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Abstract 
In this paper we remark that the evolution of the realized volatility is characterized by a combination 

between high–frequency dynamics and a smoother persistent dynamics evolving at a lower–frequency. 

We suggest a new Multiplicative Error Model which combines the mixed frequency features of a 

MIDAS with Markovian dynamics. When estimated in–sample on the realized kernel volatility of the 

S&P500 index, this model dominates other simpler specifications, especially when monthly aggregated 

realized volatility is used. The same pattern is confirmed in the out–of–sample forecasting performance 

which suggests that adding an abrupt change in the average level of volatility better helps in tracking 

extreme episodes of volatility and a relative quick absorption of the shocks. 
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1 Introduction

Recurrent global economic and financial crises have prompted an interest in studying the
interdependence between the real economy and the financial market volatility. Starting
from O�cer (1973) and Schwert (1989), several authors document the economic sources of
volatility and, in particular, its increase during a recession while reverting to more phys-
iological states during expansion phases (the so–called countercyclical pattern of stock
market volatility). In an attempt to bring together economic factors (typically measured
at a low frequency) within a financial framework (whose status is observable at a much
higher frequency), Engle et al. (2013) provided a pathbreaking perspective within this
strand of literature by introducing the GARCH-MIDAS model, a multiplicative compo-
nent model in which the conditional variance is decomposed into short– and long–run
components. Component models, introduced by Engle and Lee (1999), can capture the
volatility dynamics putting together a parsimonious structure containing a slow–moving,
more persistent component and a shorter-lived one. In the case of the GARCH-MIDAS,
the short–run component follows a GARCH–type dynamics aimed at capturing volatility
clustering and daily fluctuations, while the long-run one represents a time–varying aver-
age level of volatility, driven by macroeconomic and/or financial variables. A distinctive
merit of this class of models is to be able to mix di↵erent frequencies of observability
within the same analysis.

Volatility modeling within the GARCH framework is based on the daily squared
returns, a noisy, albeit unbiased, measure of conditional variance. A big boost to studying
the dynamics of volatility is provided by the availability of ultra-high frequency data,
which allows for more precise volatility measures in the wide class of Realized Volatility
(RV) Andersen et al. (2003): from the plain vanilla version of RV, as the sum of squared
high-frequency returns (sampled at, e.g., five minutes), more refined versions taking into
consideration autocorrelation of intradaily returns or microstructure noise, such as the
Realized kernel volatility of Barndor↵-Nielsen et al. (2008) are available as more robust
estimators of volatility. Following Andersen and Bollerslev (1998), it is now customary
to use such a variable as the suitable target to evaluate forecast performance of volatility
models.

Apart from being a consistent measure of ex-post daily volatility, RV lends itself to
being modeled for forecasting purposes, given its empirical features of long–run depen-
dence and volatility clustering: being a positive–valued process, new models such as the
Multiplicative Error Model (MEM, Engle, 2002; Engle and Gallo, 2006) have proved use-
ful to reproduce its dynamics. Some component extension of the MEM are present in
the literature (see, e.g., the Composite MEM of Brownlees et al., 2012), while Amendola
et al. (2021) proposed the MEM-MIDAS to exploit the relationship between economics
and financial volatility by focusing on the RV as the variable of interest, in lieu of the
squared returns as in the GARCH-MIDAS.

While the modelling e↵ort provides some interesting insights on the interpretability of
the long–run component of volatility responding to economic factors, the MEM-MIDAS
model is not able to capture abrupt shifts in the average level of volatility, which are
typical of sudden crises and panic behavior on the financial markets, accompanying a
change in the short–run dynamics (i.e. more sensitivity to recent news). To this end,
in this paper1 we add a Markov Switching (MS) dynamics to the short– and long–run

1This paper is an extended version of the work presented at the 51st Scientific Meeting of the Italian
Statistical Society on June, 2022 (Balzanella et al., 2022).
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component to the MEM–MIDAS: the resulting model is the MS-MEM-MIDAS2. Given
that MS models can be seen as an alternative approach to capture a changing level of
average volatility (long–run component reacts across regimes with a step function and
then remains constant within each regime), the model allows for an insight of which
component provides a better fit to the actual slow–moving behavior of observed volatil-
ity, whether the contribution of economic variables observed at a lower frequency, or the
Markov switching component (with its sudden adjustment of the average level of volatil-
ity), or, yet, a combination of both.3 From what emerges in our empirical application,
conducted on the realized kernel volatility of the S&P500 index, the MS-MEM-MIDAS
o↵ers improvements both in– and out–of–sample relative to a Markov Switching MEM
(without the MIDAS component) and to a MEM-MIDAS without switching behavior.

The paper is organized as follows: Section 2 describes the new model proposed, Sec-
tion 3 analyzes the finite sample properties of the estimator through a Monte Carlo sim-
ulation, and Section 4 illustrates the empirical analysis, with some concluding remarks
following.

2 A New Model in the MEM Class

The MEM4 is a class of time series models for non–negative processes {xt} describing
the evolution of phenomena related to financial market activity (e.g. volatility, durations
Engle and Russell, 1998, volumes Manganelli, 2005, number of trades, etc.) that, in its
asymmetric structure, is specified as follows:

xt = gt⌧✏t,

✏t ⇠ Gamma (a1, 1/a1) 8t

gt = (1� ↵1 � �1 � �1/2) + ↵1
xt�1

⌧
+ �1gt�1 + �1D(rt�1<0)

xt�1

⌧
.

