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Abstract 
Markov Switching models have had increasing success in time series analysis due to their ability to 
capture the existence of unobserved discrete states in the dynamics of the variables under study. This 
result is generally obtained thanks to the inference on states derived from the so–called Hamilton filter. 
One of the open problems in this framework is the identification of the number of states, generally 
fixed a priori; it is in fact impossible to apply classical tests due to the problem of the nuisance 
parameters present only under the alternative hypothesis. In this work we show, by Monte Carlo 
simulations, that fuzzy clustering is able to reproduce the parametric state inference derived from the 
Hamilton filter and that the typical indices used in clustering to determine the number of groups can be 
used to determine the number of states in this framework. The procedure is very simple to apply, 
considering that it is performed (in a nonparametric way) independently of the data generation process 
and that the indicators we use are present in most statistical packages. 
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1 Introduction

Markov Switching (MS) models (Hamilton, 1990) have received increasing attention in
time series analysis with several applications in economics (see, for example Hamilton,
2016), finance (Gallo and Otranto, 2015), neuroscience (Degras, Ting, and Ombao, 2022),
just to name a few fields. Its main advantage consists in the possibility to consider the
existence of several states, interpreted as particular regimes (for example, growth and
recession in business cycle, quiet and turmoil periods in the financial markets), which
are not observed, but whose dynamics can be represented by an ergodic Markov chain.
Thanks to the properties of ergodic Markov chains, it is possible to make inference on
the unobserved state, assigning to each state at each time a filtered or smoothed prob-
ability obtained from the so–called Hamilton filter (Hamilton, 1990). An open problem
is the identification of the number of states, which is not feasible with classical tests for
the problem of nuisance parameters present only under the alternative hypothesis. In
practice, when the model under the null hypothesis is a MS model with k states and
the model under the alternative is a model with k + 1 states, the two models are not
nested due to the presence of transition probabilities referring to the state k + 1, not
identified under the null hypothesis (see, for example, Hansen, 1992). As known, in this
framework the classical tests, such as Likelihood Ratio (LR), do not follow the standard
distributions and the true distribution is unknown. There are several proposals to bypass
this problem; the first approaches were based on the supremum of a LR test (Davies,
1977), trying to derive its asymptotic distribution over a range of nuisance parameters
via simulations (Hansen, 1992), but with a high computational cost. Alternatively, Gar-
cia (1998) proposes a similar approach by reducing the range of nuisance parameters,
with the exclusion of some important particular cases. Most recent approaches avoid
the development of tests, trying to directly identify the number of states by penalized
likelihood criteria (Psadarakis and Spagnolo, 2003, 2006) or Kullback–Leibler divergence
(Smith, Naikb, and Tsai, 2006).

A very practical idea is to identify the number of states before the estimation step,
emphasizing the fact that in an MS models each observation is generated by a mixture
density, with a number of components equal to the number of states of the Markov chain.
This approach was developed in a nonparametric Bayesian framework by Otranto and
Gallo (2002), where the posterior distribution of the number of states is derived by means
of a Gibbs sampler. This intuition is the basis of our proposal.

First, we note a similarity between the inference on the regime in MS models and the
grouping derived from a fuzzy clustering (D’Urso, 2015). This last approach is able to
provide a clustering of statistical units in k groups, with a probability of belonging to
each of the k clusters. Our first analysis consists in verifying whether the fuzzy approach
provides a grouping similar to the one derived from the inference on regimes of the MS
models, using the same assignment criterion (the unit is assigned to the group correspond-
ing to the mode). This exercise is performed by means of Monte Carlo experiments. After
verifying the similarity of the results in terms of state inference, we verify whether the
typical indices used to select the number of clusters are able to identify the true number
of states. The resulting approach is very simple, it is applied in the identification phase,
before estimating the model, as in Otranto and Gallo (2002), but unlike these, it is very
fast and uses tools implemented in the main statistical routines.
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The structure of the paper is as follows: in the next section the main features of the
MS model and of fuzzy clustering are briefly recalled; in Section 3 we present a large
set of Monte Carlo experiments to verify the ability of fuzzy clustering to reproduce the
inference on the states of MS models (subsection 3.1) and the performance of several in-
dices in detecting the number of states (subsection 3.2). Some final remarks will conclude
the paper.

