally, the concavity of

the utility function and the assumption that E[p]R > 1 imply that the incentive compatibility

constraint is satisfied, hence this allocation is equivalent to a constrained e�cient allocation, in

which the social planner has to induce truth-telling among the depositors.

3 Strategic Complementarities

We now move to the analysis of the competitive banking equilibrium. As stated above, we

characterize it by backward induction, hence in this section we start by studying the withdrawing

decisions of the late consumers (as the early consumers withdraw for sure at date 1) who choose

whether to withdraw (“run”) at date 1 or wait until date 2. Then, in the following section, we

characterize the equilibrium deposit contract and portfolio allocation.

A late consumer receives a signal � at date 1, and takes as given the deposit contract and

asset portfolio, fixed at date 0, and the pecking order, fixed at date 1 before the signal is realized.

Based on these, she creates her posterior beliefs about how many depositors are withdrawing

at date 1 (call this number n), and the probability of the realization of the aggregate state A,

and decides whether to withdraw or not. We assume the existence of two regions of extremely

high and extremely low signals, where the decision of a late consumer is independent of her

posterior beliefs. In the “upper dominance region”, the signal is so high that a late consumer

always prefers to wait until date 2 to withdraw. Following Goldstein and Pauzner (2005), we

assume that this happens above a threshold �̄, where the investment is safe, i.e. p = 1, and gives

the same return R at date 1 and 2. In this way, a late consumer is sure to get R(1�L)+L��c
1�� at

date 2, irrespective of the behavior of all the other late consumers, and prefers to wait for any

possible realization of the aggregate state. In the “lower dominance region”, instead, the signal

is so low that a late consumer always runs, irrespective of the behavior of the other depositors,

thus triggering a “fundamental run”. This happens below the threshold signal �j , that makes

her indi↵erent between withdrawing or not, and depends on the pecking order j chosen by the

bank (we characterize the thresholds in the incoming sections).

The existence of the lower and upper dominance regions, regardless of their size, ensures the

existence of an equilibrium in the intermediate region [�j , �̄], where the late consumers decide

whether to run or not based on a threshold strategy: they run if the signal is lower than a

10



threshold signal �⇤
j .

3 Let Prob(�  �⇤
j ) be the probability that �  �⇤

j under pecking order j.

Then, given � = p+ e, we have:

Prob(�  �⇤
j ) =

Z �⇤
j�p

�✏

1

2✏
de = max

✓
�⇤
j � p+ ✏

2✏
, 0

◆
. (6)

Define as cL(A, n) the amount of late consumption that a late consumer would get if the

realized state is A and n depositors are withdrawing at date 1. Arguably, it should be the

case that the higher the number of depositors who run is, the lower late consumption is, or

@cL(A, n)/@n. Moreover, define n⇤⇤
j as the maximum number of depositors that a bank can

serve under pecking order j without breaking the deposit contract, i.e. while still being able to

pay c to all those depositors who withdraw at date 1. After n⇤⇤
j , the bank goes into bankruptcy:

there are no more resources for late consumption, and the bank pays cB(n) according to an

equal service constraint, i.e. it equally splits the available resources among the n depositors who

withdraw.

Define the expected utility from waiting E[u(cL(A, n))], given the signal � and the number

n of depositors who withdraw, as:

E[u(cL(A, n))] =
Z ✏

�✏
(� � e)u(cL(R,n))

1

2✏
de+

Z ✏

�✏
(1� � + e)u(cL(0, n))

1

2✏
de. (7)

It is immediate to verify that this reduces to:

E[u(cL(A, n))] = �u(cL(R,n)) + (1� �)u(cL(0, n)). (8)

Then, the utility advantage of waiting versus running, for a given number n of depositors who

withdraw and pecking order j, is:

vj(A, n) =

8
>><

>>:

�u(cL(R,n)) + (1� �)u(cL(0, n))� u(c) if �  n < n⇤⇤
j ,

�u(c(n)) if n⇤⇤
j  n < 1.

(9)

The number of depositors who withdraw at date 1 is given by the sum of the � early consumers

and those among the 1� � late consumers who receive a signal lower than the threshold signal

3In the present environment, Goldstein and Pauzner (2005) prove that the equilibrium strategy is always a
threshold strategy.
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�⇤:

n = �+ (1� �)Prob(�  �⇤
j ) = �+ (1� �)max

✓
�⇤
j � p+ ✏

2✏
, 0

◆
. (10)

Thus, n is a random variable that depends on the state of the economy. Importantly, as � is a

random variable, the Laplacian Property (Morris and Shin, 1998) tells us that its cumulative

distribution function Prob(�  �⇤
j ) is uniformly distributed over the interval [0, 1], thus the

number of depositors who withdraw n must be uniformly distributed over the interval [�, 1].

This allows us to calculate the expected value of waiting versus running as:

E[vj(A, n)|�] =
Z

1

�

vj(A, n)

1� �
dn, (11)

and to characterize the threshold signal �⇤
j as the one such that E[vj(A, n)|�⇤

j ] = 0.

From what said so far, it is clear that the decision of the late consumers about whether to

join a run depends, in turns, on the decision of the bank about how to finance early withdrawals,

i.e. on the pecking order with which it employs liquidation of the productive asset and liquidity.

In what follows, we characterize and compare the withdrawing behavior of the depositors under

each pecking order, in particular by studying its e↵ects on the lower dominance region and the

threshold strategies.

3.1 Pecking order 1: {Liquidation; Liquidity}

In this first case, the bank serves the depositors who withdraw at date 1 first by liquidating the

productive asset, and then by employing the liquidity in portfolio. Under this pecking order,

the threshold signal �
1

characterizing the lower dominance region is the one that equalizes:

u(c) = �
1

u

 
R
�
1� L� �c

r

�
+ L

1� �

!
+ (1� �

1

)u

✓
L

1� �

◆
. (12)

This expression states that a late consumer receiving a signal �
1

must be indi↵erent between

withdrawing at date 1 and getting c and waiting until date 2 and getting
R(1�L��c

r )+L

1�� with

probability �
1

or L
1�� with probability 1 � �

1

. These values come from the fact that, by liqui-

dating the productive asset first, the bank withholds liquidity, that finances late consumption

irrespective of the realization of the aggregate state. Moreover, the bank has to pay an amount

of early consumption c to � early consumers, by liquidating an amount D of productive assets

12



at rate r, hence D = �c/r. Rearranging the equality above, we obtain the threshold:

�
1

=
u(c)� u

⇣
L

1��

⌘

u

✓
R(1�L��c

r )+L

1��

◆
� u

⇣
L

1��

⌘ , (13)

which is clearly increasing in the amount of early consumption c set in the deposit contract.

