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Abstract

The Space–Time Autoregressive (STAR) model is one of the most widely used
models to represent the dynamics of a certain variable recorded at several locations at
the same time, capturing both their temporal and spatial relationships. Its advantages
are often discussed in terms of parsimony with respect to space-time VAR structures
because it considers a single coefficient for each time and spatial lag for the full time
span and the full location set. This hypothesis can be very strong; the presence of
groups of locations with similar dynamics makes it more realistic. In this work we
add a certain degree of flexibility to the STAR model, providing the possibility for
coefficients to vary in groups of locations, proposing a new class of flexible STAR
models. Such groups are detected by means of a clustering algorithm. The new class
or model is compared to the classical STAR and the space-time VAR by simulation
experiments and a practical application.

Keywords: clustering; forecasting; space–time models; spatial weight matrix.

JEL Classification: C3, C4, C5

1 Introduction
Since the mid-seventies the research in statistical models describing the space–time evolu-
tion of real series has been widely diffused with several methodological contributions and
applications, devoted to capturing both the dynamics along time and the correlations based
on spatial relationships. After the seminal paper of Cliff and Ord (1975), the space-time
models were extended from Pfeifer and Deutsch (1980), who propose the Space–Time
ARIMA (STARIMA) class of models, an extension of the ARIMA class developed for
time series to include the linear dependencies in both space and time dimensions; spatial
dependencies are imposed by means of a spatial weight matrix, which incorporates spatial
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features such as distances between locations and neighboring sites. The consideration of
the spatial structure in economic, social and environmental data sets is present in several
papers; excellent reviews can be found in Anselin (1988) and Haining (1990).

The importance of considering the presence of spatial dependencies in the forecasting
performance of the models was verified by Giacomini and Granger (2004) and Arbia et al.
(2011). They utilized Monte Carlo experiments to show that the use of separate univariate
forecasts for each region, ignoring spatial dependence (in other words, considering only
the time dimension), leads to highly inaccurate forecasts. They used the most widespread
space-time model, the so–called STAR(1,1), where the same coefficients, referred to the
time and spatial lag, are used for the full time span and the full location set.

The success of the STAR model is due to its simple (linear) form and the possibility of
including the effects of spatial autocorrelation in forecasting, because the spatial effects
are considered with a time lag, differently from the purely Spatial AR (SAR; Besag,
1974), where the spatial relationships are considered only simultaneously. Moreover,
LeSage and Pace (2009) showed that the Space–Time AutoRegressive (STAR) model
implies a long–run steady–state equilibrium model equivalent to the SAR model.

The STAR(1,1) model is a very parsimonious representation of space–time series, but
imposes strong constraints in the behavior of the spatial units over time. An unconstrained
model would consider different spatial and time coefficients for each spatial unit (call it
Unconstrained STAR–USTAR model); as the spatial dimension increases, the estimation
becomes unfeasible, incurring in the so–called curse of dimensionality, which causes inac-
curacy and uncertainty in the estimation of the model (see Giacomini and Granger, 2004).
A good compromise would be a more flexible STAR(1,1) model, where the coefficients
change only for groups of spatial units and not for each spatial unit, as in the USTAR
model. The groups could be detected on the basis of information about the similarity
of the locations (for example, geographical aggregations), but this might be subjective.
We propose a procedure to detect these groups, based on a clustering agglomerative al-
gorithm, which has some similarity to the method developed by Otranto (2010) to detect
financial assets with similar conditional dynamic correlation structure. The performance
of this procedure is evaluated in terms of simulation experiments, using different time
spans and number of locations, considering uncorrelated and correlated disturbances and
different spatial weights. Also, we apply this procedure to a real set of data, comparing
the in–sample and out–of–sample forecasting performance of our model (called the Flex-
ible STAR–FSTAR) with that of STAR and USTAR models; in this case the purpose is to
obtain results showing a significant improvement of the FSTAR model performance with
respect to the STAR model and a not significantly worse performance than the USTAR
model.

The paper is organized as follows: section 2 recalls the STAR and USTAR models
and discusses the new FSTAR model; section 3 provides details on the algorithm for
the identification of the locations with similar STAR structure; section 4 discusses the
Monte Carlo experiments to assess the behavior of the FSTAR model; section 5 applies
and compares the three models to demographic Italian regional data. Some final remarks
complete the article.
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2 The Flexible STAR Model
Let us consider a set of space–time observations, relative to N locations at T different
times, collected in a matrix Y = {yi,t} (i = 1 . . . , N and t = 1, . . . , T ).

