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Adding Flexibility to Markov Switching Models

Edoardo Otranto
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Abstract

Very often time series are subject to abrupt changes in the level, which are gener-
ally represented by Markov Switching (MS) models, hypothesizing that the level is
constant within a certain state (regime). This is not a realistic framework because in
the same regime the level could change with minor jumps with respect to a change
of state; this is a typical situation in many economic time series, such as the Gross
Domestic Product or the volatility of financial markets. We propose to make the state
flexible, introducing a very general model which provides oscillations of the level of
the time series within each state of the MS model; these movements are driven by
a forcing variable. The flexibility of the model allows for consideration of extreme
jumps in a parsimonious way (also in the simplest 2-state case), without the adoption
of a larger number of regimes; moreover this model increases the interpretability and
fitting of the data with respect to the analogous MS model. This approach can be
applied in several fields, also using unobservable data. We show its advantages in
three distinct applications, involving macroeconomic variables, volatilities of finan-
cial markets and conditional correlations.

Keywords: abrupt changes; goodness of fit; Hamilton filter; smoothed changes; time–
varying parameters

JEL Classification: C22, C32, C5, C58

1 Introduction
The nonlinear behavior of many economic time series characterized by abrupt changes in
the level has been object of several studies in the last decades, favouring the development
of switching regime models; see Hamilton (2015) for a review of this kind of models in
a macroeconomic framework, Franses and Van Dijk (2000) in the case of financial time
series. In particular, the change in the level of the time series happens in unknown points
along the time; this characteristic has favored the large success of models providing an
estimation of the change-point and an inference on the regime. Among them we recall the
Markov Switching Autoregressive (MS–AR) model of Hamilton (1989 and 1990),1 the

1The AR–MS model was originally proposed by Lindgren (1978), but its diffusion and success in the
economic framework is due to the works of Hamilton.
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multiple change-point model of Chib (1998), the smooth transition model of Teräsvirta
(2004) and their extensions.

The simple form of the MS model, its clear interpretation and the possibility to infer on
the regime using the Hamilton (1990) filter, justify its enormous success in the statistical
and econometric literature and its application in several fields of economics. In general
the MS model provides a good fitting, capturing the presence of abrupt changes, but the
consideration of fixed coefficients in correspondence of the different states could be a
rigid constraint. This problem could be solved with a larger number of states, which
involves computational problems (high computational time, convergence, identification,
Markov chains with zero elements). Also, the identification of the number of states k is
an open problem; very often a 2-state MS model is adopted to avoid the loss of efficiency
in estimation due to the small possible number of observations falling in a certain state.
Similarly, a higher number of states could imply the absence of transitions from a state
to another one (there are not cases in which the state changes from regime i to regime j),
with the corresponding coefficients of the transition probability matrix identically equal
to zero (see, for example, Hamilton and Susmel, 1994).

A graphical example would help to understand the main motivations of this work. Let
us observe the first differences of the log quarterly U.S. Gross Domestic Product (GDP)
series in Figure 1. Representing this series with a MS model with two states2 we obtain
the inference on the regime (denoted with the labels 0 and 1) illustrated by the dotted line;
in practice two periods are identified in state 1, corresponding to the highest peaks in the
time span considered: the boom in 1950 after the second World War and the decade 1971-
1980. Notice the different behavior of these intervals; in the first one the levels of growth
are high in the full period, whereas in the second interval there are frequent oscillations.
In the last case the assignment to regime 1 is due to the high peaks (similar to those of
1950) approximately at the extremes of the interval; in particular, in correspondence of
Q1 71, Q2 78, Q4 80 and Q1 81, the level of the series is more than 4, whereas in the
other dates it is similar to the average level of the series in state 0.

It is likely that a better fitting could be obtained providing the possibility to change the
parameters within the regimes, adding a certain flexibility to the MS model. In practice in
Figure 1 a certain gain in fitting could be obtained if we allow a change in level within the
regimes, with the possibility to isolate in a single state the highest peaks of the series. For
this purpose we propose a new model, called Flexible State Markov Switching (FSMS)
model, considering time varying coefficients within each state. The within–state dynam-
ics of the coefficients is driven by forcing variables, which can be also non observable.
We develop a very general framework, extending different MS models and providing ex-
amples of their applications.

The paper is structured in the following way: in the next section we will describe
the new model proposed, underlying how the estimation procedure can follow the steps
proposed in Hamilton (1990). Section 3 is devoted to three examples of application of the
FSMS model, dealing with the U.S. GDP, the volatility of the Nasdaq 100 index and the
conditional correlations of the components of the Dow Jones Industrial Average index,
comparing our model with the corresponding classical MS model. Some final remarks

2We will illustrate it more in detail in section 3.1.
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Figure 1: First differences of the logarithms of Quarterly U.S. GDP series (gray continu-
ous line, left axis) from QI:1948 to QIV:2014 and inference on the regime using an AR(2)
MS model with two states (dotted line, right axis).

will conclude the paper.

2 The Flexible State Markov Switching Model
Let yt the variable object of study. It can be a single variable or a vector of variables;
moreover it is not necessary that yt is observed. In a MS framework, we consider different
models in correspondence of the different states; these models have the same structural
form and differ only for the value of some coefficients (called the switching coefficients).
We call mi,t the model representing yt in state i. Formally, in a MS model with two states
we have:

yt = (1− st)m0,t + stm1,t

P =

 p00 p01

p10 p11

 (2.1)

where st = 0, 1 represents the state at time t and P is the transition probability matrix
relative to an ergodic Markov Chain with elements pji = Pr(st = i|st−1 = j) and, when
i 6= j, pji = 1− pii.