2 MS Models and Fuzzy Clustering

Let us consider a time series yt with t = 1, . . . , T . We say that its Data Generating
Process (DGP) follows an MS process with k states if:

yt = f(x;✓st) + "t (1)

where x is a vector of exogenous variables, possibly including lagged values of yt, "t (t =
1, . . . , T ) are independent disturbances with zero mean and possibly changing variance
(this will be clarified shortly). The vector of unknown parameters ✓st depends on an
unobservable discrete random variable st, which can assume values 1, 2, . . . k, and whose
dynamics is driven by an ergodic Markov chain, with elements of the transition probability
matrix:

pij = Pr(st = j|st�1 = i), i, j = 1, . . . , k (2)

with
Pk

j=1 pij = 1 for each i = 1, . . . , k. Also the variance of "t could depend on the state
variable st, so they could be not identically distributed. A typical model used in an MS
framework is the MS � AR(p) process:

yt = µst +
pX

i=1

�i

�
yt�i � µst�i

�
+ "t, "t ⇠ N(0, �2) (3)

Under stationarity constraints, specification (3) involves a time–varying unconditional
mean of the process, µst , depending on the state at time t. The transition probabilities
pij are estimated with other parameters ✓st = (µ1, . . . , µk)

0, � = (�1, . . . ,�p)
0 and �2

by Maximum Likelihood Estimator (MLE), deriving the likelihood function by means
of the so–called Hamilton filter(Hamilton, 1990). The same Hamilton filter provides the
possibility to specify, at each time t, the conditional probability to fall in a certain state j;
given the information set I⌧ = (y⌧ , y⌧�1, . . . ), it is possible to obtain the so–called filtered
probabilities Pr (st = j|It), the predicted probabilities Pr (st = j|It�1) and the smoothed
probabilities Pr (st = j|IT ). The predicted probabilities enter the likelihood function; in
fact the conditional density of each yt is expressed as:

f(yt|It�1;✓st ,�, �
2) =

kX

j=1

f(yt|st = j, It�1;✓st ,�, �
2)Pr (st = j|It�1) (4)

which is a mixture of distributions with weights represented by the predicted probabilities.
Moreover, the Hamilton filter provides also an intuitive inference on the regime, as-

signing to state j the observation at time t with mode in j, using as mass distribution
the filtered or, more frequently, the smoothed probabilities.
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As said in Section 1, the identification of the number of states k is not achievable
through classical statistical tests for the problem of nuisance parameters present only un-
der the alternative hypothesis. As an example, let us suppose to verify the null hypothesis
of a linear model (no states or k = 1):

yt = µ+ "t, "t ⇠ N(0, �2) (5)

against the alternative of a MS model with k = 2 states:

yt = µst + "t, "t ⇠ N(0, �2), st = 1, 2

P =


p11 1� p11

1� p22 p22

� (6)

The linear model can not be obtained from the MS model simply imposing that the
switching parameters are equal in the two states (µ1 = µ2), because the transition proba-
bilities p11 and p22 are not identified under the null hypothesis and the two models are not
nested. Similarly if the 2–state model (6) is assumed under the null hypothesis, whereas
the alternative refers to a MS model with k = 3:

yt = µst + "t, " ⇠ N(0, �2), st = 1, 2, 3

P =

2

4
p11 p12 p13
p21 p22 p23
p31 p32 p33

3

5 ;
3P

j=1
pij = 1, i = 1, 2, 3

(7)

In this case 2 of the 3 probabilities in each row of P are not identified under the null
hypothesis.

There is some similarity between the MS models and the fuzzy clustering methods.
The latter detect the belonging of each statistical unit to a cluster with a certain prob-
ability (the membership grade), unlike the classical hard clustering, where each unit can
belong to exactly one cluster only. Clustering based on the degree of membership in each
group can be seen as similar to state inference done using the smoothed probabilities in
an MS framework. For example, considering the most popular fuzzy clustering algorithm,
the fuzzy k–means (Bezdek, 1981), the fuzzy partition in k groups of the observed yt’s
(t = 1, . . . , T ) is obtained by minimizing:

min
U ,c

TX

t=1

kX

j=1

um
tjd

2 (yt, cj) (8)

where U = {ut,j} (t = 1, . . . , T ; j = 1, . . . , k) is the membership grade matrix, c =
(c1, . . . , ck)

0 is the vector of centroids, m is the fuzziness parameter, which tunes the
degree of fuzziness, d(·, ·) is a distance measure.