(1)

The specification in Eq. (1) implies that µt = gt⌧ is the expectation of xt, conditional on
the information set at the previous period, It�1, i.e. E (xt|It�1) = µt, given that the error
term ✏t follows a Gamma distribution with a unit mean.5 D is a dummy variable equal
to 1 when the returns at time t is negative, 0 otherwise, and the coe�cient �1 captures
the so–called leverage e↵ect, whereby a negative return impacts subsequent volatility
more than a positive one. Moreover, to ensure the positiveness and the stationarity of
the process, we apply the usual su�cient constraints: ↵1 � 0, �1 � 0, �1 � 0 and
↵1 + �1 + �1/2 < 1. Under the given stationarity, the unconditional mean is equal to ⌧ .

In order to accommodate variables observed at di↵erent frequencies, let us now define
a double time index for the variable of interest. With a slight abuse of notation, let
{xi,t} be the same non–negative process, where now we isolate the i-th day within the

2The model by Pan et al. (2017) adopts a simplified MS setup for the constant term in a GARCH–
MIDAS framework.

3This idea of combining MS dynamics with some smooth component is at the basis of the fuzzy
approach by Gallo and Otranto (2018).

4For a recent paper which o↵ers a perspective of the evolution of MEM modeling in the presence of
low– and high–frequency components see Cipollini and Gallo (2022).

5In order to ensure the non–negativeness of xt the error term is defined on a positive support. Pa-
rameters are identified by a 1 subscript in order to allow the comparison with other models presented
below.
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low-frequency period t (be it a week, a month, or a quarter). The relevant conditioning
set becomes then Ii�1,t.

The MEM-MIDAS is specified as a multiplicative component model:

xi,t = gi,t⌧t✏i,t

✏i,t ⇠ Gamma (a, 1/a) 8 i = 1, ..., Nt and t = 1, ..., T

gi,t = (1� ↵1 � �1 � �1/2) + ↵1
xi�1,t

⌧t
+ �1gi�1,t + �1D(ri�1,t<0)

xi�1,t

⌧t
⌧t = exp

n
!1 + ✓

PK
k=1 'k(�1,�2)Xt�k

o

'k(�1,�2) =
(k/K)�1�1 (1� k/K)�2�1

PK
j=1 (j/K)�1�1 (1� j/K)�2�1

(2)

where gi,t, the short-run component,6 follows a unit mean MEM process and ⌧t is a
slow-moving component driven by a low frequency stationary variable, Xt, where the ex-
ponential form is used to ensure its positiveness. The MIDAS filter is based on 'k(�1,�2),
a weighting function of the past K values of Xt, with weights summing up to one. This
filter, based on the beta function, is quite flexible, allowing us to link variables sampled
at a di↵erent frequency. We set �1 = 1 and �2 > 1, to ensure a monotonically decreasing
pattern, as far as �2 increases, that is the most recent observations have more influence
on the long-run component.

In order to allow for an abrupt shift in the average level of volatility, we suggest
the novel MS MEM-MIDAS as a multiplicative model with several components in the
presence of a Markovian dynamics:7

xi,t = gi,t,si,t⌧i,t✏i,t

✏i,t|si,t ⇠ Gamma
�
asi,t , 1/asi,t

�
8 i = 1, ..., Nt and t = 1, ..., T

gi,t,si,t = (1� ↵si,t � �si,t � �si,t/2) + ↵si,t

xi�1,t

⌧i�1,t
+

+ �si,tgi�1,t,si�1,t + �si,tD(ri�1,t<0)
xi�1,t

⌧i�1,t

⌧i,t = exp
n
!si,t + ✓

PK
k=1 'k(�1,�2)Xt�k

o

'k(�1,�2) =
(k/K)�1�1 (1� k/K)�2�1

PK
j=1 (j/K)�1�1 (1� j/K)�2�1 .

(3)

In this specification, coe�cients in the short–run component depend on a regime repre-
sented by a discrete time latent variable, si,t, which varies as a first–order Markov chain
at the higher frequency according to transition probabilities:

P{si,t = j|si�1,t = l} = plj 8 l, j = 1, . . . , J, (4)

with plj the transition probability and J the number of states (with the usual constraints).
In this model, also the low–frequency component is allowed to change within period t
according to a constant !si,t which changes with the same regimes.

The estimation of the parameter of the MS MEM–MIDAS can be obtained through
the Quasi Maximum Likelihood Estimator (QMLE). The log-likelihood is a by-product

6Notice that when i = 1, then (i� 1, t) = (Nt�1, t� 1).
7See Gallo and Otranto (2015) for a comprehensive description of the MS MEM.
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of the Hamilton filter8 and it is specified as follows:

LL =
PT

t=1

PNt

i=1 lli,t =
PT

t=1

PNt

i=1 logf(xi,t|Ii�1,t)

f(xi,t|Ii�1,t) =
P

si,t

P
si�1,t

f(xi,t|Ii�1,t, si,t, si�1,t)P (si,t, si�1,t|Ii�1,t)

f(xi,t|Ii�1,t, si,t, si�1,t) =

a
asi,t
si,t µ

�asi,t
i,t,si,t

x
(asi,t�1)

i,t exp

✓
�asi,t

xi,t

µi,t,si,t

◆

�(asi,t)

