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1 Introduction

Markov Switching (MS) models (Hamilton, 1990) have received increasing attention in
time series analysis with several applications in economics (see, for example Hamilton,
2016), Pnance (Gallo and Otranto, 2015), neuroscience (Degras, Ting, and Ombao, 2022),
just to name a few belds. Its main advantage consists in the possibility to consider the
existence of several states, interpreted as particular regimes (for example, growth and
recession in business cycle, quiet and turmoil periods in the Pnancial markets), which
are not observed, but whose dynamics can be represented by an ergodic Markov chain.
Thanks to the properties of ergodic Markov chains, it is possible to make inference on
the unobserved state, assigning to each state at each time a Pltered or smoothed prob-
ability obtained from the sobcalled Hamilton Plter (Hamilton, 1990). An open problem
is the identibcation of the number of states, which is not feasible with classical tests for
the problem of nuisance parameters present only under the alternative hypothesis. In
practice, when the model under the null hypothesis is a MS model with states and
the model under the alternative is a model withk + 1 states, the two models are not
nested due to the presence of transition probabilities referring to the state+ 1, not
identiPed under the null hypothesis (see, for example, Hansen, 1992). As known, in this
framework the classical tests, such as Likelihood Ratio (LR), do not follow the standard
distributions and the true distribution is unknown. There are several proposals to bypass
this problem; the Prst approaches were based on the supremum of a LR test (Davies,
1977), trying to derive its asymptotic distribution over a range of nuisance parameters
via simulations (Hansen, 1992), but with a high computational cost. Alternatively, Gar-
cia (1998) proposes a similar approach by reducing the range of nuisance parameters,
with the exclusion of some important particular cases. Most recent approaches avoid
the development of tests, trying to directly identify the number of states by penalized
likelihood criteria (Psadarakis and Spagnolo, 2003, 2006) or KullbackbLeibler divergence
(Smith, Naikb, and Tsai, 2006).

A very practical idea is to identify the number of states before the estimation step,
emphasizing the fact that in an MS models each observation is generated by a mixture
density, with a number of components equal to the number of states of the Markov chain.
This approach was developed in a nonparametric Bayesian framework by Otranto and
Gallo (2002), where the posterior distribution of the number of states is derived by means
of a Gibbs sampler. This intuition is the basis of our proposal.

First, we note a similarity between the inference on the regime in MS models and the
grouping derived from a fuzzy clustering (DOUrso, 2015). This last approach is able to
provide a clustering of statistical units ink groups, with a probability of belonging to
each of thek clusters. Our brst analysis consists in verifying whether the fuzzy approach
provides a grouping similar to the one derived from the inference on regimes of the MS
models, using the same assignment criterion (the unit is assigned to the group correspond-
ing to the mode). This exercise is performed by means of Monte Carlo experiments. After
verifying the similarity of the results in terms of state inference, we verify whether the
typical indices used to select the number of clusters are able to identify the true number
of states. The resulting approach is very simple, it is applied in the identibcation phase,
before estimating the model, as in Otranto and Gallo (2002), but unlike these, it is very
fast and uses tools implemented in the main statistical routines.



The structure of the paper is as follows: in the next section the main features of the
MS model and of fuzzy clustering are brieRy recalled; in Section 3 we present a large
set of Monte Carlo experiments to verify the ability of fuzzy clustering to reproduce the
inference on the states of MS models (subsection 3.1) and the performance of several in-
dices in detecting the number of states (subsection 3.2). Some Pnal remarks will conclude
the paper.