Each column of U can be interpreted similarly to the smoothed probabilities of an
MS model. Based on this insight, we ask whether nonparametric methods used to detect
the number of groups in clustering can be used as a method to identify the number of
states in an MS model. The detection of the number of clusters is generally carried out by
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means of indicators implemented in the main statistical packages, making this approach
very simple and easily usable even by non–experts.

The verification of the previous idea can be performed in two steps through Monte
Carlo experiments where data are generated from several MS processes: first, fixing the
true k, we compare the smoothed probabilities derived from the estimated MS with the
corresponding grade of membership matrix derived from (8);1 then we use the main
indices to detect the number of clusters verifying if they are able to identify the correct
number of states of the MS DGP. More specifically, we rely on the following cluster
validation indices: Partition Coe�cient (PC), Partition Entropy (PE), Modified Partition
Coe�cient, (MPC), Average Silhouette Width (ASW), Average Silhouette Width Fuzzy
(ASWF), and Xie-Beni (XB).

The Partition Coe�cient (Bezdek, 1981) is given by:

PC =
TX

t=1

kX

j=1

u2
tj/T.

It can assume values between 1/k and 1, with its maximum value, as function of k, giving
us the optimal number of clusters.

The Partition Entropy (Bezdek, 1981):

PE = �
kX

j=1

utj ln(utj)/T,

ranges in [0, ln k] and its lowest value provides the best number of clusters.
The Modified Partition Coe�cient (Dave, 1996)

MPC = 1� k

k � 1
(1� PC),

normalizes the PC index, so that it ranges in [0, 1], thus eliminating dependency on k.
The Average Silhouette Width (Rousseeuw, 1987) is calculated as follows:

ASW = (1/T )
TX

t=1

bt � at
max{at, bt}

,

with at the average distance among yt (belonging to the cluster ⌧) and the other observa-
tions belonging to the same group ⌧ , while bt is the minimum average distance among yt
and the observations belonging to another cluster j 6= ⌧ . It can assume values between
-1 and 1, with the maximum value providing us with the best number of clusters.

The Average Silhouette Width Fuzzy (Campello and Hruschka, 2006),

ASWF =

PT
t=1(utj1 � utj2)

�ASWtPT
t=1(utj1 � utj2)�

,

1Classifying the European Central Bank announcements, Gallo, Lacava, and Otranto (2021) find
very similar results between the classification derived from smoothed probabilities of their MS model
and the k–means clustering procedure.
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is a weighted average of the Silhouette, where utj1 and utj2 are the elements of the t–th
row of U with first and second largest values, respectively, ASWt the Silhouette of the
t � th observation, and � � 0 . Notice that, as opposed to ASW, it takes into account
the membership grade matrix.

Finally, the Xie-Beni index (Xie and Beni, 1991),

XB =

PT
t=1

Pk
j=1 u

2
tjd

2(yt, cj)

T min
i,j

d2(ci, cj)
,

is minimized to obtain the best partition. Notice that the XB index, takes into account
both membership grade matrix and the observations.

3 Monte Carlo Evidence

The DGPs used for the Monte Carlo experiments are the models in equation (6) (call it
MS(2)), equation (7) (MS(3)) and MS–AR(1) models like (3), with p = 1, and with 2
(MS(2)-AR(1)) or 3 (MS(3)-AR(1)) states, adopting the Normal distribution for "t. We
cover several scenarios, combining a set of parameters that yields the 32 models (8 of
each model type) shown in Table 1 (labeled to identify them).

As the distance between the µi coe�cients increases, the existence of states becomes
clearer. This can be better appreciated by looking at Figure 1, where we show the mixture
of Normal distributions obtained using, as mixture weights, the ergodic probability of each
state.2 The parameters of the Normal distributions are given by the unconditional means
of yt, expressed by µst in the MS(2) and MS(3) DGPs, and (µst � �µst�1)/(1� �) in the
case of MS(2)–AR(1) and MS(3)–AR(1).3 The number of mixtures is indistinguishable
when the µi coe�cients are close and the variance is larger (as in MS2–1, MS2AR–1,
MS3–1, MS3AR–1); the presence of states is more evident by increasing the distance
between µi parameters and decreasing the variance. The presence of the AR parameters
increases the number of components of the mixture, but the number of highest peaks are
equal to the number of states.