The threshold strategy in the intermediate region [�
1

, �̄], instead, depends on the late con-

sumers’ advantage of waiting versus running:

v
1

(A, n) =

8
>>>>>><

>>>>>>:

�u

✓
R(1�L�nc

r )+L

1�n

◆
+ (1� �)u

⇣
L

1�n

⌘
� u(c) if �  n < n⇤

1

�u
⇣
r(1�L)+L�nc

1�n

⌘
+ (1� �)u

⇣
r(1�L)+L�nc

1�n

⌘
� u(c) if n⇤

1

 n < n⇤⇤
1

�u
⇣
r(1�L)+L

n

⌘
if n⇤⇤

1

 n < 1.

(14)

In this expression, n⇤
1

= r(1�L)
c and n⇤⇤

1

= r(1�L)+L
c are the maximum number of depositors

that a bank can serve at date 1 without breaking the deposit contract, and either liquidating

the whole amount of productive assets in portfolio (up to n⇤
1

) or using also liquidity (up to

n⇤⇤
1

). When the number of depositors who withdraw at date 1 lies in the interval [�, n⇤
1

], the

bank fulfills its contractual obligation by retaining liquidity, and liquidating the productive

asset: it needs to pay an amount of early consumption c to n depositors via rD resources

from liquidation, hence D = nc
r . Then, if n depositors withdraw, the consumption of a late

consumer who waits is either cL(R,n) =
R(1�L�nc

r )+L

1�n or cL(0, n) = L
1�n , depending on the

realization of the aggregate state. When the number of depositors who withdraw lies in the

interval [n⇤
1

, n⇤⇤
1

], the bank, instead, fulfills its contractual obligation by liquidating all productive

assets in portfolio (thus generating resources equal to r(1�L)) and by employing the liquidity.

Thus, if n depositors withdraw, the consumption of a late consumer who waits is independent

of the realization of the aggregate state (as the productive assets have all been liquidated) and

equal to cLL(n) = r(1�L)+L�nc
1�n . Finally, when the number of depositors who withdraw lies in

the interval [n⇤⇤
1

, 1], the bank goes bankrupt, as it does not hold su�cient resources to pay an

amount of early consumption c to all depositors. In this case, the bank is forced to liquidate

all productive assets and close down, so a late consumer who waits gets zero. Moreover, the

available resources (equal to r(1 � L) + L) are equally split among all the n depositors who

13



withdraw, and each one gets cB(n) = r(1�L)+L
n .

The sign of the strategic complementarity a↵ecting the decision of a late consumer to run

depends on how the advantage of waiting versus running depends on the number of depositors

withdrawing. More formally:

@v
1

@n
=

8
>>>>>><

>>>>>>:

�u0(cL(R,n))
�R

r c(1�n)+[R(1�L�nc
r )+L]

(1�n)2 + (1��)u0
(cL(0,n))L

(1�n)2 , if �  n < n⇤
1

u0(cLL(n))
r(1�L)+L�c

(1�n)2 , if n⇤
1

 n < n⇤⇤
1

u0(cB(n)) c
B
(n)
n if n⇤⇤

1

 n < 1.

(15)

On the one side, in the interval [n⇤⇤
1

, 1] the derivative is positive as, after bankruptcy, equal

service prescribes total resources to be shared pro-rata to all depositors; on the other side, in

the interval [n⇤
1

, n⇤⇤
1

] the derivative is negative by definition of n⇤⇤
1

, highlighting the presence

of one-sided strategic complementarities. We characterize the direction of the strategic comple-

mentarity in the interval [�, n⇤
1

] in the following lemma:

Lemma 2. In the interval [�, n⇤
1

], v
1

(A, n) is decreasing in n.

Proof . In Appendix A. ⌅

Figure 1 shows that, despite the di↵erent environment, the economy exhibits one sided

strategic complementarities as in Goldstein and Pauzner (2005): the advantage of waiting versus

running is decreasing in the number of depositors running before bankruptcy, and increasing

after bankruptcy. However, despite not knowing the sign of v
1

(A, n⇤
1

), the function v
1

(A, n)

crosses zero only once, because is decreasing in n in both intervals [�, n⇤
1

] and [n⇤
1

, n⇤], and this

guarantees the uniqueness of the equilibrium in the intermediate region [�
1

, �̄].

Lemma 3. Under the pecking order {Liquidation; Liquidity}, in the intermediate region [�
1

, �̄]

a late consumer runs if her signal is lower than the threshold signal:

�⇤
1

=

Z n⇤⇤
1

�
u(c)dn+

Z
1

n⇤⇤
1

u
⇣
L+r(1�L)

n

⌘
dn�

Z n⇤
1

�
u
⇣

L
1�n

⌘
dn�

Z n⇤⇤
1

n⇤
1

u
⇣
L+r(1�L)�nc

1�n

⌘
dn

Z n⇤
1

�

h
u

✓
R(1�L�nc

r )+L

1�n

◆
� u

⇣
L

1�n

⌘ i
dn

. (16)

The threshold signal �⇤
1

is increasing in c and decreasing in L.

14



v1(A; n)

n

n∗

1
n∗∗

1
1

λ

−u(r(1− L) + L)

−u(c1)

Figure 1: The advantage of waiting versus running, as a function of the number of depositors
running, when the bank chooses the pecking order {Liquidation; Liquidity}.

Proof . In Appendix A. ⌅

The lemma characterizes the endogenous threshold signal in the case of pecking order

{Liquidation; Liquidity}, and shows the e↵ect that the bank’s deposit contract and asset portfo-

lio have on it. In particular, increasing early consumption c has a threefold positive e↵ect on the

threshold signal �⇤
1

: it directly increases the advantages for a late consumer to run, both before

and after bankruptcy; it lowers the maximum fraction of depositors that a bank can serve before

bankruptcy; it decreases the advantages of waiting until date 2. The e↵ect that increasing the

total amount of liquidity in the bank’s portfolio has on the threshold signal �⇤
1

instead looks

ambiguous: on the one side, more liquidity increases consumption after bankruptcy and lowers

late consumption, thus also increasing the threshold and the incentives to run; on the other

side, more liquidity also increases the amount of insurance against the aggregate productivity

shock that a bank can provide, thus lowering the threshold and the incentives to run. However,

the e↵ect that one more unit of liquidity has on the marginal utility of those depositors running

just before bankruptcy (i.e. at n⇤⇤
1

) is large because of the Inada Conditions. Thus, the second

e↵ect dominates the first, and the threshold signal �⇤
1

turns out to be decreasing in L.
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3.2 Pecking order 2: {Liquidity; Liquidation}