The classical STAR(1,1) model follows a particular autoregressive dynamics with one
time lag and one spatial lag:

yi,t = φyi,t−1 + ψ
N∑

j=1

wijyj,t−1 + εi,t (2.1)

where φ represents the coefficient of the time–lagged effect, whereas ψ is the coefficient
of the spatial lagged effect.1 The number wij is the ij−th element of a N × N weight
matrix W representing the spatial link between location i and location j (wij = 0 when
i = j, nonnegative otherwise); the matrix W is normalized to have each row summing up
to one. This matrix is generally fixed a priori and reflects the geographical characteristics
of the spatial locations in terms of neighboring, distance, etc.; anyway it can represent
other characteristics, such as economic distance (see. for example, Pinkse and Slade,
1998, Otranto et al., 2016). It is evident that, fixing W in advance, the estimation of
the model will be subject to possible misspecification of the weight matrix (see Stetzer,
1982). For this reason, in our successive applications, we will experiment several weight
matrices, verifying the robustness of our results. A necessary, but not sufficient, condition
is given by |φ+ ψ| < 1 (see, for example, Arbia et al., 2011).

The variable εi,t is a zero mean white noise, very often considered uncorrelated across
regions. It is possible to relax this hypothesis in several ways; a common specification
considers the presence of correlation in the spatial dimension with the following parame-
terization (see Anselin, 1988):

εt = ρW εt (2.2)

where εt is a vector containing the disturbances relative to the N locations at time t and ρ
is a scalar ranging in [−1; 1].

Collecting the spatial observations at time t in a (N × 1) vector yt, model (2.1) can be
expressed in a VAR form (see Lütkepohl, 1993):

yt = Ayt−1 + εt (2.3)

where A = {aij} and aij = φ+ ψwij .
Model (2.1) is very parsimonious, adopting the same pair of coefficients (φ and ψ)

for all the locations and time periods, but it has good forecasting properties, as shown in
Giacomini and Granger (2004) and Arbia et al. (2011).

The basic assumption of the STAR model is that each observation yit depends on the
past observation of the same variable in the same location i and in the neighboring loca-
tions, and this dependence is constant across the locations and over time. This strong as-
sumption could be too restrictive, particularly in terms of fitting of the STAR(1,1) model.

1Assuming that ψij = ψwij the process is isotropic (Arbia et al., 2011).
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A more flexible model could be obtained allowing for changing in the parameter val-
ues in the correspondence of different locations. In a vectorial form, this model (call it
Unconstrained STAR–USTAR) would assume the form:

yt = φ⊙ yt−1 +ψ ⊙ (Wyt−1) + εt (2.4)

where ⊙ is the Hadamard product, φ′ = (φ1, . . . ,φN)′ and ψ′ = (ψ1, . . . ,ψN)′, with
|φi + ψi| < 1 (for i = 1, . . . , N ). In terms of the VAR representation (2.3), the elements
of the matrix of autoregressive coefficients will be aij = φi + ψiwij .

Model (2.4) is clearly more flexible but, at the same time, requires a large number
of coefficients (2(n − 1) more than model (2.1)), involving a curse of dimensionality
problem. This problem could be avoided if we were able to identify a small number of
groups of locations following the same STAR dynamics. In practical terms, the idea of a
parsimonious but flexible STAR(1,1) model is to detect G groups of locations so that the
vector of coefficients φ and ψ assume the form:

φ =

⎡

⎢⎣
φ1ιn1

...
φGιnG

⎤

⎥⎦ ; ψ =

⎡

⎢⎣
ψ1ιn1

...
ψkιnG

⎤

⎥⎦ (2.5)

where nk (k = 1, . . . , G) is the size of each group (
∑G

k=1 nk = N ). We call this model
the FSTAR(1,1) model, where F stands for Flexible.

A crucial problem is the correct assignment of each location to each group; this could
be made with some a priori choice, subjectively fixing the locations in each group. This
choice is more difficult with respect to the subjective choice of the weight matrix W
because for the latter we can use objective information, such as the geographical distance.
It is relative only to the spatial dimension; in (2.5) the G groups of coefficients are relative
to both the spatial and time dimensions.