For each DGP we generate 1000 time series of length T = 100. For each series we
perform two types of analyses: first, considering the number of states known, we verify
whether fuzzy clustering provides a similar inference on the states obtained from the
estimated MS model; then we verify through the validation indices listed at the end of
Section 2 if the clustering algorithm is able to detect the right number of states.

2As shown in equation (4), each density has di↵erent mixture weights, given by the predicted prob-
abilities Pr(st|It�1); the vector of ergodic probabilities is the (normalized) eigenvector associated to the
unit eigenvalue of P 0, which can be interpreted as the vector of unconditional probabilities of the state
st (for details, see Hamilton, 1994).

3This implies that, in the case of AR(1) model, the number of states can be seen as 2k (for details,
see Hamilton, 1994).
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Table 1: Data Generating Processes (DGPs) used in Monte Carlo experiments.

Label Parameters Label Parameters
DGP: MS(2) DGP: MS(2)–AR(1)

MS2–1 µ1 = 0; µ2 = 1; � = 0.5 MS2AR–1 µ1 = 0; µ2 = 1; � = 0.5
MS2–2 µ1 = 0; µ2 = 2; � = 0.5 MS2AR–2 µ1 = 0; µ2 = 2; � = 0.5
MS2–3 µ1 = 0; µ2 = 3; � = 0.5 MS2AR–3 µ1 = 0; µ2 = 3; � = 0.5
MS2–4 µ1 = 0; µ2 = 4; � = 0.5 MS2AR–4 µ1 = 0; µ2 = 4; � = 0.5
MS2–5 µ1 = 0; µ2 = 1; � = 0.25 MS2AR–5 µ1 = 0; µ2 = 1; � = 0.25
MS2–6 µ1 = 0; µ2 = 2; � = 0.25 MS2AR–6 µ1 = 0; µ2 = 2; � = 0.25
MS2–7 µ1 = 0; µ2 = 3; � = 0.25 MS2AR–7 µ1 = 0; µ2 = 3; � = 0.25
MS2–8 µ1 = 0; µ2 = 4; � = 0.25 MS2AR–8 µ1 = 0; µ2 = 4; � = 0.25

DGP: MS(3) DGP: MS(3)–AR(1)
MS3–1 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.5 MS3AR–1 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.5
MS3–2 µ1 = 0; µ2 = 2; µ3 = 4; � = 0.5 MS3AR–2 µ1 = 0; µ2 = 2; µ3 = 4; � = 0.5
MS3–3 µ1 = 0; µ2 = 3; µ3 = 6; � = 0.5 MS3AR–3 µ1 = 0; µ2 = 3; µ3 = 6; � = 0.5
MS3–4 µ1 = 0; µ2 = 4; µ3 = 8; � = 0.5 MS3AR–4 µ1 = 0; µ2 = 4; µ3 = 8; � = 0.5
MS3–5 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.25 MS3AR–5 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.25
MS3–6 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.25 MS3AR–6 µ1 = 0; µ2 = 2; µ3 = 4; � = 0.25
MS3–7 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.25 MS3AR–7 µ1 = 0; µ2 = 3; µ3 = 6; � = 0.25
MS3–8 µ1 = 0; µ2 = 1; µ3 = 2; � = 0.25 MS3AR–8 µ1 = 0; µ2 = 4; µ3 = 8; � = 0.25

The AR(1) coe�cient, when present, is equal to 0.7 in all DGPs. The transition probabilities in the
MS(2) and MS(2)–AR(1) DGPs are p11 = 0.9 and p22 = 0.8; in the MS(3) and MS(3)–AR(1) DGPs are
p11 = 0.9, p12 = 0.07, p22 = 0.8, p21 = 0.15, p33 = 0.7, p32 = 0.2.
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Figure 1: Mixture density functions relative to 32 DGP described in Table 1, with weights
equal to the corresponding ergodic probabilities.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2-8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS2AR-8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3-8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

MS3AR-8

8



3.1 Inference on the state

As said, the inference on the state of MS models is performed by assigning the observation
at time t to the state with the highest smoothed probability. In our first experiment we
generate data from the 32 DGPs shown in Table 1, estimate the corresponding MS model,
derive the smoothed probabilities, assign each observation to a state, and finally compare
the clustering to the true one using the Adjusted Rand index (Rand, 1971; Hubert and
Arabie, 1985):