(5)

where �(·) is the gamma function. In order to complete the log-likelihood function, then,
we need the predicted probabilities, P (si,t, si�1,t|Ii�1,t), which are obtained, as part of
the Hamilton filter, by iterating the following equations:

P (si,t, si�1,t|Ii�1,t) = P (si,t|si�1,t)P (si�1,t|Ii�1,t)

P (si,t, si�1,t|Ii,t) =
f(xi,t|Ii�1,t, si,t, si�1,t)P (si,t, si�1,t|Ii�1,t)P

si,t

P
si�1,t

f(xi,t|Ii�1,t, si,t, si�1,t)P (si,t, si�1,t|Ii�1,t)

(6)

with P (si,t|Ii,t) =
P

si�1,t
P (si,t, si�1,t|Ii,t).9

In this setup, the conditional volatility, µi,t,si,t , su↵ers from the so–called path depen-
dence problem, that is, it depends on the whole history of the latent variable si,t. To
circumvent that, we use the following collapsing procedure at each step of the Hamilton
filter adopted by Gallo and Otranto (2015), based on Kim (1994):

µ̂i,t,si,t =

P
si�1,t

P{si,t, si�1,t|Ii,t}µ̂i,t,si,t,si�1,t

P{si,t|Ii,t}
, (7)

i.e. by averaging the J2 possible values of the conditional volatility µi,t,si,t , with the
weights equal to the corresponding filtered probabilities.

Due to the latent nature of the variable si,t, we can only make inference on which
regime the process was for each day, based on the sample information. So, if we use
the full sample information, the inference about regime is called smoothed probability,
that is we need to calculate P (si,t|INT ,T ). It is obtained for each date through the Kim’s
algorithm (see, again, Kim, 1994):

P (si,t, si+1,T |INT ,T ) =
P (si+1,t|si,t)P (si,t|Ii,t)P (si+1,t|INT ,T )

P (si+1,t|Ii,t)
(8)

with P (si,t|INT ,T ) =
P

si+1,t
P (si,t, si+1,t|INT ,T ). Then, by iterating eq. (8) for t =

(NT , T ), (NT � 1, T ) . . . (1, T ), (NT�1, T � 1) . . . (1, 1), we get the smoothed probability.
All we need to start Kim’s algorithm is P (sNT ,T |INT ,T ), obtained at the last iteration of
the Hamilton filter.

Such an estimator is interpretable as a Quasi Maximum Likelihood Estimator and, as
such, possesses the properties of consistency and asymptotic normality: Bollerslev and
Wooldridge (1992) is the main reference for the study of these properties in dynamic
models that jointly parameterize conditional means and conditional covariances, adopt-
ing the normal density to generate the likelihood function when this hypothesis is not

8See Hamilton (1994), chapter 22, for the technical details about the Hamilton filter.
9To start the filter we need P (s0,0), then we use as starting values the unconditional probabilities (see

Hamilton, 1994).
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valid. The classical asymptotic results and properties of QMLE have been extended to
the GARCH–MIDAS model, under a set of assumptions, by Wang and Ghysels (2015).
QMLE properties of MEMs and MS models were investigated by Engle and Gallo (2006)
and Kim, 1994 respectively. Similarly, Amendola et al. (2021) derive QMLE and standard
errors for MEM–MIDAS.

3 A Monte Carlo Investigation

The finite sample properties of QMLE, even when models are extensions and combinations
of previous established models, are better investigated by means of Monte Carlo experi-
ments: Conrad and Kleen (2020) verified the results of Wang and Ghysels (2015);Amen-
dola et al. (2019) study the QMLE properties of their asymmetric GARCH–MIDAS;
Gallo and Otranto (2015) analyze their MS–MEM.

For our MS–MEM–MIDAS, we calculate the mean and the standard deviations of
the QML estimates obtained on simulated data with increasing sample size to verify
consistency, and we apply the Kolmogorov nonparametric test (Kolmogorov, 1933) to
verify the normality of the sampling distributions.

Our Monte Carlo experiment consists of generating series from model in eq. (3)10

with length T = {1500, 2100, 2700, 3300, 9900}; the number of replications is 600. To
consider plausible and realistic parameters of the data generating process, we adopt the
values obtained in the empirical analysis.11 The low frequency variable follows an AR(4)
process, i.e., Xt =

P4
i=1 �iXt�i + ut, ut ⇠ N(0, �u), while the daily return an AR(2)

process, rt =
P2

i=1  irt�i + ⇠t, ⇠t ⇠ N(0, �⇠).12 The number of days, Nt for each month
is set equal to 30 8 t (a simplification without practical consequences), while the number
of lags, K, in the MIDAS filter involving the low frequency variable is equal to 36, both
in the data generation and in the estimation.

The main characteristics of the QMLE are shown in Table 1 and can be synthesized
as follows:

the means of estimated parameters in the simulations suggest unbiasedness of the
estimators �̂1, �̂1 and ✓̂ even in small samples. Most of the other estimators reach
the true value for larger sample sizes;

in other cases, the estimators of the constants !1 and !2 and of the parameters
of the Gamma density a1 and a2 show a small bias, which remains also for larger
T ’s. Similar results were encountered by Gallo and Otranto (2015) in analyzing the
properties of the MS–AMEM;

generally the root mean squared error of the estimators decreases as the length of
the series increases, suggesting asymptotic e�ciency;

10To speed up the estimation procedure, we consider 2 regimes and only the constant and the parameter
related to the Gamma density as switching coe�cients.