A more suitable choice could be based on some agglomerative algorithm to provide
a clustering of locations; this idea is connected to the time series clustering because,
according to the VAR representation (2.3), each location is characterized by a certain
time series following a certain dynamic. We propose a test-based agglomerative algorithm
possessing this characteristic which will be detailed in the next section.

3 Identifying Locations with Similar STAR Structure
The VAR representation (2.3) qualifies our research to be added to the time series cluster-
ing literature (for an extensive review, see Liao, 2005). In fact our purpose is similar to
the problems managed, for example, in Maharaj (1999) and Otranto (2008, 2010), where
a set of time series is classified according to the similarity of the autoregressive param-
eters characterizing the underlying processes, by the means of a hierarchical clustering
algorithm based on a Wald test statistic.

In this space–time framework, the purpose is to insert the locations with similar coef-
ficients φ and ψ in the same group. The algorithm we propose can be synthesized in the
following steps:
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1. estimate all the N univariate models and put N∗ = N and G = 0;

2. verify the joint null hypothesis φh = φi and ψh = ψi for each h and i and, if at least
one hypothesis is not rejected, select the two series with maximum p-value and put
G = G+ 1 and N∗ = N∗ − 2; otherwise stop the algorithm and put G = G+N∗;

3. estimate the STAR(1,1) model with the series selected in group G; call the coeffi-
cients φG and ψG;

4. verify the joint null hypothesis φG = φi and ψG = ψi for each remaining location i
and, if at least one hypothesis is not rejected, select the series i which provides the
maximum p-value, add it to the previous group and put N∗ = N∗ − 1;

5. if at least one hypothesis is not rejected, repeat steps 3. and 4.; if all the null
hypotheses are rejected, the series selected until step 4. form a group of locations
with the same coefficients.

6. repeat steps 2.–5. with the remaining series until no series remain.

It is important to underline some points.
There are two counters (N∗ and G) to record the number of series remaining and the

number of groups identified respectively. Notice that the number of groups G is identified
by the algorithm and does not need to be fixed a priori. When, in step 2., we reject all the
null hypotheses, we will obtain N∗ groups of size 1.

If all the elements of the row i of matrix W are equal to zero, the previous hypotheses,
involving location i, are relative only to the φ coefficient because the ψ coefficient is not
identified and is a nuisance parameter.

In step 2. the p–value is adopted to establish the order in which the locations enter
into the groups; this kind of approach does make sense in a clustering algorithm because,
as shown by Maharaj (1999), the p–value is a measure of similarity and satisfies the
properties of a semi–metric.

The test of the hypothesis in steps 2. and 4. can be performed by the Wald statis-
tics. The validity of this approach in time series clustering has been verified by Otranto
(2008 and 2010) with simulation experiments and it is based on the theory developed by
Steece and Wood (1985). More in detail, let us suppose that, in step 4., we compare the
parameters of a group of locations with the parameters of a location i; let us consider:

θ = (φG,ψG,φi,ψi)
′; Σ =

[
ΣG 0
0 Σi

]
(3.1)

where ΣG is the covariance matrix of the parameters estimator of group G, Σi the co-
variance matrix of the parameters estimator of the location i and 0 a matrix with all the
elements equal to 0. Each matrix has dimension (2× 2). Moreover let:

C =

[
1 0 −1 0
0 1 0 −1

]

be a constant matrix; the Wald statistic is expressed by:

Ξ = (Cθ)′ (CΣC ′)−1 (Cθ) (3.2)
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In step 2., the same statistic is adopted, but in (3.1) we have to substitute φG, ψG and
ΣG with φh, ψh and Σh, respectively.

4 Simulation Study
In order to verify the capability of the previous algorithm in detecting the correct groups of
locations, we performed a simulation experiment, where we generate data from STAR(1,1)
and FSTAR(1,1) models and then we apply the hierarchical algorithm. The data were
generated from several combinations of time length T , number of locations N , number of
groups G and spatial weight matrix W . In particular we considered:

• three different time spans (T = 100, 500, 1000);

• two different spatial patterns, represented by regular lattices 3 × 3 (N = 9) and
5× 5 (N = 25);

• three different number of groups (G = 1, 2, 3);

• three different spatial weight matrices, based on the classical contiguity criteria for
regular lattices (rook, queen and bishop cases; see Anselin, 1988). These binary
matrices are successively row standardized so that each row adds up to 1.

The data are generated from multivariate standard Normal distributions; we consider both
the cases of uncorrelated disturbances εt and disturbances spatially correlated, transform-
ing the generated εt by (2.2) with ρ = 0.7.