2 MS Models and Fuzzy Clustering

Let us consider a time seriey; with t = 1,...,T. We say that its Data Generating
Process (DGP) follows an MS process witk states if:
ye=f(x;ts)+ 1t (1)

wherex is a vector of exogenous variables, possibly including lagged valueg;ot; (t =
1,...,T) are independent disturbances with zero mean and possibly changing variance
(this will be clariped shortly). The vector of unknown parameters s, depends on an
unobservable discrete random variabls,, which can assume values, 2, ...k, and whose
dynamics is driven by an ergodic Markov chain, with elements of the transition probability
matrix:

| pj =Pr(ss=jlsua=1), ij=1,....k )
with jk=1 p; =1foreachi=1,...,k. Also the variance oft; could depend on the state

variable s;, so they could be not identically distributed. A typical model used in an MS
framework is theMS | AR(p) process:

np

yt = USt +

i=1
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Under stationarity constraints, specibcation (3) involves a timebvarying unconditional
mean of the processy,, depending on the state at timet. The transition probabilities

p; are estimated with other parameterd s, = (M,..., M), " = ("1,...,"p) and #
by Maximum Likelihood Estimator (MLE), deriving the likelihood function by means
of the sobcalled Hamilton Plter(Hamilton, 1990). The same Hamilton Plter provides the
possibility to specify, at each timet, the conditional probability to fall in a certain statej ;
given the information setl, = (yi,y11 1,...), it is possible to obtain the sobcalled bltered
probabilities Pr (s; = j|l¢), the predicted probabilitiesPr (s; = j |l 1) and the smoothed
probabilities Pr (s; = j|I1). The predicted probabilities enter the likelihood function; in
fact the conditional density of eachy; is expressed as:

nk

f(yilla 1;!5“"1#2): f(yilse = J, 1 1;!s“"1#2)Pr(St:j||t! 1) 4)
j=1

which is a mixture of distributions with weights represented by the predicted probabilities.

Moreover, the Hamilton Plter provides also an intuitive inference on the regime, as-
signing to statej the observation at timet with mode in j, using as mass distribution
the bltered or, more frequently, the smoothed probabilities.

3



As said in Section 1, the identibcation of the number of statds is not achievable
through classical statistical tests for the problem of nuisance parameters present only un-
der the alternative hypothesis. As an example, let us suppose to verify the null hypothesis
of a linear model (no states ok = 1):

V= u+ 1, Lt N@O,#) (5)
against the alternative of a MS model withk = 2 states:

yt: HS(+ !tl !t" N(01#2)1 St:112
% & 6
P = Puir 1! pu ©)
1" p2 P22

The linear model can not be obtained from the MS model simply imposing that the
switching parameters are equal in the two stategi{ = H,), because the transition proba-
bilities p11 and py, are not identiped under the null hypothesis and the two models are not
nested. Similarly if the 2Dstate model (6) is assumed under the null hypothesis, whereas
the alternative refers to a MS model withk = 3:

Vi = Mg + !, P N(O,#Z), s$=1,23

P11 P12 P13 1 3 (7)
P=0pau p2 ps™; P =1, i=1,23

P31 P32 Ps3 =1

In this case 2 of the 3 probabilities in each row d? are not identibed under the null
hypothesis.

There is some similarity between the MS models and the fuzzy clustering methods.
The latter detect the belonging of each statistical unit to a cluster with a certain prob-
ability (the membership gradg unlike the classical hard clustering, where each unit can
belong to exactly one cluster only. Clustering based on the degree of membership in each
group can be seen as similar to state inference done using the smoothed probabilities in
an MS framework. For example, considering the most popular fuzzy clustering algorithm,
the fuzzy kDmeangBezdek, 1981), the fuzzy partition ink groups of the observed;Os
(t=1,...,T) is obtained by minimizing:

nT wk
min ug' & (yi, ) (8)

c .
t=1 j=1

whereU = {uy;} (t =1,...,T; ] =1,...,k) is the membership grade matrix,c =
(ci,...,q) is the vector of centroids,m is the fuzziness parameter, which tunes the
degree of fuzzinesgJ(4 g is a distance measure.

Each column ofU can be interpreted similarly to the smoothed probabilities of an
MS model. Based on this insight, we ask whether nonparametric methods used to detect
the number of groups in clustering can be used as a method to identify the number of
states in an MS model. The detection of the number of clusters is generally carried out by



means of indicators implemented in the main statistical packages, making this approach
very simple and easily usable even by nonbexperts.