11For the sake of brevity, we did not report the estimate results for the MS(2) MEM MIDAS, but they
are available on request.

12The parameters of the low frequency variable are obtained by fitting an AR(4) to the IP growth
rate, and are equal to 0.06, 0.17, 0.24 and 0.22 for the first, second, third and fourth lag respectively.
Whereas the parameters, relative to the returns, are obtaind by fitting an AR(2) to their series and are
equal to -0.1 and -0.6 for the first and second lag, respectively.
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the results are coherent with asymptotic normality of the estimators. The only ex-
ceptions appear when estimating the transition probabilities p11 and p22; a plausible
justification for this is that the true value of these parameters is close to the upper
bound of the coe�cients, forcing a negative skewness in the empirical distribution.

These results are supported by a visual inspection of the empirical distributions of the
estimated parameters across replications (when T = 9900), shown in Figure 1, where the
estimates are standardized using the true parameter as the mean, and contrasted against
a standard Normal density profile. In particular, the slight positive bias in the estimated
intercepts !̂1 and !̂2 and the negative asymmetry of the estimated transition probabilities
p̂11 and p̂22 are confirmed.

4 Empirical Analysis

We select as dependent variable the S&P 500 annualized Realized kernel volatility13 (RV);
for comparison purposes, we choose three di↵erent low frequency variables: the industrial
production (IP) growth rate, the monthly RV, and the Equity Market Volatility (EMV)
indicator for Macroeconomics News and Outlook of Baker et al. (2019).14

Overall, we estimate 8 models: the MEM, MS(3) MEM, the MEM-MIDAS and three
MS(3)-MEM-MIDAS each for the three low frequency variables indicated above. The
results for the first estimation period between January 2, 2003 and December 31, 2014,
are presented in Table 2.

The estimated parameters are in line with the previous studies mentioned: the coef-
ficient ✓ (which translates the MIDAS filter of the low–frequency variable on the high–
frequency one) is negative when the forcing variable of the long–run component is the
IP growth rate, the known countercyclical pattern of volatility, while it is positive when
we consider the monthly RV or the EMV tracker. In addition, the value of �2 (which
commands the way in which the most recent observations of the low–frequency Xt impact
the long–run component) is quite high, giving more weight to the recent past, especially
when the financial variables are used.

We consider three regimes in the Markov Switching models (as Gallo and Otranto
(2015) do), so that we are able to discriminate across low–, mid–, and high–volatility
periods. We note that the ↵2 coe�cient is practically zero for all MS models, whereas
the �2 is significant, showing that the volatility dynamics in the mid–volatility regime is
a↵ected by just negative news. Recalling that the variance of the Gamma distribution
with a single parameter is equal to 1/ast , the mid–volatility regime is accommodating a
disturbance with the smallest variance. Among the models, a peculiar behavior is ex-
hibited by the MS(3) MEM-MIDAS-RV, where the variance of the high–volatility regime
is twice the variance of the mid–volatility regime, and this is accompanied by a larger
number of observations assigned to the third regime relative to what other MS models
do.

13The realized variance taken from Oxford-Man Institute’s Realized Library (https://realized.oxford-
man.ox.ac.uk/data/download) is multiplied by the conventional 252 to express it in annualized terms.
For our purposes, we consider the percent realized volatility as its square root times 100. It is well known
that the realized volatility in general is subject to a measurement error Bollerslev et al. (2016); Cipollini
et al. (2021) show that the MS–MEM class is a way to introduce robustness to measurement errors in
modeling volatility dynamics.

14The data for IP and EMV are available at https://fred.stlouisfed.org/series, while monthly RV is
the aggregation of the daily RV for each month.
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Figure 1: Standardized empirical distributions of parameter estimates relative to the true
value for 600 MC replications of length T = 9900. The density of the standard normal
distribution is superimposed as a continuous line.

(a) ↵̂1

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

(b) �̂1

−4 −3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

(c) �̂1

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

(d) !̂1

−2 −1 0 1 2 3
0.
0

0.
1

0.
2

0.
3

0.
4

(e) !̂2

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

(f) â1
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Table 2: Parameter estimated (Jan. 2, 2003 – Dec. 31, 2014) with standard errors
in parentheses for annualized realized kernel volatility.

MEM1 MEM
MIDAS
IP

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MS(3)
MEM
MIDAS
RV

↵1 0.119 0.107 0.094 0.096 0.041 0.038 0.044 0.027
(0.016) (0.016) (0.015) (0.015) (0.023) (0.016) (0.014) (0.019)

�1 0.768 0.769 0.750 0.751 0.768 0.775 0.789 0.774
(0.017) (0.017) (0.017) (0.017) (0.042) (0.029) (0.023) (0.066)

�1 0.128 0.135 0.147 0.149 0.164 0.164 0.157 0.166
(0.012) (0.012) (0.012) (0.012) (0.020) (0.019) (0.014) (0.034)

↵2 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

�2 0.843 0.832 0.733 0.880
(0.033) (0.031) (0.184) (0.036)

�2 0.103 0.101 0.045 0.054
(0.034) (0.027) (0.047) (0.057)

↵3 0.155 0.051 0.054 0.181
(0.040) (0.039) (0.165) (0.081)

�3 0.724 0.800 0.690 0.673
(0.048) (0.040) (0.242) (0.073)

�3 0.117 0.171 0.240 0.156
(0.033) (0.032) (0.054) (0.037)