The coefficients used to generate data from the FSTAR model (2.5) are:
– when G = 1 (STAR model), φ1 = 0.5, ψ1 = 0.3;
– when G = 2, φ1 = 0.5, ψ1 = 0.3, φ2 = 0.3, ψ2 = 0.6;
– when G = 3, φ1 = 0.5, ψ1 = 0.3, φ2 = 0.3, ψ2 = 0.6, φ3 = 0.8, ψ3 = 0.1.
The number of replications is 1000 for each case.
The performance evaluation is conducted: 1) recording for each replication the num-

ber of groups detected; 2) verifying the similarity of the composition of the detected group
with the true one. The second point is made because the number of groups could be cor-
rectly detected but the composition of the groups is not equal to the true one; moreover we
are interested in evaluating the magnitude of the differences. For this purpose we adopt
the adjusted Rand index (Rand, 1971; Hubert and Arabie, 1985):

r =

∑G
i=1

∑G∗

j=1

(
n̂ij

2

)
− [

∑G
i=1

(
ni

2

)
][
∑G∗

j=1

(
n̂j

2

)
]/
(
N
2

)

[
∑G

i=1

(
ni

2

)
+
∑G∗

j=1

(
n̂j

2

)
]/2− [

∑G
i=1

(
ni

2

)
][
∑G∗

j=1

(
n̂j

2

)
]/
(
N
2

) (4.1)

where G and G∗ represent the number of groups in the true and detected clustering re-
spectively; ni and n̂j are the number of locations belonging to the group i of the true and
group j of the detected clustering respectively, whereas n̂ij is the number of locations
belonging to the group i in the true pattern and assigned to the group j in the detected
clustering. We can use r to evaluate the performance of the proposed method because
r ∈ [0, 1], assuming value 0 when the differences between the groups are at their max-
imum (worst performance) and 1 in the case of coincidence between the true and the
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detected clustering. We could be satisfied with high values of r, for example, more than
0.85.

In Tables 1–3 we show the results relative to the rook contiguity matrix;2 each table
refers to a different G and contains the results relative to the three different time spans,
the two regular lattices and both the uncorrelated and correlated disturbances. When the
data generating process is the STAR(1,1) model (G = 1; Table 1), the correct detection
of the true model is very frequent in the 3 × 3 lattice independently on the time length:
the Rand index (4.1) is equal to 1 in more than 83% of cases and this value increases
with spatial autocorrelation of the disturbances. This percentage decreases sensitively in
the 5 × 5 lattice, with a higher percentage of 2 groups detected, but the difference with
respect to the true pattern is not relevant; in fact the percentage of cases with r ≥ 0.85 is
always around 96%. The procedure seems to fail when a FSTAR(1,1) model is the true
data generating process and T is small. In Tables 2 (G = 2) and 3 (G = 3) we can notice
the small number of cases with correct pattern detection, whereas the performance is good
when T increases, with percentages of r ≥ 0.85 near to 100%. It is necessary to point out
also that, in the T = 500 and T = 1000 cases, when the number of groups is correctly
detected (first two columns of the Tables), in general they are equal to the true generated
patterns (r = 1).

In practice the algorithm does work for large T , whereas the correct pattern is difficult
to be detected when T is small and G > 1. However, in practical terms, the important
question is to understand if the FSTAR model (2.5) demonstrates a better fitting and better
forecasting performance than the STAR model (2.1) also in the presence of small T , as
well as a similar fitting and forecasting performance when compared to the USTAR model
(2.4). This in principle would provide the best results. These aspects can be evaluated in
a real space–time series, which is the purpose of next section.

5 Application
Let us consider the data set of Italian Crude Birth Rate (henceforth CBR) from January
2003 to October 2015 (154 monthly observations) and relative to the 20 Italian regions
(Istat source: http://demo.istat.it). In order to obtain a stationary series, without losing
observations,3 we have subtracted a linear trend (of the form ai + bit, t = 1, . . . , T ,
i = 1, . . . , N ) to each time series. To verify the robustness of the results with respect to
the W spatial matrix chosen, we have selected eight different weight specifications (for a
review see Cliff and Ord, 1973, 1981; Getis and Ord, 1992; Cressie, 1993), distinguishing
between binary and kernel spatial weight matrices:

• Binary matrix: the weight wij is equal to 1 if i and j are neighbors, 0 other-
wise. The neighboring is defined in terms of boundaries or distance under a certain
threshold.