In this second case, we assume that the bank serves the withdrawers at date 1 first by employ-

ing the liquidity, and then by liquidating the productive asset. Under this pecking order, the

threshold signal �
2

characterizing the lower dominance region is the one that equalizes:

u(c) = �
2

u

✓
R(1� L) + L� �c

1� �

◆
+ (1� �

2

)u

✓
L� �c

1� �

◆
. (17)

This expression states that a late consumer receiving a signal �
2

must be indi↵erent between

withdrawing at date 1 and getting c and waiting until date 2 and getting R(1�L)+L��c
1�� with

probability �
2

or L��c
1�� with probability 1 � �

2

. These values come from the fact that, by

employing liquidity first, the bank withholds the productive asset. Hence, having to pay an

amount of early consumption c to � early consumers, it rolls over an amount L � �c of excess

liquidity from date 1 to date 2. Rearranging the equality above, we obtain the threshold:

�
2

=
u(c)� u

⇣
L��c
1��

⌘

u
⇣
R(1�L)+L��c

1��

⌘
� u

⇣
L��c
1��

⌘ . (18)

As for the previous pecking order, this value is increasing in the amount of early consumption

c set in the deposit contract. To see that, it su�ces to calculate:

@�
2

@c
=

u0(c) + �
1��u

0
⇣
L��c
1��

⌘
+ �

2

�
1��

h
u0
⇣
R(1�L)+L��c

1��

⌘
� u0

⇣
L��c
1��

⌘i

u
⇣
R(1�L)+L��c

1��

⌘
� u

⇣
L��c
1��

⌘ . (19)

This expression is always positive, as �
2

is lower than 1.

The threshold strategy in the intermediate region [�
1

, �̄], instead, depends on the late con-

sumers’ advantage of waiting versus running:

v
2

(A, n) =

8
>>>>>><

>>>>>>:

�u
⇣
R(1�L)+L�nc

1�n

⌘
+ (1� �)u

⇣
L�nc
1�n

⌘
� u(c) if �  n < n⇤

2

�u
⇣
R(1�L�D)

1�n

⌘
� u(c) = �u

✓
R(1�L�nc�L

r )
1�n

◆
� u(c) if n⇤

2

 n < n⇤⇤
2

�u
⇣
L+r(1�L)

n

⌘
if n⇤⇤

2

 n < 1

(20)

where, similarly to the previous case, n⇤
2

= L
c and n⇤⇤

2

= r(1�L)+L
c are the maximum number
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of depositors that a bank can serve at date 1 without breaking the deposit contract and using

liquidity (up to n⇤
2

), and also liquidating the whole amount of productive assets in portfolio

(up to n⇤⇤
2

). When the number of depositors who withdraw lies in the interval [�, n⇤
2

], the bank

fulfills its contractual obligation by keeping the productive asset and using liquidity. Hence, if n

depositors are withdrawing, the consumption of a late consumer who waits is either cL(R,n) =

R(1�L)+L�nc
1�n or cL(0, n) = L�nc

1�n , depending on the realization of the aggregate productivity

shock. When the number of depositors who withdraw lies instead in the interval [n⇤
2

, n⇤⇤
2

], the

bank is forced to fulfill its contractual obligation also by liquidating the productive assets in

portfolio (thus generating resources equal to r(1 � L)). Hence, the total available resources to

provide early consumption c to n depositors who withdraw are L+rD, meaning that the amount

that the bank liquidates is equal to D = nc�L
r . Moreover, as the liquidity has been exhausted,

the consumption of a late consumer who decides to wait and finds herself in the aggregate state

where A = 0 is zero, while in the aggregate state when A is positive is cDL (R,n) =
R(1�L�nc�L

r )
1�n .

Finally, when the number of depositors who withdraw lies in the interval [n⇤⇤
2

, 1], the bank is

bankrupt. Thus, by the equal service constraint, all the n depositors who withdraw get r(1�L)+L
n ,

and those 1� n who do not withdraw get zero. Notice that the total number of depositors that

can be served before bankruptcy is the same under the two pecking orders. Hence, to economize

on notation, we write n⇤⇤
1

= n⇤⇤
2

= n⇤⇤.

We again study the sign of the strategic complementarities by taking the derivative of

v
2

(A, n) with respect to n:

@v
2

@n
=

8
>>>>>><

>>>>>>:

�u0(cL(R,n)) cL(R,n)�c
1�n � (1� �)u0(cL(0, n))

c�cL(0,n)
1�n if �  n < n⇤

2

�u0(cDL (R,n))
cDL (R,n)�Rc

r
1�n if n⇤

2

 n < n⇤⇤

u0(cB(n)) c
B
(n)
n if n⇤⇤  n < 1

(21)

As before, in the interval [n⇤⇤, 1] the derivative is positive, while in the interval [n⇤
2

, n⇤⇤] is

negative by definition of n⇤⇤. We characterize the sign of the strategic complementarity in the

interval [�, n⇤
2

] in the following lemma:

Lemma 4. In the interval [�, n⇤
2

], v
2

(A, n) is decreasing in n whenever is non-positive.

Proof . In Appendix A. ⌅
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2
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λ

−u(r(1− L) + L)

−u(c1)

Figure 2: The advantage of waiting versus running, as a function of the number of depositors
running, when the bank chooses the pecking order {Liquidity; Liquidation}.

In order to guarantee the uniqueness of the equilibrium, we need to show that v(A, n⇤
2

) < 0.

To this end, notice that:

v
2

(A, n⇤
2

) = �u

✓
R(1� L)

c� L
c

◆
� u(c). (22)

This expression is negative if:

� <
u(c)

u
⇣
R(1�L)
c�L c

⌘ ⌘ �̃, (23)

where �̃ > 1 whenever R < c�L
1�L . In the proof of lemma 6, we show that this condition holds in

the banking equilibrium under the pecking order {Liquidity, Liquidation}. Hence, v
2

(A, n⇤
2

) < 0,

because � is always lower than 1 by definition. In this way, v
2

(A, n) crosses zero only once in

the interval [�, n⇤
2

], and that is su�cient for the solution to exist and be unique.

With this result in hand, we can characterize the threshold signal that makes a late consumer

indi↵erent between waiting or running:

Lemma 5. Under the pecking order {Liquidity, Liquidation}, in the intermediate region [�
2

, �̄]

a late consumer runs if her signal is lower than the threshold signal:

�⇤
2

=

Z n⇤⇤

�
u(c)dn+

Z
1

n⇤⇤
u
⇣
L+r(1�L)

n

⌘
dn�

Z n⇤
2

�
u
⇣
L�nc
1�n

⌘
dn

Z n⇤
2

�

h
u
⇣
R(1�L)+L�nc

1�n

⌘
� u

⇣
L�nc
1�n

⌘ i
dn+

Z n⇤⇤

n⇤
2

u

✓
R(1�L�nc�L

r )
1�n

◆
dn

. (24)
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The threshold signal �⇤
2

is increasing in c, and decreasing in L.