!1 2.518 2.578 1.403 1.867 2.219 2.364 1.418 1.815
(0.036) (0.031) (0.079) (0.050) (0.042) (0.029) (0.076) (0.047)

!2 2.627 2.763 1.744 2.060
(0.087) (0.042) (0.101) (0.141)

!3 3.157 3.366 2.330 2.367
(0.148) (0.072) (0.113) (0.127)

a1 6.874 7.020 7.203 7.196 7.655 7.540 7.488 7.568
(0.276) (0.244) (0.202) (0.201) (0.305) (0.235) (0.210) (0.344)

a2 8.018 9.318 10.84 11.97
(1.075) (0.744) (1.476) (2.699)

a3 8.012 7.456 7.695 6.436
(0.728) (0.644) (1.065) (0.800)

✓ -0.223 0.074 0.045 -0.207 0.066 0.038
(0.051) (0.005) (0.003) (0.019) (0.005) (0.004)

�2 2.691 5.824 9.934 2.770 4.490 7.610
(1.850) (1.102) (1.737) (0.352) (0.742) (2.676)

p11 0.994 0.996 0.995 0.997
(0.004) (0.002) (0.002) (0.002)

p22 0.973 0.977 0.956 0.968
(0.010) (0.009) (0.017) (0.017)

p33 0.987 0.971 0.972 0.983
(0.006) (0.011) (0.018) (0.017)

p12 0.006 0.004 0.005 0.001
(0.004) (0.002) (0.002) (0.004)

p21 0.016 0.012 0.033 0.015
(0.009) (0.007) (0.015) (0.013)

p322 0.013 0.029 0.028 0.017
(0.007) (0.011) (0.018) (0.017)

LogLik -8611.61 -8578.42 -8537.78 -8539.33 -8509.89 -8489.82 -8483.89 -8477.97

aTo facilitate the comparison with the parameters of the other models, we reparameterize ⌧
in Eq. (1) with exp(!1).

bThe elements of the transition probability matrix p13, p23, p31 can be derived as the comple-
ment to one of the sum of the other elements by row.
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In Figure 2, we translate the largest value of the smoothed probabilities into an
inference on the regimes by assigning each observation to the corresponding state. In
general, all MS models are able to capture the correspondence between the severe market
downturn periods and the high–volatility regime: the bankruptcy of Lehman Brothers in
September 2008, the flash crash in May 2010 (with the exception of the MS(3) MEM-
MIDAS-EMV) and the credit rating downgrade of the United States sovereign debt in
the second half of the year 2011. The MS(3) MEM-MIDAS-RV seems to have better
classification capabilities, as it assigns the subprime mortgage crisis period (second half
2007-first half 2009) to the high-volatility regime (green points), while other MS(3) MEM-
MIDAS models manage to assign to the third regime just the main peaks. By the same
token, the MS(3) MEM-MIDAS-EMV seems to be the least reactive model, favoring the
assignment of most observations to the low–volatility regime, and missing some notable
burst of volatility, especially toward the end of 2007.

The visual inspection of the dynamics across regimes shown in Figure 2, can be further
analyzed calculating the average duration in each regime i as 1/(1�pii) (Hamilton, 1994).
For the models at hand the di↵erences in the persistence within each of the three regimes
can be appreciated from Table 3; the low–volatility period is the most persistent one
(more than 200 days using the MS(3) MIDAS models, and even longer when RV is used
as the low–frequency variable). By the same token, both Regime 2 and 3 are considerably
shorter with durations in either state between approximately 30 and 60 days: this is
consistent with the idea that the switches in volatility, be they moderate increases or
extreme bursts, are relatively short–lived.

The similarities and the di↵erences among the inferences on the regimes derived from
the four MS models can be better appreciated by looking at Table 4, where we show
the percentage frequencies of the observations conditional on the regime i (i = 1, 2, 3)
in the model by row falling in the regime j (j = 1, 2, 3) for the model by column. On
the diagonal of each sub–block we have the degree of agreement of what is classified by
the model in the row with the corresponding classification by the model in the column.
By and large, there is a high level of agreement in what concerns the first regime, with
the exception of the mixed–frequency model involving the variable EMV. In terms of the
second regime, the degree of concordance substantially decreases (with one exception:
92% of the observations classified in the second regime in the mixed model with RV
belong to the same regime with the IP model). For the third regime, the agreement is at
times high but one can notice an asymmetry in the relationship in that, for example, all
observations classified as regime 3 by the EMV mixed model belong to the third regime
when the mixed model uses IP, but the reverse is not true: only 48% of the observations
classified in Regime 3 by the IP mixed model fall in the same regime in the EMV mixed
model. Other cases share the same asymmetric pattern.
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Table 3: Average duration, expressed as number of
days, in each regime for the MS models. Sample:
Jan. 2, 2003 – Dec. 31, 2014.

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MS(3)
MEM
MIDAS
RV

Regime 1 (s1) 177 224 208 354
Regime 2 (s2) 37 44 23 31
Regime 3 (s3) 78 35 36 58

The average duration in days within each regime
si with i = 1, 2, 3 is calculated as 1/(1� pii).

Table 4: Frequency table of inference on regimes of four models. Sample: Jan. 2, 2003 –
Dec. 31, 2014.