2To save space we do not present the results for the queen and bishop case, which are available on
request.

3This would happen using the difference operator.
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1. Boundary Matrix (BM ): it is the classical contiguity binary matrix based on
the common boundary; in practice the weight is 1 when the two locations
share a common boundary; by convention wii = 0 for i = 1, . . . , N .

2. Maxmin matrix (Mm): the neighbors are detected by the Maxmin distance
(Mucciardi and Bertuccelli, 2012). It is defined as

dMm = max(e1, . . . , eN)

where ei (i = 1, . . . , N ) represents the minimum Euclidean distance of the
generic location i and the other locations j ( i ̸= j). As a consequence all
locations have at least one connection and the neighbors of location i are the
locations with Euclidean distance lower than dMm.

• Kernel matrix: the weight wij is a continuous and monotonic decreasing function
of the (Euclidean) distance dij (Fotheringham et. al., 2002). The choice of ker-
nel functions is particularly appropriate because the bandwidth h provides a con-
trol about the circular area of influence of each observation i. We adopt Gaussian
distance-decay-based functions as:

wij = exp

[
−1

2

(
dij
h

)2
]

For our experiments we have selected the following kernel weight matrices:

3. Kmin: with h = Min(dij) (in our application it corresponds to 72 Kilome-
ters) ;

4. K10p: with h = 0.1Max(dij) (106 KM);
5. K20p: with h = 0.2Max(dij) (213 KM);
6. KMm: with h = dMm (379 KM);
7. Kmea: with h = mean(dij) (453 KM);
8. Uniform matrix (U ): h → ∞; this implies that wij = 1 for each i ̸= j.

It is the case in which each location is linked to each other and the distance
between two locations is not relevant. It implies a model without a real spatial
dependence, but a full interdependence among all locations.

In Figure 1 the behavior of the Maxmin distance and the first five kernel functions are
illustrated.4 The Maxmin binary criterion is a step function which assigns weight 1 to the
locations with a Euclidean distance lower than the Maxmin distance; the Kernel weights
decrease with the distance (in Kilometers) and the area of influence increases with h.

Each weight matrix is successively standardized by row.
We have estimated, separately for each weight matrix, the STAR(1,1), the USTAR(1,1)

and the FSTAR(1,1) models. For the FSTAR model, we have applied the clustering algo-
rithm with each weight matrix, obtaining different clustering. Using the Rand index (4.1)

4The U kernel function is not represented, but it would be a horizontal line in correspondence of the
value 1.
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for each pair of classifications, we obtain a synthetic representation of the different results
derived from the different W matrices, as shown in Table 4. All the eight weight matrices
provide different classifications, with maximum Rand index equal to 0.78, in correspon-
dence of the pair KMm–Kmea; other similar classifications (with r < 0.7) are Kmin–
U , Kmin–K10p and BM–Kmin. On the other side there are several pairs with ex-
tremely low Rand index, with the minimum in correspondence of BM–Mm (r = 0.18).
As expected, the BM matrix provides results more similar to kernel matrices with small
h, whereas the U matrix provides results similar to kernel matrices with high h.

In Table 5 we show the estimates of USTAR and FSTAR models using the Kmea
weight matrix, which, in terms of Mean Squared Error (MSE), show the best results.5 The
horizontal lines separate the four groups identified by the hierarchical algorithm. Notice
the non–significance of several USTAR coefficients; this is the typical problem of this
model which makes it unfeasible in real cases. Also, the values of the φ and ψ coefficients
estimated with the USTAR model are similar to the φ and ψ FSTAR coefficients of the
corresponding group. The exceptions, such as Calabria in the first cluster, Umbria and
Marche in the third cluster, are characterized by the highest standard errors, implying a
strong inefficiency in the case of USTAR model.

The comparison of the models is performed in terms of MSE, separately for each
region. We are essentially interested in investigating the presence of significative differ-
ences in the MSE of the three models; for this purpose we use the popular Diebold and
Mariano (1995) test with the correction proposed by Harvey et al. (1997). In Figures
2 and 3 we show, in graphical terms, the results of this test (call it DM test), at a 5%
significance level, for each weight matrix. Most of the regions show a similar behavior
of the USTAR and FSTAR models, both significantly better than the STAR model (gray
areas). There are a few cases with no prevalence of a model (white areas); in four cases
this situation is relative only to one region (Calabria) and at least it covers four regions in
the case of the Kmin kernel matrix. Only in one case the USTAR model is significantly
better than others (Friuli–Venezia Giulia with W = K10p, denoted by a wireframe area).