Ra =

Pk
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� (9)

where Ti and Tj represent the number of series belonging to the true group i and group
j derived from the MS inference respectively; Tij is the number of series belonging to
the group i in the true clustering and assigned to the group j in the MS clustering. The
adjusted Rand index Ra ranges in [0, 1], with maximum value in the case of perfect match
between true and MS clustering, while it is 0 when the di↵erences between them are at
their maximum. We calculated Ra for each simulated time series of each DGP; in the first
columns of Table 2 we show the five–number summary (minimum, first quartile, median,
third quartile, maximum)4 of the empirical distribution of Ra for each DGP.

It is interesting to note that, despite the fact that the estimated model is correctly
specified, when the means are close to each other–see also Figure 1– it is not trivial to
obtain the correct classification of the observations (models MS2–1 , MS3–1), and the
problem is more evident when there is an autoregressive term (MS2AR–1, MS2AR–2,
MS3AR–1, MS3AR–2). The Rand index increases when the variance of each state is
smaller (models labeled with numbers from 4 to 8). However, excluding the MS3AR–1
and the MS2AR–1 cases, in each DGP more than 50% of the simulations provide a Rand
index greater than 0.8. The 100% correct classifications are achieved when the distance
among the means of each state is larger and the variance is smaller (models MS3–7,
MS3–8, MS2AR–7, MS2AR–8, MS3AR–7, MS3AR–8).

Considering the fuzzy classification, obtained using the squared Euclidean distance
in (8), and comparing this classification with the true one (second block of columns in
Table 2), we note a certain di↵erence with respect to the previous comparison only in
the minimum value of the Rand index and a better behavior for MS2–7 and MS2–8.
In practice, the classification obtained in a nonparametric way and not considering the
model that generates the data, shows very similar results to the case using the right model
(not known in practical cases), which requires the estimation step. This is confirmed by
observing the third block of columns of Table 2, where the MS and the fuzzy approach
are compared (in equation (9) the index i now refers to the MS classification and j to
the fuzzy classification); classification di↵erences are reduced when the distance between
means is larger and the variability is smaller.

4We prefer to show these values in a table and not in box–plots because the latter is di�cult to be
visualize when the variability of results is close to zero.
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Table 2: Summary Statistics of Rand Index for MS Inference on the state and Fuzzy
k-means clustering in 1000 Monte Carlo experiments.