MS(3) MEM MS(3) MEM MS(3) MEM MS(3) MEM

MIDAS IP MIDAS EMV MIDAS RV

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

MS(3) MEM s1 98.7 1.3 0.0 99.9 0.1 0.0 98.0 0.8 1.2
s2 24.5 75.0 0.5 81.7 18.1 0.2 48.1 27.1 24.8
s3 14.5 41.1 44.4 46.0 32.3 21.7 15.3 26.4 58.2

MS(3) MEM s1 88.3 7.4 4.3 100.0 0.0 0.0 98.1 0.7 1.2
MIDAS IP s2 3.2 63.3 33.6 68.5 31.5 0.0 24.1 42.8 33.1

s3 0.0 1.1 98.9 23.2 28.1 48.7 0.4 4.9 94.8

MS(3) MEM s1 70.0 19.4 10.6 78.3 19.3 2.4 82.7 6.8 10.5
MIDAS EMV s2 0.7 36.4 63.0 0.3 75.1 24.6 8.2 53.4 38.4

s3 0.0 0.8 99.2 0.0 0.0 100.0 0.0 0.0 100.0

MS(3) MEM s1 82.1 13.7 4.2 91.8 8.1 0.0 98.8 1.2 0.0
MIDAS RV s2 4.4 49.1 46.4 4.1 92.0 3.8 51.8 48.2 0.0

s3 4.0 29.3 66.7 4.8 46.4 48.7 52.4 22.5 25.0

Each value represent the percent frequency of the inferred regime of the model by column conditionally
on the inferred regime of the model by row. The observations are assigned to a volatility regime
(si with i = 1, 2, 3) based on the value of the smoothed probabilities.

The overall behavior in comparing the classification of the regimes can be appreciated
graphically in Figure 3, where we consider the models two at a time (six panels total),
and we build stacked bars di↵erentiated by color according to whether the classification
is common to both models (light blue - hence the same height of this bar by panel) or
specific (blue - on top of the previous one). This graph allows us first to appreciate how
many observations are allocated to each regime by individual models (all panels share
the same vertical scale), and to identify the model that has the highest overall bar. In
this respect across models, the EMV mixed model tends to favor Regime 1 (2581 over
3016 observations), while the IP mixed model has the highest number of observations
(729) classified as Regime 2 and, finally, the MS(3) MEM, which does not make use of
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the smooth trend, has 594 observations allocated to Regime 3. While the height of the
bar does not change across comparisons, its composition does and hence one may find
a di↵erent allocation of observations between those that are common to both models
and those that are specific. The second comparison, then is one in which we evaluate
similarity (or di↵erences) across models and regimes by noting how similar (or di↵erent)
the total height is and how small the darker blue portion of the bar. Hence, for example,
for Regime 3, the MS(3) MEM and the RV mixed model (M1 vs M4) give similar overall
results, while one notices that each model contributes a substantial portion of the specific
classification (same is true for M1 vs M2 or M3 vs M4 in Regime 2).

By calculating an adjusted Rand index Hubert and Arabie (1985) and Rand (1971)
for group similarity, the highest value is encountered for the pair of mixed models with IP
and RV, respectively (0.84); the same IP model ranks next with the MS(3) MEM (0.79).
The lowest value of the index (0.63) is reached by the pair MS(3) MEM with the EMV
mixed model, which, in general, di↵ers in terms of its classification capabilities.

Figure 3: Pairwise comparison of inferred regimes among four MS models.
M1: MS(3)MEM; M2: MS(3)MEM�MIDAS� IP;
M3: MS(3)MEM�MIDAS� EMV; M4: MS(3)MEM�MIDAS� RV.
Light blue (common part), blue (specific part). Jan. 2, 2003 – Dec. 31, 2014.

(a) M1 vs M2 (b) M1 vs M3 (c) M1 vs M4

(d) M2 vs M3 (e) M2 vs M4 (f) M3 vs M4

These results show that the choice of the low–frequency variable does induce di↵erent
results in our MS(3) MEM–MIDAS models, and that the performance of the EMV mixed
model is somewhat disappointing when it comes to discriminating across regimes. The
RV mixed model has the highest value of the estimated log–likelihood function (cf. last
line in Table 2).

This descriptive comparison is complemented by some histograms representing in
Figure 4 the distribution of the volatility observations according to which regime they
are classified by the four MS(3) models. In each panel, the red area corresponds to the
low–volatility regime, the blue to the mid–volatility regime and the green to the high–
volatility regime. This gives some interesting insights in how the values of volatility per

14



Figure 4: Volatility distribution across inferred regimes of four MS models. Low–volatility
regime (red area), mid–volatility regime (blue area), high–volatility regime (green area).
Sample: Jan. 2, 2003 – Dec. 31, 2014. Volatility Proxy: annualized Realized kernel
Volatility.
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se are not su�cient to classify regimes: the allocation by each model depends on its
capability to capture the evolution of the dynamics in reference to the prevailing average
level of volatility, whereby some bursts in volatility, although smaller in size, are able to
make the model switch to a higher state. In this respect, we recognize the EMV mixed
model’s tendency to characterize as low–volatility even values that are fairly sizeable,
while over–characterizing, as already noted, the importance of Regime 1. The message
here is therefore that MS models, possibly complemented by a low–frequency component,
can help in devising the importance of considering volatility movements relative to the
prevailing state in that moment.

A formal comparison among models can be carried out with an analysis of their in–
and out–of–sample performance.