These results indicate that the parsimonious FSTAR model, in general, shows an in–
sample forecasting performance similar to the overparameterized USTAR model and bet-
ter than the simple STAR model. This result is particularly interesting in view of the
comments of Hansen (2010), who shows analitycally that the overparameterized models
have a tendency to perform better than simpler models.

We also evaluate the performance of the three models in terms of out–of–sample per-
formance. For this purpose we re-estimate the models on a reduced data set, excluding
the last two years (from November 2013 to October 2015), re–applying the clustering
algorithm to estimate the FSTAR model; then we perform the one–step ahead forecasts
for the out–of–sample period (24 × 20 space–time observations). In this case, given the
small number of forecasts for each region, we prefer to evaluate the full set of space–time
forecasting squared errors. In Table 6 we show the out–of–sample MSE of the three mod-
els with the eight different weight matrices (left part of the table) and the corresponding
p-values of the DM statistic (right part). In two cases (matrices Mm and Kmea) the FS-
TAR model has a lower MSE than USTAR and in one case (K10p) the two compettitive

5The estimates of all the other models are available on request.
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models show the same MSE. Observing the p–values, we notice that the out–of–sample
forecasting performance of FSTAR and USTAR models is not significantly different at
each significance level. The comparison with the STAR model favors USTAR in six cases
and FSTAR in three cases both at a significance level of 5%; instead the comparison with
the STAR model favors USTAR in six cases and FSTAR in seven cases at a significance
level of 10%. We can conclude that the FSTAR model has a very similar behavior with
respect to the USTAR model also in terms of out–of–sample performance.

6 Final Remarks
The use of a parsimonious model, as the STAR(1,1), to represent space–time series is
a common practice in statistical modeling, also because the alternative VAR model (we
called it USTAR model) causes inefficiency in the estimation and overparameterization.
We have proposed a flexible model (FSTAR) with a reduced number of parameters, which
allows regions with similar dynamics to have the same coefficients. The identification of
the regions can be done through a hierarchical clustering algorithm, based on a Wald test
which verifies the similarity of the coefficients of different locations. Consequently, the
advantage of the FSTAR model is twofold: the model is a good compromise between
the parsimony of the STAR model and the flexibility of the overparameterized USTAR
model; the model building procedure identifies groups of locations with a similar space–
time behavior and this result can be used for spatial aggregation or clustering analysis.

The simulation results show a good capability for identifying the true patterns for high
time dimension, whereas this result is poor when the time length is small. Anyway, the in–
sample and out–of–sample performance of the FSTAR model, in our practical application,
seems to provide results similar to the overparameterized USTAR model and significantly
better than the STAR model.

One of the crucial problems of the space–time models is the choice of the spatial
weight matrix; in our application we have used eight exogenous weight matrices, which
provide different clustering for the FSTAR model; anyway the results, in terms of in–
sample and out–of–sample performance, seem sufficiently robust. Alternatively, in the
case of kernel spatial matrices, we could estimate the bandwidth h with the other unknown
coefficients, considering an exogenous W matrix (see Otranto et al., 2016).

Furthermore, the clustering and identification procedure can be extended to larger
time and spatial lags, implying the consideration of a larger number of coefficients and a
Wald test with several constraints to be jointly verified. Similar considerations could be
made extending the methodology to STARMA models; in fact the clustering procedure is
based on the Steece and Wood (1985) equivalence test, which was developed for general
ARMA models. We leave these extensions to future research.
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Table 1: Simulation results for 3 × 3 and 5 × 5 lattices with the rook contiguity matrix
and number of groups n = 1, different time length T , using uncorrelated (ρ = 0) and
correlated (ρ = 0.7) disturbances.