DGP Rand Index
MS-True State Fuzzy-True State Fuzzy-MS

Min. Q1 Q2 Q3 Max. Min. Q1 Q2 Q3 Max. Min. Q1 Q2 Q3 Max.
MS2–1 0.50 0.76 0.82 0.87 1.00 0.50 0.64 0.69 0.74 0.89 0.50 0.68 0.74 0.80 1.00
MS2–2 0.79 0.94 0.96 0.98 1.00 0.52 0.92 0.96 0.98 1.00 0.54 0.92 0.94 0.96 1.00
MS2–3 0.94 0.98 0.98 0.98 0.98 0.94 1.00 1.00 1.00 1.00 0.92 0.98 0.98 0.98 0.98
MS2–4 0.92 0.98 0.98 0.98 0.98 0.74 1.00 1.00 1.00 1.00 0.80 0.98 0.98 0.98 0.98
MS2–5 0.82 0.97 0.98 1.00 1.00 0.52 0.90 0.94 0.97 1.00 0.50 0.90 0.95 0.98 1.00
MS2–6 0.98 0.98 0.98 0.98 0.98 0.55 1.00 1.00 1.00 1.00 0.54 0.98 0.98 0.98 0.98
MS2–7 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98
MS2–8 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98
MS2AR–1 0.49 0.56 0.64 0.73 0.98 0.49 0.56 0.60 0.66 0.90 0.49 0.54 0.66 0.79 0.96
MS2AR–2 0.52 0.83 0.90 0.96 1.00 0.50 0.79 0.85 0.90 1.00 0.49 0.76 0.85 0.92 1.00
MS2AR–3 0.63 0.98 1.00 1.00 1.00 0.57 0.94 0.98 1.00 1.00 0.58 0.94 0.98 1.00 1.00
MS2AR–4 0.82 1.00 1.00 1.00 1.00 0.51 1.00 1.00 1.00 1.00 0.51 1.00 1.00 1.00 1.00
MS2AR–5 0.51 0.82 0.90 0.96 1.00 0.50 0.78 0.85 0.90 1.00 0.50 0.76 0.85 0.90 1.00
MS2AR–6 0.89 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00
MS2AR–7 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00
MS2AR–8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3–1 0.53 0.79 0.84 0.89 0.98 0.47 0.63 0.67 0.71 0.88 0.48 0.65 0.69 0.76 0.98
MS3–2 0.85 0.97 0.98 1.00 1.00 0.58 0.90 0.94 0.96 1.00 0.56 0.91 0.95 0.97 1.00
MS3–3 0.96 1.00 1.00 1.00 1.00 0.56 0.99 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00
MS3–4 0.98 1.00 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00
MS3–5 0.82 0.97 0.98 1.00 1.00 0.52 0.90 0.94 0.97 1.00 0.50 0.90 0.95 0.98 1.00
MS3–6 0.98 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00
MS3–7 1.00 1.00 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00
MS3–8 1.00 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00 0.62 1.00 1.00 1.00 1.00
MS3AR–1 0.38 0.58 0.64 0.71 0.96 0.41 0.58 0.62 0.66 0.88 0.37 0.61 0.67 0.74 0.94
MS3AR–2 0.50 0.81 0.89 0.95 1.00 0.44 0.70 0.78 0.86 1.00 0.39 0.69 0.77 0.87 0.99
MS3AR–3 0.62 0.97 1.00 1.00 1.00 0.52 0.92 0.97 0.99 1.00 0.52 0.91 0.96 0.98 1.00
MS3AR–4 0.68 1.00 1.00 1.00 1.00 0.55 0.99 1.00 1.00 1.00 0.55 0.99 1.00 1.00 1.00
MS3AR–5 0.52 0.81 0.89 0.95 1.00 0.50 0.71 0.80 0.87 1.00 0.43 0.70 0.78 0.88 1.00
MS3AR–6 0.70 1.00 1.00 1.00 1.00 0.53 0.99 1.00 1.00 1.00 0.53 0.99 1.00 1.00 1.00
MS3AR–7 1.00 1.00 1.00 1.00 1.00 0.55 1.00 1.00 1.00 1.00 0.55 1.00 1.00 1.00 1.00
MS3AR–8 1.00 1.00 1.00 1.00 1.00 0.63 1.00 1.00 1.00 1.00 0.63 1.00 1.00 1.00 1.00

The summary statistics are the minimum (Min), the first quartile (Q1), the median (Q2), the third
quartile (Q3), the maximum (Max) of the Rand index for each set of Monte Carlo experiments. MS
refers to the classification obtained by the MS inference on the state, Fuzzy to the classification obtained
by the Fuzzy k–means procedure of clustering, True State is the correct classification of data.
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3.2 Identification of the number of states

Having empirical evidence of consistent classifications between the typical parametric MS
procedure and the fuzzy nonparametric clustering, the next step is to verify if it is possible
to use the usual criteria for detecting the number of clusters to identify the number of
states in MS models. We use the same datasets generated for the experiment illustrated
in subsection 3.1 to apply the criteria for the detection of the number of clusters based
on the indices PC, PE, MPC, ASW, ASWF, XB. In Table 3 we show the percentage of
correct identification of the number of states for each index.

Considering DGPs with 2 states, in general all indices are able to detect the correct
number of states when the di↵erences between the two means is greater than 1 whatever
the variance, that is excluding the cases MS2–1, MS2–5, MS2AR–1, MS2AR–5. PE
shows a good performance also in the last four cases, with a success rate between 60.1%
(MS2–5) and 90.7% (MS2AR-5); second best seems to be the PC index. The indices are
often able to detect the correct number of states when the di↵erences between means are
larger (DGPs with su�x 3, 4, 7 and 8), equal or very close to 100%.

The cases with 3 states have more uncertainty in detecting the correct number of
groups for small di↵erences in means (MS3–1, MS3–2, MS3AR–1, MS3AR–2), but in
this case the lower variance seems to promote better performance. The presence of the
autoregressive term in DGP seems to worsen the success rate.