The veribcation of the previous idea can be performed in two steps through Monte
Carlo experiments where data are generated from several MS processes: Prst, bxing the
true k, we compare the smoothed probabilities derived from the estimated MS with the
corresponding grade of membership matrix derived from (8)then we use the main
indices to detect the number of clusters verifying if they are able to identify the correct
number of states of the MS DGP. More specibcally, we rely on the following cluster
validation indices: Partition Coe!cient (PC), Partition Entropy (PE), Modibed Partition
Coelcient, (MPC), Average Silhouette Width (ASW), Average Silhouette Width Fuzzy
(ASWF), and Xie-Beni (XB).

The Partition Coelcient (Bezdek, 1981) is given by:

nT nk
PC= ug /T.

t=1 j=1

It can assume values between k/and 1, with its maximum value, as function ok, giving
us the optimal number of clusters.
The Partition Entropy (Bezdek, 1981):

||k
PE =1 ug In(ug )/T,
j=1

ranges in [QIn k] and its lowest value provides the best number of clusters.
The Modibed Partition Coelcient (Dave, 1996)

k
= I |
MPC =1! (1! PO),

normalizes the PC index, so that it ranges in [A], thus eliminating dependency oik.
The Average Silhouette Width (Rousseeuw, 1987) is calculated as follows:
k! oa

ASW = (1/T) —
, max{a, b}

t=

with a; the average distance among (belonging to the cluster$) and the other observa-
tions belonging to the same grou, while b is the minimum average distance among
and the observations belonging to another clustgr# $. It can assume values between
-1 and 1, with the maximum value providing us with the best number of clusters.

The Average Silhouette Width Fuzzy (Campello and Hruschka, 2006),

. T "
ASWE = tyl (utj 1 ! Uy 2) ASW;
- T " )
t=1 (Utj y ! Ug 2)
Classifying the European Central Bank announcements, Gallo, Lacava, and Otranto (2021) bnd

very similar results between the classibcation derived from smoothed probabilities of their MS model
and the kbmeansclustering procedure.




is a weighted average of the Silhouette, wherg;, and u;, are the elements of thébth
row of U with pbrst and second largest values, respectivelySW, the Silhouette of the
t! th observation, and%$ 0 . Notice that, as opposed to ASW, it takes into account
the membership grade matrix.
Finally, the Xie-Beni index (Xie and Beni, 1991),
| [
XB = =1 j!(=l ug d*(yr, G)
T rri1jin d?(c, G)

is minimized to obtain the best partition. Notice that the XB index, takes into account
both membership grade matrix and the observations.

3 Monte Carlo Evidence

The DGPs used for the Monte Carlo experiments are the models in equation (6) (call it
MS(2)), equation (7) (MS(3)) and MSBAR(1) models like (3), withp = 1, and with 2
(MS(2)-AR(1)) or 3 (MS(3)-AR(1)) states, adopting the Normal distribution for !;. We
cover several scenarios, combining a set of parameters that yields the 32 models (8 of
each model type) shown in Table 1 (labeled to identify them).

As the distance between they; coelcients increases, the existence of states becomes
clearer. This can be better appreciated by looking at Figure 1, where we show the mixture
of Normal distributions obtained using, as mixture weights, the ergodic probability of each
state.? The parameters of the Normal distributions are given by the unconditional means
of y;, expressed by, in the MS(2) and MS(3) DGPs, and (15, ! "M, ,)/ (1! ") in the
case of MS(2)PAR(1) and MS(3)DAR(E). The number of mixtures is indistinguishable
when the ; coelcients are close and the variance is larger (as in MS2Db1, MS2ARD1,
MS3b1, MS3ARD1); the presence of states is more evident by increasing the distance
betweenyp; parameters and decreasing the variance. The presence of the AR parameters
increases the number of components of the mixture, but the number of highest peaks are
equal to the number of states.

For each DGP we generate 1000 time series of length= 100. For each series we
perform two types of analyses: brst, considering the number of states known, we verify
whether fuzzy clustering provides a similar inference on the states obtained from the
estimated MS model; then we verify through the validation indices listed at the end of
Section 2 if the clustering algorithm is able to detect the right number of states.