T = 100; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 830 691 0 7 163 0 830
2 167 286 5× 5 lattice
3 3 23 0 3 39 267 691

T = 100; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 889 706 0 10 101 0 889
2 110 281 5× 5 lattice
3 1 13 0 3 39 252 706

T = 500; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 847 663 0 4 149 0 847
2 151 322 5× 5 lattice
3 2 15 0 2 42 293 663

T = 500; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 899 753 0 11 90 0 899
2 101 236 5× 5 lattice
3 0 11 0 4 34 209 753

T = 1000; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 863 693 0 7 130 0 863
2 134 291 5× 5 lattice
3 3 16 0 1 40 266 693

T = 1000; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 868 740 0 12 120 0 868
2 130 254 5× 5 lattice
3 2 6 0 0 40 220 740

Note: G∗ indicates the number of groups detected by the algorithm described in Section 3. The Rand
index r compares the true composition of the n groups and the one obtained from the algorithm described
in Section 3. The STAR coefficients used to generate the data are φ1 = 0.5, ψ1 = 0.3. The number of
replications is 1000.
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Table 2: Simulation results for 3 × 3 and 5 × 5 lattices with the rook contiguity matrix
and number of groups n = 2, different time length T , using uncorrelated (ρ = 0) and
correlated (ρ = 0.7) disturbances.

T = 100; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 212 71 224 594 122 4 56
2 718 734 5× 5 lattice
3 70 192 17 923 49 7 4
4 0 3

T = 100; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 135 31 138 491 227 6 138
2 812 787 5× 5 lattice
3 52 177 12 726 169 69 24
4 1 5

T = 500; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 1 11 100 49 839
2 859 658 5× 5 lattice
3 134 309 0 5 39 368 588
4 7 31
5 0 2

T = 500; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 11 76 47 866
2 868 716 5× 5 lattice
3 121 245 0 1 11 294 694
4 11 36
5 0 3

T = 1000; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 8 90 53 849
2 849 630 5× 5 lattice
3 143 325 0 0 3 367 630
4 7 43
5 1 2

T = 1000; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 12 58 51 879
2 879 688 5× 5 lattice
3 109 276 0 0 14 298 688
4 12 36

Note: G∗ indicates the number of groups detected by the algorithm described in Section 3. The Rand index
r compares the true composition of the n groups and the one obtained from the algorithm described in
Section 3. The STAR coefficients used to generate the data are φ1 = 0.5, φ2 = 0.3, ψ1 = 0.3, ψ1 = 0.6.
The number of replications is 1000.
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Table 3: Simulation results for 3 × 3 and 5 × 5 lattices with the rook contiguity matrix
and number of groups n = 3, different time length T , using uncorrelated (ρ = 0) and
correlated (ρ = 0.7) disturbances.

T = 100; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 1 0 284 611 88 2 15
2 442 218 5× 5 lattice
3 524 642 167 790 37 4 2
4 31 127
5 4 13

T = 100; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 230 548 166 1 55
2 252 121 5× 5 lattice
3 706 714 90 762 135 10 3
4 38 154
5 3 11
6 1 0

T = 500; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 6 24 128 842
2 0 0 5× 5 lattice
3 862 637 0 0 20 390 590
4 132 302
5 5 58
6 1 3

T = 500; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 1 14 73 912
2 0 0 5× 5 lattice
3 915 686 0 0 2 315 683
4 74 267
5 11 44
6 0 3

T = 1000; ρ = 0
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 0 4 122 874
2 0 0 5× 5 lattice
3 874 624 0 0 5 371 624
4 122 318
5 4 49
6 0 9

T = 1000; ρ = 0.7
Frequency Rand index

Lattice 3× 3 lattice
G∗ 3× 3 5× 5 r < 0.5 0.5 ≤ r < 0.7 0.7 ≤ r < 0.85 0.85 ≤ r < 1 r = 1
1 0 0 0 0 1 66 933
2 0 0 5× 5 lattice
3 933 662 0 0 8 330 662
4 66 293
5 1 42
6 0 3

Note: G∗ indicates the number of groups detected by the algorithm described in Section 3. The Rand index
r compares the true composition of the n groups and the one obtained from the algorithm described in
Section 3. The STAR coefficients used to generate the data are φ1 = 0.5, φ2 = 0.3, φ3 = 0.8, ψ1 = 0.3,
ψ2 = 0.6, ψ3 = 0.1. The number of replications is 1000.
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Table 4: CBR data set: Rand index for each pair of classification derived from the hierar-
chical algorithm with different spatial weight matrices.