In general, the PE index shows the best performance for the 2–state case, presenting
the highest percentage of correct detection in the 16 corresponding DGPs (in 6 cases
100%). In the 3–state case there is no a clear preferred index: XB and MPC seem better
in half of cases, but the di↵erences in success rate are very small. By summing the success
rate in each column of Table 3, the PE index shows the highest score with ASW being
second best.
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Table 3: Identification of the number of states in 1000 Monte Carlo experiments and 32
Data Generating Processes (DGPs) with several indices

Indices
DGP PC PE MPC ASW ASWF XB
MS2–1 64.3 80.2 2.1 47.0 42.9 18.2
MS2–2 99.2 99.6 86.1 99.2 99.3 98.9
MS2–3 100.0 100.0 100.0 100.0 100.0 100.0
MS2–4 100.0 100.0 99.9 99.9 99.9 99.9
MS2–5 54.7 60.1 26.0 39.7 40.7 38.4
MS2–6 99.9 99.9 99.9 99.9 99.9 99.9
MS2–7 100.0 100.0 100.0 100.0 100.0 100.0
MS2–8 100.0 100.0 100.0 100.0 100.0 100.0
MS2AR–1 58.4 74.0 1.6 37.6 34.1 13.7
MS2AR–2 84.3 91.8 28.9 80.5 80.9 67.9
MS2AR–3 98.6 99.4 89.9 98.9 99.2 98.9
MS2AR–4 99.9 99.9 99.4 99.8 99.9 99.9
MS2AR–5 84.2 90.7 27.9 79.3 80.1 68.1
MS2AR–6 99.8 99.9 99.4 99.8 99.8 99.8
MS2AR–7 100.0 100.0 100.0 100.0 100.0 100.0
MS2AR–8 100.0 100.0 100.0 100.0 100.0 100.0
MS3–1 9.6 8.6 3.0 9.5 9.6 10.7
MS3–2 39.5 34.7 60.9 59.0 61.0 62.8
MS3–3 83.5 83.9 90.3 91.1 90.8 89.8
MS3–4 95.3 95.2 95.8 95.5 95.0 95.6
MS3–5 43.9 39.6 60.6 59.4 58.9 60.9
MS3–6 95.2 95.1 96.1 95.8 95.8 95.8
MS3–7 97.1 97.1 97.1 96.1 96.1 97.1
MS3–8 98.7 98.7 98.7 97.9 97.9 98.7
MS3AR–1 12.2 10.9 3.3 13.4 12.7 15.5
MS3AR–2 15.7 12.6 17.8 20.4 21.3 25.3
MS3AR–3 53.9 51.0 67.4 66.5 67.7 63.6
MS3AR–4 77.4 78.3 86.9 88.8 87.9 84.2
MS3AR–5 18.5 15.8 18.1 23.0 23.2 25.7
MS3AR–6 79.1 78.7 86.0 88.6 88.5 84.7
MS3AR–7 95.4 94.9 95.7 95.4 95.4 95.5
MS3AR–8 97.6 97.6 97.6 96.6 96.4 97.5

The AR(1) coe�cient, when present, is equal to 0.7 in all DGP. The transition probabilities in the
MS(2) and MS(2)–AR(1) DGPs are p11 = 0.9 and p22 = 0.8; in the MS(3) and MS(3)–AR(1) DGPs are
p11 = 0.9, p12 = 0.07, p22 = 0.8, p21 = 0.15, p33 = 0.7, p32 = 0.2. The table shows the percentage of
cases, for each index, on 1000 Monte Carlo replications, where the correct number of states is identified.

4 Final Remarks

Detecting the number of states is a crucial task in estimating Markov Switching models
and they are usually fixed a priori due to the impossibility of applying classical statistical
tests. Then, in this work we propose to identify the number of regimes before the esti-
mation step through a fuzzy clustering, a non parametric approach available in several
statistical packages . To this end, we compare throgh Monte Carlo simulations the regime
inference of Markov Switching models and a fuzzy clustering algorithm. We show that
they provide very similar classifications as the di↵erences between the simulated mean
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regimes increases and the variability decreases. Furthermore, we verify through the most
common cluster validation indices the capability of fuzzy clustering approach to identify
the correct number of groups: it performs very well except for the cases of two regimes
with close mean coe�cients. As future research it could be interesting to consider other
distance measures, such as the Mahalanobis one, or medoid-based approaches opposed to
the centroid-based one proposed here. Then, it is possible to compare the di↵erent fuzzy
clustering algorithms to evaluate which one performs the best.
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