2As shown in equation (4), each density has dilerent mixture weights, given by the predicted prob-
abilities Pr(s¢|l«1 1); the vector of ergodic probabilities is the (normalized) eigenvector associated to the
unit eigenvalue of P *, which can be interpreted as the vector of unconditional probabilities of the state
st (for details, see Hamilton, 1994).

3This implies that, in the case of AR(1) model, the number of states can be seen a< Zfor details,
see Hamilton, 1994).



Table 1: Data Generating Processes (DGPs) used in Monte Carlo experiments.

Label Parameters Label Parameters

DGP: MS(2) DGP: MS(2)DAR(1)
MS2b1 M1=0; ui2=1;! =0.5 MS2ARD1 M1 =0; u2=1;! =0.5
MS2b2 M1 =0; g2 =2;! =0.5 MS2ARD2 M1 =0; p2=2;! =0.5
MS2P3 M1 =0; 12 =3; ! =0.5 MS2ARD3 M1 =0; p2=3;! =0.5
MS2b4 M1 =0; p2=4;! =0.5 MS2ARD4 M1 =0; g2 =4;! =0.5
MS2b5 M1 =0; up=1;! =0.25 MS2ARD5 My =0; up=1;! =0.25
MS2D6 M1 =0; up=2; ! =0.25 MS2ARD6 My =0; up=2; ! =0.25
MS2b7 M1 =0; u2=3; ! =0.25 MS2ARD7 M1 =0; 2 =3; ! =0.25
MS2Db8 ML =0; p2=4;! =0.25 MS2ARDS8 ML =0; pp=4;! =0.25

DGP: MS(3) DGP: MS(3)DPAR(1)
MS3P1 p; =0; u2=1; u3=2; ! =0.5 | MS3ARP1 1 =0; g2 =1; p3=2;! =0.5
MS3D2 p; =0; 2 =2; u3=4; ! =0.5 | MS3ARD2 W1 =0; p2=2; u3=4; ! =0.5
MS3B3 p; =0; u2=3; u3=6; ! =0.5 | MS3ARD3 1 =0; p2=3; p3=6; ! =0.5
MS3P4 p; =0; up=4; u3=8;! =0.5 | MS3ARP4 1 =0; g2 =4; u3=8; ! =0.5
MS3D5 p1=0; 2 =1, u3=2; ! =0.25 | MS3ARD5 ; =0; po=1; p3=2; ! =0.25
MS3P6 3 =0; pp=1; u3=2; ! =0.25| MS3ARDP6 ;1 =0; H2 =2; u3=4; ! =0.25
MS3D7 Y1 =0; H2=1; u3=2; ! =0.25 | MS3ARD7 M1 =0; 2 =3; u3=6; ! =0.25
MS3DB8 3 =0; po=1; p3=2; ! =0.25 | MS3ARDP8 ;1 =0; p2 =4; p3=8; ! =0.25

The AR(1) coe"cient, when present, is equal to 0.7 in all DGPs. The transition probabilities in the
MS(2) and MS(2)DPAR(1) DGPs arep;; = 0.9 and p,2 = 0.8; in the MS(3) and MS(3)PAR(1) DGPs are
P11 = 0.9, P12 = 0.07, P22 = 0.8, P21 = 0.15, P33 = 0.7, P32 = 0.2.



Figure 1: Mixture density functions relative to 32 DGP described in Table 1, with weights
equal to the corresponding ergodic probabilities.
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3.1 Inference on the state

As said, the inference on the state of MS models is performed by assigning the observation
at time t to the state with the highest smoothed probability. In our Prst experiment we
generate data from the 32 DGPs shown in Table 1, estimate the corresponding MS model,
derive the smoothed probabilities, assign each observation to a state, and Pnally compare
the clustering to the true one using the Adjusted Rand index (Rand, 1971; Hubert and
Arabie, 1985):

(9)

whereT; and T; represent the number of series belonging to the true groupand group

j derived from the MS inference respectivelyT; is the number of series belonging to
the groupi in the true clustering and assigned to the group in the MS clustering. The
adjusted Rand indexR, ranges in [Q1], with maximum value in the case of perfect match
between true and MS clustering, while it is O when the di"erences between them are at
their maximum. We calculatedR, for each simulated time series of each DGP; in the brst
columns of Table 2 we show the bveBnumber summary (minimum, Prst quartile, median,
third quartile, maximum)# of the empirical distribution of R, for each DGP.