Proof . In Appendix A. ⌅

Intuitively, the lemma shows that increasing early consumption c has a positive e↵ect on the

threshold signal �⇤
2

for many concurrent reasons. First, as in the pecking order {Liquidation,

Liquidity}, it directly increases the advantages of running before bankruptcy. Moreover, it de-

creases the advantages of waiting until date 2, either by decreasing the amount of excess liquid-

ity rolled over to date 2 or by forcing the bank to liquidate more productive assets, whenever

the liquidity has been completely exhausted. Finally, increasing c has a negative e↵ect on the

amount of insurance against the aggregate productivity shock that a bank can provide, and

that in turns increases the threshold signal and the incentives to run. In contrast, increasing

the amount of liquidity has an ambiguous e↵ect on the threshold signal: on the one side, more

liquidity increases the available resources after bankruptcy, and lower the investment in the

productive asset, thus increasing the threshold and the incentives for a late consumer to run; on

the other side, it allows the bank to provide more insurance against the aggregate productivity

shock, and to lower the amount of productive assets to liquidate, thus lowering the incentives

to run. However, the e↵ect that one more unit of liquidity has on the marginal utility of those

depositors running just before the bank runs out of liquidity (i.e. at n⇤
1

) and bankruptcy (i.e.

at n⇤⇤) is again large by the Inada Conditions. Thus, this second e↵ect dominates the first, and

the threshold probability �⇤
1

is decreasing in L.

3.3 Endogenous Pecking Order

At date t = 1, given the deposit contract and the asset portfolio, the bank decides the opti-

mal pecking order with which to employ the assets in its portfolio, as a best response to the

withdrawing decisions of the depositors. More formally, define:

Vj(c, L) ⌘
Z �⇤

j

0

u(L+ r(1�L))dp+

Z
1

�⇤
j

h
�u(c)+ (1��)

h
pu(cL(R))+ (1� p)u(cL(0))

ii
dp (25)

as the expected utility of a depositor, when her bank o↵ers an amount c of early consumption,

holds an amount L of liquidity, and chooses the pecking order j. If c � L+ r(1�L) and L < 1,

the above expression is decreasing in �⇤
j . Hence, maximizing the expected utility of a depositor is

equivalent to choosing the pecking order with the lowest threshold signal �⇤
j . That will crucially
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1�⇤
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Figure 3: The threshold signals in the two pecking orders (on the y-axis), for di↵erent values of
the recovery rate of the productive asset (on the x-axis).

depend on the recovery rate from liquidating the productive asset, as the following proposition

shows:

Proposition 1. Assume that the utility function belongs to the CRRA class, and that the

coe�cient of relative risk aversion is su�ciently high. Then, there exists a threshold r̃ 2 [0, 1]

such that, for any r  r̃, the optimal pecking order is {Liquidity, Liquidation}, and for any

r > r̃, the optimal pecking order is {Liquidation, Liquidity}.

Proof . In Appendix A. ⌅

The proof of this result is based on showing that the threshold signals under the two pecking

orders adjust to changes in the recovery rate of the productive asset as Figure 3 shows. First,

both threshold signals �⇤
1

and �⇤
2

are decreasing and convex functions of the recovery rate. This

happens because, when the number of depositors who are running is n⇤⇤ (i.e. the value that

triggers bankruptcy under both pecking orders) a late consumer who does not join a run gets

zero. Hence, increasing the recovery rate by one marginal unit makes her consumption go from

zero to a positive value. This, by the Inada conditions, has a large positive e↵ect on the utility

of waiting (although decreasing, because of the concavity of u(c)) and lowers both threshold

signals.

Second, the comparison between the two pecking orders essentially boils down to comparing
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the costs associated with using either liquidation or liquidity to finance early withdrawals. On

the one hand, liquidation of the productive asset at date t = 1 is costly in terms of (i) forgone

resources at date t = 1 due to a low recovery rate (i.e. r < 1) and (ii) forgone late consumption

in the good state of the world. On the other hand, using liquidity is costly in terms of forgone

late consumption in the bad state of the world, i.e. in terms of diminished insurance against

the aggregate productivity shock. If the depositors are su�ciently risk averse and the recovery

rate r is close to 1, both costs associated with liquidation become less relevant, because the

depositors care relatively less about high late consumption in the good state of the word and

the bank waists less resources when liquidating the productive asset. The opposite is true with

respect to the cost associated with using liquidity because, being very risk averse, the depositors

care a lot about late consumption in the bad state of the world. Therefore, with su�ciently high

relative risk aversion and a recovery rate r close to 1, {Liquidation; Liquidity} is the optimal

pecking order.

If instead the recovery rate is close to zero, liquidation becomes very costly, and this is enough

to ensure that {Liquidity; Liquidation} is the optimal pecking order. This happens because a late

consumer who does not join a run is worse o↵ under the pecking order {Liquidation; Liquidity}

than under {Liquidity; Liquidation}: on the one side, the threshold signal �⇤
1

under the pecking

order {Liquidation; Liquidity} is constant and equal to one, i.e. there exists a lower bound r

for the recovery rate, below which all late consumers would rather withdraw early than wait,

irrespective of the number of depositors running, hence any signal would lead to a run; on the

other side, the threshold signal �⇤
2

under the pecking order {Liquidity; Liquidation} is always

lower than 1 when the recovery rate is equal to zero.

To sum up, under the assumptions of Proposition 1, the graphs of the two threshold signals

can meet at most once for any recovery rate in the interval [0, 1]. This means that the bank

prefers the pecking order {Liquidation; Liquidity} only if the recovery rate of the productive

asset is su�ciently high, so that it can liquidate at lower costs and roll over liquidity to the final

period to ensure the depositors against the aggregate productivity shock. If instead the recovery

rate of the productive asset is low, the bank prefers the pecking order {Liquidity; Liquidation}.

In other words, Proposition 1 rationalizes the typical sequence of events emerging when a bank

faces a self-fulfilling run, and makes it explicitly contingent on the recovery rate: if this last
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one is su�ciently low, a bank facing a run is first liquid, then illiquid but solvent, and finally

insolvent.