4.1 The in–sample performance

We report in–sample statistics in Table 5, where we calculate a few diagnostics, the value
of the log–likelihood function, together with the Akaike and the Bayesian information
criteria and a loss function used as reference (QLIKE) with further results discussed
below. The MS(3) MEM-MIDAS-RV is the best model judging by the log–likelihood
value and the AIC, as well as the QLIKE loss; in terms of BIC, the MEM-MIDAS-EMV
shows the best performance.

The values of the QLIKE can be used to compare the in–sample performance of
the estimated models through the Model Confidence Set (MCS) procedure of Hansen
et al., 2011. To test the null hypothesis of equal predictive capacity, we employ the
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Table 5: In–sample performance of the estimated models: Sample: Jan. 2, 2003 – Dec.
31, 2014.

MEM MEM
MIDAS
IP

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MS(3)
MEM
MIDAS
RV

LOGLIK -8611.61 -8578.42 -8537.78 -8539.33 -8509.89 -8489.82 -8483.89 -8477.97
AIC 5.714 5.693 5.666 5.667 5.657 5.645 5.641 5.637
BIC 5.724 5.707 5.680 5.681 5.699 5.691 5.687 5.683

QLIKE 7.450 7.291 7.102 7.109 7.044 6.964 6.928 6.912
Rank 8 7 5 6 4 3 2 1
p-value 0.014 0.014 0.014 0.014 0.044 0.405 0.666 1.000

By row, the best model is identified in boldface. LOGLIK: value of the maximized log-likelihood
function; AIC: Akaike Information Criterion: BIC: Bayesian Information Criterion; QLIKE: Value of
the Quasi-Likelihood function (multiplied by 100); Rank refers to the results of the Model Confidence
Set approach and indicates the (inverse) order by which the models are removed (8 is the first model
removed, 1 the best performing model) according to the QLIKE criterion; p-value is the corresponding
MCS p-value.

semi–quadratic statistic:

TSQ =

P
i 6=j d̄

2
ij

\V ar(d̄ij)

where d̄ij is the sample mean di↵erence between the loss function series of models i and

j, while \V ar(d̄ij) is the estimated variance of d̄ij through a bootstrap procedure of 10000
resamples. When the null hypothesis is rejected, the worst model is eliminated and the
test is repeated for the remaining models until the null hypothesis is not rejected, thus
suggesting which models enter a set possessing equivalent predictive capability.

In this respect, the bottom part of Table 5 shows (row labeled Rank) the order by
which the models are removed by the best set in terms of QLIKE loss function. Setting the
significance level equal to 0.05, the best set is formed by the three MS(3) MEM-MIDAS,
showing how the new models proposed provide the best fitting performance.

Comparatively speaking, the forecasting performance of the models can be evaluated
also by calculating the Diebold and Mariano (DM – Diebold and Mariano, 1995) test
statistics, still using QLIKE as the loss function of reference. In Table 6, we report the
results for the in–sample period: as it often happens, the more parameterized models
outperform the simpler ones: in particular, the MS(3)-MEM-MIDAS model with RV
performs really well, beating all models, with an indistinguishable performance relative
to the one with EMV.

Graphically, we can see that the models with Markovian dynamics and/or a mixed
frequency component o↵er a more flexible pattern of the long–run component, that is,
the average level around which conditional volatility fluctuates (Figure 5), relative to the
base MEM.

The similarity of the long–run components can be better evaluated in terms of corre-
lation coe�cients. Table 7 shows all the correlations between the long–run components
derived from each pair of models (excluding MEM, which is constant). We notice a strong
correlation between the MEM-MIDAS-EMV and both MIDAS models that use RV as the
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Table 6: p-values for the Diebold-Mariano test statistics under the null hypothesis of
equal performance of the in–sample forecasts. Sample: Jan. 2, 2003 – Dec. 31, 2014.

QLIKE MEM MEM
MIDAS
IP

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MEM-MIDAS-IP 0.013

MEM-MIDAS-EMV 0.017 0.031

MEM-MIDAS-RV 0.026 0.054 0.594

MS(3)-MEM 0.010 0.019 0.137 0.118

MS(3)-MEM MIDAS-IP 0.007 0.009 0.010 0.006 0.030

MS(3)-MEM-MIDAS-EMV 0.006 0.006 0.002 0.001 0.411 0.016

MS(3)-MEM-MIDAS-RV 0.005 0.006 0.001 0.000 0.007 0.085 0.333

H0 : QLIKE (row) = QLIKE (column); Ha : QLIKE (row) < QLIKE (column). In red p–values < 0.1
(model by row “wins” against model by column).

Figure 5: Estimated conditional volatility of four models. Realized Volatility (gray line),
conditional volatility (blue line), long–run component (green line). Sample: Jan. 2, 2003
– Dec. 31, 2014. Volatility Proxy: annualized Realized kernel Volatility.
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low–frequency variable. Apart from a lower correlation, between 0.55 and 0.63, between
the MEM MIDAS-IP and each of the MS models, all pairs show a relatively high degree
of linear relationship (16 out of 21 are greater than 0.73).
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Table 7: Correlation coe�cients among long–run components (⌧i,t) derived from seven
MIDAS models. Sample: Jan. 2, 2003 – Dec. 31, 2014.