It is interesting to note that, despite the fact that the estimated model is correctly
specibed, when the means are close to each otherbsee also Figure 1P it is not trivial to
obtain the correct classibcation of the observations (models MS2b1 , MS3Db1), and the
problem is more evident when there is an autoregressive term (MS2ARD1, MS2ARD2,
MS3ARD1, MS3ARD2). The Rand index increases when the variance of each state is
smaller (models labeled with numbers from 4 to 8). However, excluding the MS3ARD1
and the MS2ARD1 cases, in each DGP more than 50% of the simulations provide a Rand
index greater than 0.8. The 100% correct classibcations are achieved when the distance
among the means of each state is larger and the variance is smaller (models MS3b7,
MS3D8, MS2ARD7, MS2ARD8, MS3ARD7, MS3ARDS).

Considering the fuzzy classibcation, obtained using the squared Euclidean distance
in (8), and comparing this classibcation with the true one (second block of columns in
Table 2), we note a certain di"erence with respect to the previous comparison only in
the minimum value of the Rand index and a better behavior for MS2b7 and MS2P8.
In practice, the classibcation obtained in a nonparametric way and not considering the
model that generates the data, shows very similar results to the case using the right model
(not known in practical cases), which requires the estimation step. This is conbPrmed by
observing the third block of columns of Table 2, where the MS and the fuzzy approach
are compared (in equation (9) the index now refers to the MS classibcation ang to
the fuzzy classibcation); classibcation di"erences are reduced when the distance between
means is larger and the variability is smaller.

4We prefer to show these values in a table and not in boxPplots because the latter is di"cult to be
visualize when the variability of results is close to zero.



Table 2: Summary Statistics of Rand Index for MS Inference on the state and Fuzzy
k-means clustering in 1000 Monte Carlo experiments.