4 Banking Equilibrium

With the results of the previous section in hand, that characterize the behavior of the depositors

and the optimal pecking order, we can solve for the banking equilibrium. Assume that the

recovery rate is lower than the threshold r̃ so that, by Proposition 1, the bank chooses the

pecking order {Liquidity; Liquidation}. Then, at date 0, the bank chooses the deposit contract

and asset portfolio so as to maximize the expected welfare of the depositors. More formally, it

solves:

max
c,L

Z �⇤
2

0

u(L+ r(1� L))dp+

Z
1

�⇤
2


�u(c) + (1� �)


pu

✓
R(1� L) + L� �c

1� �

◆

+(1� p)u

✓
L� �c

1� �

◆��
dp, (26)

subject to the liquidity constraint L � �c, and to the incentive compatibility constraint c 
R(1�L)+L��c

1�� . When the signal is below the threshold signal �⇤
2

, a run happens, either fundamen-

tal or self-fulfilling: all depositors get an equal share of the available resources, given by the sum

of liquidity plus the extra resources generated by completely liquidating the productive assets.

When instead the signal is above the threshold signal �⇤
2

, a run does not happen: a fraction

� of depositors are early consumers, and consume c, while a fraction 1 � � of them are late

consumers, and consume either cL(R) = R(1�L)+L��c
1�� , if the productive assets yields a positive

return, or cL(0) =
L��c
1�� , if it yields zero. Define the di↵erence between the utility in the case of

no-run and the utility in the case of run as:

�U(c, L) = �u(c) + (1� �)


�⇤
2

u

✓
R(1� L) + L� �c

1� �

◆
+ (1� �⇤

2

)u

✓
L� �c

1� �

◆�
+

� u(L+ r(1� L)), (27)

Then, from the first-order conditions of the program, the following can be proved:

Lemma 6. The banking equilibrium features excess liquidity (L > �c). The deposit contract
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and asset portfolio satisfy the distorted Euler equation:

Z
1

�⇤
2

h
u0(c)� pRu0(cL(R))

i
dp+ �⇤

2

(1� r)u0(L+ r(1� L)) =


@�⇤

2

@L
+

1

�

@�⇤
2

@c

�
�U(c, L). (28)

Proof . In Appendix A. ⌅

In equilibrium, the incentive compatibility constraint turns out to be slack, i.e. c < cL(R),

and the amount cL(0) that the late consumers get if the productive asset yields zero is lower

than early consumption c, as L < c. In addition to that, it can be proved that �U(c, L) is

strictly positive. To see that, first notice that cB(n) = L+r(1�L)
n is decreasing in n, and its

highest possible value is equal to c (when n = n⇤⇤). Hence, early consumption c is always higher

than the amount of consumption L + r(1 � L) that the depositors can achieve during a run.4

Second, by definition of the threshold of the lower dominance region in (18), we can rearrange

�
2

< �⇤
2

into:

u(c) < �⇤
2

u(cL(R)) + (1� �⇤
2

)u(cL(0)). (29)

Therefore, �U(c, L), as the di↵erence between a linear combination of two terms both higher

than u(L + r(1 � L)) and u(L + r(1 � L)) itself, must be positive. Finally, in every banking

equilibrium, the amount cL(0) that the late consumers get if the productive asset yields zero

cannot be larger than the amount L+ r(1� L) that they would get during a run. To see that,

argue, to the contrary, that cL(0) > L+r(1�L). By definition of cL(0), this inequality simplifies

into:

�[L+ r(1� L)� c] > r(1� L). (30)

As c > cL(0) > L+ r(1�L), the left-hand side of this expression is negative. However, r(1�L)

is non-negative, hence we get to a contradiction, and we are left with the only possibility that

cL(0)  L+ r(1� L).

The remaining proof of the lemma is in part similar to the one of the equilibrium with perfect

information: by the Inada conditions, the bank finds optimal to provide insurance against the

aggregate productivity shock by engaging in precautionary savings, i.e. by holding more liquidity

4Incidentally, this results also allows us to compare the banking equilibrium to an autarkic equilibrium. To this
end, assume that, in autarky, the agents cannot open a bank account, but are forced to invest directly in liquidity
and productive assets. Thus, the amount of early consumption that they could achieve is c

A = L

A + r(1� L

A),
for any possible value of LA. In other words, banks are viable: they allow better insurance against idiosyncratic
liquidity shocks (i.e. higher early consumption) than autarky.
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than the one needed to insure the depositors against the idiosyncratic liquidity shocks. However,

di↵erently from the equilibrium with perfect information, the bank imposes a wedge between

the marginal rate of substitution between early and late consumption and the marginal rate of

transformation of the productive asset (as represented by the first term on the left-hand side

of (28)). This happens through two di↵erent channels: first, the bank takes into account that

it needs higher liquidity to finance consumption in the case of a run (the second term on the

left-hand side of (28)); second, it also takes into account that the equilibrium deposit contract

and asset portfolio a↵ect the endogenous threshold signal �⇤
2

and, threfore, the probability that

a run is realized (the right-hand side of (28)). The direction of the distortion with respect to

the equilibrium with perfect information depends on the sign of the wedge:

Proposition 2. Assume that u(c) is invertible, and that � > u(1). Then, the banking equilibrium

features more excess liquidity than the equilibrium with perfect information, i.e. cBE < cPI
and

LBE > LPI
.

Proof . In Appendix A. ⌅

The proof of Proposition 2, which is the main result of the paper, is based on showing

that the distortion that the deposit contract and the asset portfolio impose on the banking

equilibrium, through their e↵ects on the threshold signal �⇤
2

(the right-hand side of the distorted

Euler equation (28)) and on the marginal utility of consumption at a run (the second term on

the left-hand side of (28)), is positive. This forces the bank to increase the marginal rate of

substitution between consumption at date 1 and consumption at date 2 in the good aggregate

state, by lowering early consumption and increasing the amount of liquidity, with respect to

the equilibrium with perfect information. In other words, the bank reacts to the possibility of

self-fulfilling runs by increasing the amount of excess liquidity in portfolio.

5 Concluding Remarks

With the present paper, we study a novel mechanism through which systemic risk, in the form

of self-fulfilling runs, triggers excessive liquidity holdings in the banking system. To this end, we

develop a positive theory of banking with three main features: a liquid asset is available to the

banks, to store resources and roll them over time; the concept of excess liquidity is well-defined,

by comparison to a benchmark economy with perfect information; banks’ asset portfolios and
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depositors’ expectations are jointly and endogenously determined. In such an environment, we

show that an endogenous pecking order emerges, with which the banks employ their assets in

order to finance withdrawals during a run: if the recovery rate from liquidating the productive

asset is su�ciently low, the banks first employs liquidity, then liquidate the productive asset.