Mm Kmin K10p K20p KMm Kmea U
BM 0.182 0.716 0.583 0.346 0.325 0.302 0.270
Mm 0.174 0.296 0.448 0.480 0.531 0.412
Kmin 0.708 0.413 0.315 0.346 0.261
K10p 0.556 0.465 0.502 0.390
K20p 0.669 0.647 0.655
KMm 0.783 0.742
Kmea 0.670

Table 5: CBR data set: Estimation (standard errors in parentheses) of the coefficients of
FSTAR and USTAR models, using the Kmea weight matrix.

Region φ FSTAR φ USTAR ψ FSTAR ψ USTAR
Liguria 0.747 (0.119) 0.757 (0.220) -0.562 (0.154) -0.626 (0.355)
Molise 0.730 (0.267) -0.592 (0.369)
Basilicata 0.668 (0.376) -0.495 (0.415)
Calabria 1.053 (2.056) -0.758 (2.094)
Sardinia 0.725 (0.315) -0.583 (0.401)
Trentino Alto-Adige 1.145 (0.110) 1.127 (0.189) -0.997 (0.242) -0.992 (0.513)
Lazio 1.263 (0.412) -1.115 (0.672)
Campania 1.115 (0.211) -0.986 (0.522)
Sicily 1.217 (0.352) -1.076 (0.625)
Piedmont 0.353 (0.279) 0.133 (0.890) -0.187 (0.255) -0.006 (0.784)
Friuli-Venezia Giulia 0.498 (0.464) -0.364 (0.431)
Tuscany 0.203 (0.883) -0.075 (0.794)
Umbria -0.542 (1.793) 0.673 (1.660)
Marche -0.718 (2.336) 0.895 (2.218)
Abruzzo 0.315 (0.768) -0.179 (0.697)
Aosta Valley 1.430 (0.232) 1.412 (0.512) -1.271 (0.330) -1.283 (0.781)
Lombardy 1.337 (0.423) -1.202 (0.702)
Veneto 1.495 (0.587) -1.364 (0.853)
Emilia-Romagna 1.674 (1.029) -1.480 (1.223)
Apulia 1.740 (0.992) -1.597 (1.212)

Note: The horizontal lines separate the groups identified by the procedure described in section 3. The
parameters estimated with the STAR(1,1) model are φ = 0.957 (0.070) and ψ = −0.670 (0.102).
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Table 6: Out–of–sample forecasting of the CBR of the Italian Regions: MSE (multiplied
by 100) of STAR, USTAR and FSTAR models, and p-value of the DM statistic comparing
the means of the squared errors of each pair of models.

MSE p-value DM statistic
W STAR USTAR FSTAR STAR vs USTAR STAR vs FSTAR USTAR vs FSTAR

BM 0.357 0.303 0.311 0.008 0.018 0.356
Mm 0.369 0.321 0.300 0.015 0.000 0.162
Kmin 0.360 0.303 0.328 0.000 0.071 0.126
K10p 0.363 0.338 0.338 0.164 0.097 0.488
K20p 0.358 0.328 0.348 0.111 0.348 0.156
KMm 0.350 0.312 0.333 0.007 0.195 0.154
Kmea 0.348 0.306 0.283 0.000 0.000 0.118
U 0.346 0.304 0.322 0.000 0.084 0.185

Note: The estimation is performed on the period January 2003 – October 2013; the out–of–sample span is
November 2013 – October 2015. The results are referred to the 24× 20 space–time forecasts.

Figure 1: Weights of the spatial matrix derived from the Maxmin criterion and five Kernel
functions.
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Figure 2: Results of the DM test at 5% nominal size for the CBR of the Italian regions,
comparing alternative STAR models with different weight matrix W (BM , Mm, Kmin,
K10p.

W=BM W=Mm

W=Kmin W=K10p

Note:Gray colors indicate that, for the corresponding region, the USTAR and FSTAR models have the same
in–sample forecasting performance, which is significantly better than the STAR model; white areas indicate
that, for the corresponding regions, the three models have the same in–sample forecasting performance; the
wireframe areas indicate that, for the corresponding regions, model USTAR has a significantly better in–
sample forecasting performance than STAR and FSTAR models.
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Figure 3: Results of the DM test at 5% nominal size for the CBR of the Italian regions,
comparing alternative STAR models with different weight matrix W (K20p, KMm,
Kmea, U .

W=K20p W=KMm

W=Kmea W=U

Note:Gray colors indicate that, for the corresponding region, the USTAR and FSTAR models have the same
in–sample forecasting performance, which is significantly better than the STAR model; white areas indicate
that, for the corresponding regions, the three models have the same in–sample forecasting performance.
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