DGP Rand Index
MS-True State Fuzzy-True State Fuzzy-MS

Min. Q1 Q2 Q3 Max.|Min. Q1 Q2 Q3 Max.|Min. Q1 Q2 Q3 Max.
MS2b1 050 0.76 0.82 0.87 1.000.50 0.64 0.69 0.74 0.68 0.74 0.80 1.00
MS2D2 0.79 094 096 0.98 1.000.52 0.92 0.96 0.98 0.92 094 0.96 1.00
MS2D3 094 098 098 098 098094 1.00 1.00 1.00 0.98 0.98 0.98 0.9¢
MS2b4 092 098 0.98 0.98 0.980.74 1.00 1.00 1.00 0.98 0.98 0.98 0.9¢
MS2b5 0.82 097 0.98 1.00 1.000.52 0.90 0.94 0.97 0.90 0.95 0.98 1.00
MS2b6 0.98 0.98 0.98 0.98 0.980.55 1.00 1.00 1.00 0.98 0.98 0.98 0.9¢
MS2b7 0.98 098 0.98 0.98 0.981.00 1.00 1.00 1.00 0.98 0.98 0.98 0.9¢
MS2b8 0.98 098 0.98 0.98 0.981.00 1.00 1.00 1.00 0.98 098 0.98 0.9
MS2ARP1 049 056 0.64 0.73 0.980.49 0.56 0.60 0.66 0.54 0.66 0.79 0.96
MS2ARD2| 0.52 0.83 090 0.96 1.000.50 0.79 0.85 0.90 0.76 0.85 0.92 1.00
MS2ARP3| 0.63 0.98 1.00 1.00 1.000.57 0.94 0.98 1.00 0.94 098 1.00 1.00
MS2ARP4| 0.82 1.00 1.00 1.00 1.000.51 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS2ARD5| 0.51 0.82 090 0.96 1.000.50 0.78 0.85 0.90 0.76 0.85 0.90 1.00
MS2ARP6| 0.89 1.00 1.00 1.00 1.000.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS2ARB7, 1.00 1.00 1.00 1.00 1.000.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS2ARP8| 1.00 1.00 1.00 1.00 1.001.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3b1 053 0.79 0.84 0.89 0.980.47 0.63 0.67 0.71 0.65 0.69 0.76 0.93
MS3b2 0.85 0.97 0.98 1.00 1.000.58 0.90 0.94 0.96 0.91 0.95 0.97 1.00
MS3D3 096 1.00 1.00 1.00 1.000.56 0.99 1.00 1.00 1.00 1.00 1.00 1.00
MS3b4 098 1.00 1.00 1.00 1.000.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3b5 0.82 097 0.98 1.00 1.000.52 0.90 0.94 0.97 0.90 0.95 0.98 1.00
MS3b6 098 1.00 1.00 1.00 1.000.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3b7 1.00 1.00 1.00 1.00 1.000.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3b8 1.00 1.00 1.00 1.00 1.000.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3ARP1 0.38 058 0.64 0.71 0.960.41 0.58 0.62 0.66 0.61 0.67 0.74 0.94
MS3ARP2 0.50 0.81 0.89 0.95 1.000.44 0.70 0.78 0.86 0.69 0.77 0.87 0.99
MS3ARP3| 0.62 0.97 1.00 1.00 1.000.52 0.92 0.97 0.99 0.91 0.96 0.98 1.00
MS3ARP4| 0.68 1.00 1.00 1.00 1.000.55 0.99 1.00 1.00 0.99 1.00 1.00 1.00
MS3ARD5| 0.52 0.81 0.89 095 1.000.50 0.71 0.80 0.87 0.70 0.78 0.88 1.00
MS3ARP6| 0.70 1.00 1.00 1.00 1.000.53 0.99 1.00 1.00 0.99 1.00 1.00 1.00
MS3ARB7, 1.00 1.00 1.00 1.00 1.000.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS3ARPS8| 1.00 1.00 1.00 1.00 1.000.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The summary statistics are the minimum (Min), the brst quartile (Q1), the median (Q2), the third
quartile (Q3), the maximum (Max) of the Rand index for each set of Monte Carlo experiments. MS
refers to the classibcation obtained by the MS inference on the state, Fuzzy to the classibcation obtained
by the Fuzzy kbmeans procedure of clustering, True State is the correct classibcation of data.
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3.2 Identibcation of the number of states

Having empirical evidence of consistent classibcations between the typical parametric MS
procedure and the fuzzy nonparametric clustering, the next step is to verify if it is possible
to use the usual criteria for detecting the number of clusters to identify the number of
states in MS models. We use the same datasets generated for the experiment illustrated
in subsection 3.1 to apply the criteria for the detection of the number of clusters based
on the indices PC, PE, MPC, ASW, ASWF, XB. In Table 3 we show the percentage of
correct identibcation of the number of states for each index.

Considering DGPs with 2 states, in general all indices are able to detect the correct
number of states when the di"erences between the two means is greater than 1 whatever
the variance, that is excluding the cases MS2b1, MS2b5, MS2ARDP1, MS2ARD5. PE
shows a good performance also in the last four cases, with a success rate between 60.1%
(MS2Db5) and 90.7% (MS2AR-5); second best seems to be the PC index. The indices are
often able to detect the correct number of states when the di"erences between means are
larger (DGPs with sulx 3, 4, 7 and 8), equal or very close to 100%.

The cases with 3 states have more uncertainty in detecting the correct number of
groups for small di"erences in means (MS3b1, MS3b2, MS3ARD1, MS3ARD2), but in
this case the lower variance seems to promote better performance. The presence of the
autoregressive term in DGP seems to worsen the success rate.