In this way, our model is the first, to the best of our knowledge, to provide a rationale for the

typical chain of events during a bank run: at first, banks are liquid, when they hold su�cient

liquidity to honor the deposit contract with the depositors who withdraw; then, they become

illiquid but solvent, when they run out of liquidity and start liquidating the productive assets

held in portfolio; finally, they are insolvent, when so many depositors are withdrawing early

that they do not have su�cient resources to cover their withdrawals. Moreover, we find that

the deposit contract and the amount of liquidity in portfolio do have opposite e↵ects on the

probability of a run. On the one side, by increasing the amount of risk sharing against the

idiosyncratic liquidity shocks (i.e., increasing early consumption), the banks open themselves

to the possibility of not being able to repay all depositors in the case of a run: in other words,

high early consumption induces a high probability of a run. On the other side, by increasing

the amount of risk sharing against the aggregate productivity shock (i.e., increasing liquidity),

the banks also lower the incentive of the depositors to join a run: in other words, high liquidity

induces a low probability of a run. In turns, the banks take into account the e↵ects that their

portfolio decisions have on the expectations of the depositors, and, as a consequence, on the

probability of a run, and distort the intertemporal allocation of the resources in the economy,

by optimally choosing to lower the amount of early consumption and increase their holdings of

liquidity, with respect to an economy with perfect information. In other words, the possibility

of self-fulfilling bank runs, triggered by the contemporaneous presence of banks’ risky behaviors

and depositors’ self-fulfilling expectations, forces the banks to hoard liquidity.

Despite our focus being mainly positive, we can easily extend the present framework, in

which banks explicitly hold a portfolio of liquid and illiquid assets, to analyze policy issues. In

particular, we could study the e↵ect that ex-ante liquidity requirements and ex-post liquidity

guarantees have on the probability of runs and, in turns, on banks’ asset portfolios and liquidity

holdings. In principle, we expect such government interventions to be considerably e↵ective

at reducing the probability of runs. However, the e↵ect on banks’ asset portfolios and liquidity
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holdings are not trivial, as regulation might strengthen or weaken the marginal e↵ects of liquidity

and early consumption on the probability of runs. We keep a formal analysis of these issues open

to future research.
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Appendices

A Proofs

Proof of Lemma 1. Attach the Lagrange multipliers µ to the liquidity constraint (2) and ⇠

to the non-negativity constraint of D. The first-order conditions of the program are:

c : u0(c)�
Z

1

0

h
pu0(cL(R)) + (1� p)u0(cL(0))

i
dp� µ = 0, (31)

L :

Z
1

0

h
pu0(cL(R))(1�R) + (1� p)u0(cL(0))

i
dp+ µ = 0, (32)

D :

Z
1

0

h
pu0(cL(R))(r �R) + (1� p)u0(cL(0))r

i
dp+ µ+ ⇠ = 0, (33)

where cL(R) and cL(0) are the state-dependent amounts of late consumption in the cases when

the productive assets yields a positive return or zero return, respectively. For the first part of

the lemma, rewrite (32) and (33) as:

Z
1

0

pu0(cL(R))Rdp =

Z
1

0

h
pu0(cL(R)) + (1� p)u0(cL(0))

i
dp =

= r

Z
1

0

h
pu0(cL(R)) + (1� p)u0(cL(0))

i
dp+ ⇠. (34)
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Hence ⇠ > 0, and D = 0 by complementary slackness. For the second part of the lemma,

assume that µ > 0, so that L+ rD� �c = 0 by complementary slackness. Then, cL(0) = 0 and

u0(cL(0)) ! 1 by the Inada conditions. Then, for the first-order condition with respect to L

to hold, it has to be the case that u0(cL(R)) ! 1, hence cL(R) = 0 as well. As a consequence,

for the first-order condition with respect to c to hold, also u0(c) ! 1, hence c = 0, implying

L = D = 0. However, cL(R) = 0 also implies that L +D = 1, which leads to a contradiction.

Finally, use (31) and (32) to derive (5). ⌅

Proof of Lemma 2. Rewrite the derivative as:

@v
1

@n
= �u0(cL(R,n))

R
�
1� L� nc

r

�
+ L� R

r c(1� n)

(1� n)2
+ (1� �)u0(cL(0, n))

L

(1� n)2
. (35)

This expression is negative whenever:

�u0(cL(R,n))R
⇣ c
r
� 1

⌘
> L

h
�u0(cL(R,n))(1�R) + (1� �)u0(cL(0, n))

i
>

> Lu0(cL(R,n))(1�R), (36)

where the last inequality follows from the term in the square bracket being a linear combination

of two terms, with u0(cL(0, n)) > u0(cL(R,n))(1�R). Hence, the derivative is negative, provided

that:

�R
⇣ c
r
� 1

⌘
> L(1�R). (37)

As R > 1 by assumption, this last expression is always true if c > r (as it turns out in the

banking equilibrium). ⌅

Proof of Lemma 3. The threshold signal �⇤
1

is the value of � that makes a late consumer

indi↵erent between waiting or running, given her posterior believes:

Z n⇤
1

�

h
�⇤
1

u(cL(R,n)) + (1� �⇤
1

)u(cL(0, n))
i
dn+

Z n⇤⇤
1

n⇤
1

u(cLL(n))dn =

=

Z n⇤⇤
1

�
u(c)dn+

Z
1

n⇤⇤
1

u
�
cB(n)

�
dn. (38)

Rearranging this expression, we get the threshold signal in (16), below which a late consumer

runs. The derivative of the threshold signal �⇤
1

with respect to c reads:
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@�⇤
1

@c
=

1
"Z n⇤

1

�

h
u(cL(R,n))� u(cL(0, n))

i
dn

#
2

⇥

⇥
""

(n⇤⇤
1

� �)u0(c) +

Z n⇤⇤
1

n⇤
1

u0(cLL(n))
n

1� n
dn

#"Z n⇤
1

�

h
u(cL(R,n))� u(cL(0, n))

i
dn

#
+

+

"Z n⇤
1

�
u0(cL(R,n))

Rn

r(1� n)
dn

#
⇥

⇥
"Z n⇤⇤

1

�
u(c)dn+

Z
1

n⇤⇤
1

u
�
cB(n)

�
dn�

Z n⇤
1

�
u(cL(0, n))dn�

Z n⇤⇤
1

n⇤
1

u(cLL(n))dn

##
, (39)

which is always positive as the utility function is increasing. In a similar way, the derivative of

the threshold signal �⇤
1

with respect to L reads:

@�⇤
1

@L
=

1
Z n⇤

1

�

h
u(cL(R,n))� u(cL(0, n))

i
dn

⇥

⇥
""Z

1

n⇤⇤
1

u0(cB(n))
1� r

n
dn�

Z n⇤
1

�
u0(cL(0, n))

1

1� n
dn�

Z n⇤⇤
1

n⇤
1

u0(cLL(n))
1� r

1� n
dn

#
+
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1

"Z n⇤
1

�


u0(cL(R,n))

1�R

1� n
� u0(cL(0, n))

1

1� n

�
dn

##
. (40)

Notice that limn!n⇤⇤
1
u0(cLL(n)) = limc!0

u0(c), which is equal to +1 by the Inada conditions.