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MS(3)
MEM
MIDAS
RV

MEM-MIDAS-IP 0.771 0.813 0.555 0.593 0.567 0.629
MEM-MIDAS-EMV 0.933 0.764 0.817 0.808 0.906
MEM-MIDAS-RV 0.682 0.732 0.739 0.880
MS(3) MEM 0.856 0.742 0.826
MS(3) MEM MIDAS IP 0.903 0.866
MS(3) MEM MIDAS EMV 0.821

4.2 The out–of–sample performance

The out–of–sample exercise is performed on a rolling window scheme for the period
between January 2, 2015 and December 31, 2020. We start by generating the one step
ahead forecasts for the year 2015 based on the first in–sample estimation period, then we
shift forward the whole estimation period by one year and we re-estimate the model to
produce the forecasts for the following year, and so on.

In this forecasting setup, looking at the Table 8, the MIDAS models making use of
the IP overall fare poorly, showing the highest QLIKE loss function values. Repeating
the MCS procedure for the out–of–sample results, we notice that the models entering
the best set at 0.05 significance level are (in order of ranking) MS(3) MEM-MIDAS-RV,
MS(3) MEM-MIDAS-EMV, MEM-MIDAS-RV, MS(3) MEM and MEM. However, one
should notice the large di↵erence in p–values between the MEM and the other models:
if one were to use a significance level around 0.25, as suggested by some authors (for
example, Hansen et al., 2011 themselves), in order to avoid the possibility of high first
type error of sequential tests, the MEM would be excluded from the best set.

The results from the Diebold–Mariano test (see Table 9) support similar conclusions:
the MIDAS models using IP fare poorly, overall, and the base MEM does not fare worse
than some other richer models. The MS(3)-MEM-MIDAS with RV maintains the sat-
isfactory performance (never dominated by others), showing that the addition of the
Markov switching behavior generally adds relevant value in forecasting. By focusing on
the last row of the table, the MS(3)-MEM-MIDAS with RV exhibits the best perfor-
mance, beating most mixed–frequency models (with the exception of the one making use
of the same variable RV) and having a similar performance as the MS(3) MEM and as
the MS(3)-MEM-MIDAS with EMV.

5 Concluding remarks

The major contribution of this paper is to have introduced a new class of (asymmetric)
Multiplicative Error Models in which we combine variables sampled at di↵erent frequency
(in the MIDAS logic) with a Markovian dynamics (Markov switching): the behavior of the
low–frequency component (monthly in the case of our application) is allowed to assume
di↵erent values according to the latent regime prevailing at the daily level.
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Table 8: Out of sample results: MCS p-values for the QLIKE. Forecasting Period: Jan.
2, 2015 – Dec. 31, 2020.

MEM MEM
MIDAS
IP

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MS(3)
MEM
MIDAS
RV

QLIKE 6.955 7.297 7.025 6.834 6.845 7.040 6.825 6.759
Rank 5 8 6 3 4 7 2 1
p-value 0.139 0.000 0.036 0.557 0.557 0.010 0.557 1.000
QLIKE: value of the Quasi-Likelihood function (multiplied by 100). Rank indicates the (inverse) order
in which the models are removed in the MCS approach (7 is the first model removed, 1 the best
performing model); p-value is the corresponding MCS p-value. Boldface for the best model by row.

Table 9: Diebold-Mariano test: p-value under the null hypothesis of equal performance
of the out of sample forecasts. Forecasting Period: Jan. 2, 2015 – Dec. 31, 2020.

QLIKE MEM MEM
MIDAS
IP

MEM
MIDAS
EMV

MEM
MIDAS
RV

MS(3)
MEM

MS(3)
MEM
MIDAS
IP

MS(3)
MEM
MIDAS
EMV

MEM-MIDAS-IP 1.000

MEM-MIDAS-EMV 0.764 0.014

MEM-MIDAS-RV 0.018 0.000 0.003

MS(3)-MEM 0.130 0.001 0.073 0.548

MS(3)-MEM-MIDAS-IP 0.793 0.005 0.547 0.980 0.957

MS(3)-MEM-MIDAS-EMV 0.092 0.000 0.014 0.452 0.411 0.016

MS(3)-MEM-MIDAS-RV 0.023 0.000 0.004 0.165 0.113 0.000 0.142

p-value of the Diebold and Mariano test. H0 : QLIKE (row) = QLIKE (column); Ha : QLIKE (row)
< QLIKE (column). In red p–values < 0.1 (model by row “wins” against model by column); in blue
p–values > 0.90 (model by column “wins” against model by row).

In this specification of the Markov switching MEM-MIDAS, the Markov chain reg-
ulating the dynamics of the realized volatility is the same for both the low– and the
high–frequency components. An interesting extension to be investigated is to allow the
Markovian dynamics to be di↵erent across components (taking on the logic adopted by
Sola et al., 2002 and Gallo and Otranto, 2008 in di↵erent contexts).

The results provide an alternative to working with either type of MEM (MIDAS or
MS) taken in isolation, leading to a more flexible representation of the underlying dy-
namics of the slow–moving component, a common characteristic exhibited by financial
volatility over a long period. It also allows for an economic interpretation of what moves
the average level of volatility: given that the most satisfactory forecasting performance
appears to involve the MS(3)-MEM-MIDAS with RV, which uses monthly realized volatil-
ity as the driving variable for the low–frequency component, in this case an aggregation
of what is available at a higher frequency provides some useful insights as of the overall
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dynamics.
The volatility considered here is measured on the S&P 500 index, which involves one

of the most important markets and has a widespread basis of stock in its composition:
however, the analysis conducted on di↵erent US indices or di↵erent markets would not
necessarily reach the same conclusions, and this suggests further empirical investigations
about the relative merits of these models.
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