In general, the PE index shows the best performance for the 2Dstate case, presenting
the highest percentage of correct detection in the 16 corresponding DGPs (in 6 cases
100%). In the 3Pstate case there is no a clear preferred index: XB and MPC seem better
in half of cases, but the di"erences in success rate are very small. By summing the success
rate in each column of Table 3, the PE index shows the highest score with ASW being
second best.
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Table 3: Identibcation of the number of states in 1000 Monte Carlo experiments and 32
Data Generating Processes (DGPs) with several indices

Indices
DGP PC PE MPC ASW ASWF XB
MS2b1 64.3 80.2 21 470 429 18.2
MS2D2 99.2 996 86.1 99.2 99.3 98.9

MS2Db3 100.0 100.0 100.0 100.0 100.0 100.0
MS2b4 100.0 100.0 99.9 99.9 99.9 99.9
MS2Db5 547 601 26.0 39.7 40.7 38.4
MS2b6 999 999 999 999 99.9 999
MS2b7 100.0 100.0 100.0 100.0 100.0 100.0
MS2D8 100.0 100.0 100.0 100.0 100.0 100.0
MS2ARDP1| 584 74.0 16 376 341 137
MS2ARDP2| 84.3 918 289 805 809 67.9
MS2ARD3| 98.6 994 899 98.9 99.2 98.9
MS2ARD4| 999 999 994 998 99.9 99.9
MS2ARDS5| 84.2 90.7 279 793 80.1 68.1
MS2ARD6| 99.8 999 994 99.8 99.8 99.8
MS2ARD7 | 100.0 100.0 100.0 100.0 100.0 100.0
MS2ARD8 | 100.0 100.0 100.0 100.0 100.0 100.0

MS3Db1 9.6 8.6 3.0 9.5 9.6 10.7
MS3Db2 395 347 609 590 61.0 628
MS3Db3 835 839 903 0911 90.8 89.8
MS3b4 953 952 958 955 95.0 956
MS3D5 439 396 606 594 58.9 60.9
MS3Db6 952 951 961 958 95.8 95.8
MS3b7 97.1 971 971 96.1 96.1 97.1
MS3D8 98.7 98.7 98.7 97.9 979 98.7

MS3ARD1| 122 109 33 134 12.7 155
MS3ARD2| 157 126 17.8 204 21.3 253
MS3ARP3| 539 510 674 66.5 67.7 63.6
MS3ARDP4| 774 783 869 88.8 879 84.2
MS3ARDPS5| 185 158 18.1 23.0 23.2 257
MS3ARD6| 791 787 86.0 88.6 88,5 847
MS3ARD7| 954 949 957 954 954 955
MS3ARD8| 976 976 976 96.6 96.4 975

The AR(1) coe"cient, when present, is equal to 0.7 in all DGP. The transition probabilities in the
MS(2) and MS(2)DAR(1) DGPs arep;; = 0.9 and p,2 = 0.8; in the MS(3) and MS(3)PAR(1) DGPs are
p11 = 0.9, p12 = 0.07, p22 = 0.8, p21 =0.15, ps3 = 0.7, ps2 = 0.2. The table shows the percentage of
cases, for each index, on 1000 Monte Carlo replications, where the correct number of states is identiPed.

4 Final Remarks

Detecting the number of states is a crucial task in estimating Markov Switching models
and they are usually bxed a priori due to the impossibility of applying classical statistical
tests. Then, in this work we propose to identify the number of regimes before the esti-
mation step through a fuzzy clustering, a non parametric approach available in several
statistical packages . To this end, we compare throgh Monte Carlo simulations the regime
inference of Markov Switching models and a fuzzy clustering algorithm. We show that
they provide very similar classibcations as the di"erences between the simulated mean
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regimes increases and the variability decreases. Furthermore, we verify through the most
common cluster validation indices the capability of fuzzy clustering approach to identify

the correct number of groups: it performs very well except for the cases of two regimes
with close mean coe!cients. As future research it could be interesting to consider other
distance measures, such as the Mahalanobis one, or medoid-based approaches opposed to
the centroid-based one proposed here. Then, it is possible to compare the di"erent fuzzy
clustering algorithms to evaluate which one performs the best.
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