Hence, this expression is negative. This ends the proof. ⌅

Proof of Lemma 4. By definition, u(c) is strictly concave on an open internal X if and only

if:

u(x)� u(y) < u0(y)(x� y) (41)

for all x and y in X. Hence, when �  n < n⇤
2

, it must be the case that:

@v
2

@n
< �

u(cL(R,n))� u(c)

1� n
� (1� �)

u(c)� u(cL(0, n))

1� n

<
�u(cL(R,n)) + (1� �)u(cL(0, n))� u(c)

1� n
=

v
2

(A, n)

1� n
(42)

Thus, whenever v
2

(A, n)  0, the derivative is negative. This ends the proof. ⌅
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Proof of Lemma 5. The threshold signal �⇤
2

is the value of � that equalizes:

Z n⇤
2

�

h
�⇤
2

u

✓
R(1� L) + L� nc

1� n

◆
+ (1� �⇤

2
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Z n⇤⇤
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Z
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u

✓
L+ r(1� L)

n

◆
dn (43)

Rearranging this expression, we get the threshold signal in (24), below which a late consumer

runs. The derivative of the threshold signal �⇤
2

with respect to c reads:
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This derivative is positive, because all terms are positive, and the expression in the last square

brackets is the di↵erence between the denominator and the numerator of �⇤
2

, which must be

non-negative as �⇤
2

 1. The derivative of the threshold signal �⇤
2

with respect to L instead

reads:
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##
. (45)

As �⇤
2

< 1 and:
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n!n⇤

2

u0(cL(0, n)) = lim
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u0(cDL (R,n)) = lim
c!0

u0(c) = +1 (46)

by the Inada conditions, this expression is negative. This ends the proof. ⌅

Proof of Proposition 1. We study �⇤
1

and �⇤
2

as functions of the recovery rate r. As r ! r =

�c
1�L , we have that n⇤
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This expression is always negative, as the numerator of �⇤
1

must be positive. Hence, �⇤
1

is constant

and equal to 1 in the interval [0, r]. In the interval [r, 1], instead, the threshold signal �⇤
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is a

decreasing and convex function of the recovery rate r. To see that, calculate:
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By the Inada conditions, we know that limn!n⇤⇤ u0(cLL(n)) = limc!0

u0(c) = +1. Hence, the

derivative must be negative.5

To show that the threshold signal �⇤
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is instead a convex function of r, calculate:
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5Notice that, for any pecking order j, vj(A,n) is continuous everywhere, but has kinks at n⇤
j n

⇤⇤, so it is not
di↵erentiable at those points.
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By definition of CRRA utility:
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where � is the constant coe�cient of relative risk aversion. This implies that:
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Hence, u00(c) goes to �1 at a speed faster than the one at which u0(c) goes to +1, when c ! 0.

This, together with the Inada conditions, ensures that the second derivative is positive, meaning

that �⇤
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is a convex function of r.

In contrast, �⇤
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that:
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This expression is lower than 1 if:
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This condition is true if R is su�ciently high, given that R > c must hold. We show that in an

33



example with CRRA utility u(c) = (c+ )1��� 1��

1�� , where  is a positive but negligible constant

(we assume  ' 0) that ensures that u(0) = 0, and � > 1 is the coe�cient of relative risk

aversion.6 Rewrite (53) as:
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This is equivalent to:
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Multiply the previous expression by R��1, and rewrite it as:

Z L
c

�

2

4
 
(1� L) + L�nc

R

1� n

!
1��

�
⇣ c

R

⌘
1��
3

5 dn�
Z

1

L
c

✓
L

n

◆
1��

R��1dn < 0. (56)

As R > c, c
R is bounded. Therefore, this condition is always satisfied for R ! 1, as the last

integral goes to �1. By continuity, there must be a su�ciently large and finite value of R such

that this is also true.

Having proved that the threshold signal �⇤
2

< 1 at r = 0, we want to show that it is also a

decreasing and convex function of the recovery rate r. To this end, we first calculate:
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##
. (57)

6The parameter  can be interpreted as a minimum level of consumption that the depositors can enjoy, for
example from an extra endowment that they can consume at date 1 or 2, but not deposit in the bank at date 0.
The proof would hold even for positive but non-negligible values of the  , as long as they are lower than R.
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By the same considerations as before regarding the Inada conditions, notice that:
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Hence, the derivative must be negative.

To show that the threshold signal �⇤
2

is instead a convex function of r, calculate:
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By the same consideration regarding the Inada conditions, we get that this derivative is positive,

meaning that �⇤
2

is a convex function of r.

Being the two threshold signals �⇤
1

and �⇤
2

both decreasing and convex functions of the

recovery rate r, to prove that they cross only once in the interval [0, 1] it su�ces to prove that
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Define as NUMj and DENj the numerator and denominator of �⇤
j , respectively, for any pecking

order j = {1, 2}. The following relationship holds:
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As a preliminary, step, we want to show that:
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is negative. If n⇤
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, the previous expression can be re-written as:
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which is clearly negative. In a similar way, if n⇤
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> n⇤
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, we can re-write:
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which, again, is always negative. Thus, NUM
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We study how f(c, L) changes with c and L. On the one side:

@f(c, L)

@c
=�

Z L
c

�


u0
✓
R(1� L) + L� nc

1� n

◆
� u0

✓
L� nc

1� n

◆�
n

1� n
dn+

�
Z 1

c

L
c

u0
✓
R(1� nc)

1� n

◆
Rn

1� n
dn+

+

Z 1�L
c

�
u0
✓
R(1� L� nc) + L

1� n

◆
Rn

1� n
dn (67)

The sign of this derivative is positive. To see that, notice that R(1�nc)
1�n > L�nc

1�n . Hence, by the

fact that the coe�cient of relative risk aversion is larger than 1:7
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and this implies that:
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1� n

L� nc

1� nc
< u0

✓
L� nc

1� n

◆
n

1� n
. (69)

On the other side:

@f(c, L)

@L
=�

Z L
c

�


u0
✓
R(1� L) + L� nc

1� n

◆
(R� 1) + u0

✓
L� nc

1� n

◆�
1

1� n
dn+

7To see that, rewrite �u00(c)c
u0(c) > 1 as �u00(c)

u0(c) >

1
c . This, in turn, means that �(log[u0(c)])0 > (log[c])0. Integrate

between z1 and z2 > z1 so as to obtain log[u0(z1)]� log[u0(z2)] > log[z2]� log[z1]. Once taken the exponent, the

last expression gives u0(z1)
u0(z2)

>

z2
z1
. If z1 > z2, the inequality is reversed.
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Figure 4: The condition (71) as a function of the coe�cient of relative risk aversion.

+

Z 1�L
c

�
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u0
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R(1� L� nc) + L

1� n

◆
(R� 1) + u0

✓
L

1� n

◆�
1

1� n
dn, (70)

which is negative, because of the Inada Conditions, that make the second integral in the first

line become large and negative. Since f(c, L) is increasing in c and decreasing in L, a su�cient

condition for it to be less than or equal to zero everywhere is that it is less than or equal to zero

at Lmin = � and cmax when L = �, which is cmax = 1. At those points, the condition f(c, L)  0

reads:

u(R)(1� �)�
Z

1��

�


u

✓
R(1� �� n) + �

1� n

◆
� u

✓
�

1� n

◆�
dn  0. (71)

We show how this expression relates to the coe�cient of relative risk aversion in a numerical

example. We assume that u(c) = (c+ )1��
+ 1��

1�� , with  = 2 and � > 1. Moreover, we pick

R = 2.01 and � = .01.8 Figure 4 shows that condition (71) holds for high values of the coe�cient

of relative risk aversion. This ends the proof. ⌅

Proof of Lemma 6. Attach the Lagrange multipliers µ and ⇠ to the liquidity constraint and

the incentive compatibility constraint, respectively. The first-order conditions of the program

8The results are robust to di↵erent choices of the parameters.
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reads:

c : �@�⇤
2

@c
�U(c, L) + �

Z
1

�⇤
2

⇥
u0(c)�

⇥
pu0(cL(R)) + (1� p)u0(cL(0))

⇤⇤
dp+

� �µ� ⇠ = 0, (72)

L : �@�⇤
2

@L
�U(c, L) + �⇤

2

(1� r)u0(L+ r(1� L))+

+

Z
1

�⇤
2

h
pu0(cL(R))(1�R) + (1� p)u0(cL(0))

i
dp+ µ+ ⇠(1�R) = 0. (73)

Clearly, as in the proof for the equilibrium with perfect information, a binding liquidity con-

straint (with the Lagrange multiplier µ strictly positive) cannot satisfy the equilibrium condi-

tions: in fact, if that was not the case, by complementary slackness we would have L = �c and

cL(0) = 0. Plugging (72) into (73) gives:

Z
1

�⇤
2

h
u0(c)� pRu0(cL(R))

i
dp+ �⇤

2

(1� r)u0(L+ r(1� L)) =

=


@�⇤

2

@L
+

1

�

@�⇤
2

@c

�
�U(c, L) + ⇠

✓
1

�
+R� 1

◆
. (74)

In equilibrium, either the incentive compatibility constraint is binding or it is not. However,

a binding constraint would mean that c = cL(R), and this in turns would imply that �
2

= 1,

which cannot be an equilibrium. Hence, by complementary slackness, ⇠ must be equal to zero,

and (74) boils down to the distorted Euler equation (28). A point to prove for the sign of

the strategic complementarity in the interval [�, n⇤
2

] was that R(1�L)
c�L > 1. Using the previous

inequality and the concavity of u(c), this is satisfied by the incentive compatibility constraint.

Moreover, this also implies that c < R, thus confirming the condition for the existence of the

upper dominance region. This ends the proof. ⌅

Proof of Proposition 2. In order to characterize the sign of the distortion in the Euler equa-

tion, we start by deriving the sign of the sum of the marginal e↵ects, for the pecking order

{Liquidity; Liquidation}:
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This expression is positive because of the Inada conditions, and because n � �. We rearrange

the distorted Euler equation (28) and rewrite:
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where the remaining terms are positive, as proved in (75). Hence, the expression in (76) is
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λ n∗

2 n∗∗ 1 n
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Figure 5: The condition under which the inequality (77) holds.
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We show the condition under which this inequality holds in Figure 5. The grey area represents

NUM
2

. As it is clear from the Figure, (1� �)u(c) > NUM
2

. Hence, to prove that �U(c, L) �

NUM
2

, it is su�cient to prove that �U(c, L) � (1��)u(c). We do it by contradiction. Assume

that the opposite is true, or:

(1� �)u(c) > �u(c) + (1� �)
h
�⇤
2

u(cL(R)) + (1� �⇤
2

)u(cL(0))
i
� u(L+ r(1� L)). (78)

As u(c) < �⇤
2

u(cL(R)) + (1� �⇤
2

)u(cL(0)), this inequality implies:

(1� �)u(c) > �u(c) + (1� �)u(c)� u(L+ r(1� L)), (79)

or:

u(L+ r(1� L)) > �u(c). (80)

41



Since the utility function u(c) is increasing and invertible:

L+ r(1� L) > u�1(�)c, (81)

where u�1(�) > 1. Hence, we get L+ r(1� L) > c, which is a contradiction.

To sum up, this result shows that:
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For this to be consistent with distorted Euler equation (28), it must also be the case that:
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This can be rewritten as:
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2
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which can be rearranged as:
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u0(cPI
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where the second inequality holds as E[p] = 1/2 and �⇤
2

� 0, and {cPI , cPI
L (R)} is the deposit

contract in the equilibrium with perfect information. By concavity of the utility function, for

the ratio u0
(c)

u0
(cL(R))

to be higher in the banking equilibrium than in the equilibrium with perfect

information, it must be the case that c
cL(R)

< cPI

cPI
L (R)

. To this end, we calculate:
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(1� �)[R(1� L) + L� �c] + �(1� �)c

[R(1� L) + L� �c]2
> 0. (87)

We take the total di↵erential of the ratio c
cL(R)

, evaluated at the equilibrium with perfect
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information, and look for the condition that makes it negative:

@

@L


c

cL(R)

�
dL+

@

@c


c

cL(R)

�
dc < 0. (88)

This implies that:

dL

dc
< �

@
@c

h
c

cL(R)

i

@
@L

h
c

cL(R)

i . (89)

As the right-hand side is negative, it must be the case that dL/dc < 0. Finally, evaluate the

first-order condition with respect to c in (72) at the equilibrium with perfect information. As

the term in the integral has to go up when moving from cPI to cBE , then it must be the case

that cBE < cPI , hence dc < 0. This, together with dL
dc < 0, implies that dL > 0, or LBE > LPI .

This ends the proof. ⌅
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