We consider the possibility that, within each regime, the model can vary in a range of
models which differ for the values of the switching parameters (representing the level of
the series yt) in the following way:

yt = (1− st)
[
m∗0,tf0,t +m∗1,t(1− f0,t)

]
+ st

[
m∗1,tf1,t +m∗2,t(1− f1,t)

]
(2.2)

In practice in state 0 the model is a weighted mean of m∗0,t and m∗1,t, with weights derived
from the function f0,t ranging in [0, 1]; in state 1 the model is a weighted mean of m∗1,t
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and m∗2,t, with weights derived from the function f1,t (again ranging in [0, 1]). The level
increases when the model changes from m∗0,t to m∗1,t and from m∗1,t to m∗2,t, so we need
adequate reparameterizations to obtain this constraint. Each m∗i,t (i = 0, 1, 2) depends
on a set of common coefficients ϕ and a set of specific coefficients ϑi (the switching
coefficients). The functions f0,t and f1,t depend on a variable xt (the forcing variable),
not necessarily observed, and a different set of coefficients ζh (h = 0, 1). They can
assume different specifications; in our experience good representations can be given by
smooth transition functions and logistic functions. We call them within state dynamic
(wsd) functions.

The estimation of (2.2) does not involve particular problems, including ζ0 and ζ1
among the set of unknown coefficients. In practice the density of yt is a mixture of
four densities f(yst,st−1,t|It−1,π) obtained from the four possible combinations of st
and st−1, where It represents the amount of information available at time t and π =
(ϕ′,ϑ′0,ϑ

′
1,ϑ

′
2, ζ
′
0, ζ
′
1)
′. The weights of each component of the mixture are given by the

probabilities Pr(st, st−1|It−1), derived from the Hamilton (1990) filter. More in detail,
the iterative steps (from t = 1 until t = T ) to obtain these probabilities are:

1. Pr(st = i, st−1 = j|It−1) = pjiPr(st−1 = j|It−1);

2. f(yt|It−1,π) =
∑2

i=1

∑2
j=1 Pr(st = i, st−1 = j|It−1)f(yi,j,t|It−1,π);

3. Pr(st = i, st−1 = j|It) = Pr(st=i,st−1=j|It−1)f(yt|st=i,st−1=j,It−1,π)
f(yt|It−1,π)

;

4. Pr(st = i|It) =
∑2

j=1 Pr(st = i, st−1 = j|It)

The starting probability Pr(s0 = j) to be used in the first step at the first iteration can
be given by the ergodic probability pe such that P ′pe = pe. The previous scheme is
the basic Hamilton filter to obtain the filtered probabilities at each time; it is possible to
obtain an inference on the regimes using the full available information IT from the Kim
(1994) algorithm, starting from the results of the Hamilton filter. It consists in iterating
the following two steps (from T − 1 to 1):

1. Pr(st = j, st+1 = i|IT ) =
Pr(st+1=i|IT )Pr(st=j|It)pji

Pr(st+1=i|It)

2. Pr(st = j|IT ) =
∑2

i=1 Pr(st = j, st+1 = i|IT )

The starting probability Pr(sT = i|IT ) is obtained at the final iteration of the Hamil-
ton filter; from the same Hamilton filter we derive the probabilities Pr(st = j|It) and
Pr(st+1 = i|It) =

∑2
j=1 Pr(st+1 = i, st = j|It) used in the step 1 of the Kim algorithm.

The inference on the regime of Figure 1 is obtained from the smoothed probabilities of
the MS(2)–AR(2) model, described in subsection 3.1, assigning the observations with
Pr(st = 0|IT ) > 0.5 to regime 0 (regime 1 otherwise).

In the following section we will propose three different specifications of (2.2), which
extend three well known MS models to include the flexible structure within the regimes.
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3 Examples of Applications
As said, model (2.2) is expressed in a very general form and can include the extension
of all MS models. In this section we propose the extension in three fields in which MS
models are largely used. In the first case we extend the analysis of the U.S. GDP by
an MS AR model, similar to the one adopted by Hamilton (1990); in the second case
we consider the analysis of the volatility of the Nasdaq 100 U.S. index extending the
MS–GARCH model (see, for example, Dueker, 1997); finally we extend the analysis of
the correlations of the 30 assets compounding the Dow Jones Industrial Average index
(DJ) extending the Regime Switching Dynamic Correlation (RSDC) model proposed by
Pelletier (2006). Notice that in the first case the variable analyzed (GDP) is observed,
whereas in the last two applications they are estimated by the model (the conditional
variance in the second case and the conditional correlations in the third one). Also, to
show the several potential approaches to estimate the FSMS model, we will adopt as
forcing variables three different quantities: the estimated lagged level of GDP in the first
application, the filtered probabilities of state 0 derived from the Hamilton filter in the
second application, the forecasts of the exogenous VXD series3 in the third application.
Notice again that in the first and second case the forcing variable is not observed and it is
obtained as a sub-product of the Maximum Likelihood estimation procedure of the model;
in the third case it is obtained from an independent estimation procedure. Finally, we will
adopt both the smooth transition function and the logistic function as swd functions; the
differences are not relevant, so we will describe only one case for each example.

In all the examples the FSMS model is compared with the corresponding MS model
and the corresponding model without regimes; the comparison is conducted in terms of
log–likelihood functions and specific loss functions generally used in these three different
frameworks.

3.1 FSMS–AR Model
Let us suppose that the variable of interest yt is the U.S. GDP. In Figure 1 we have shown
the behavior of the first differences of the log of GDP from the first quarter of 1948 to the
fourth quarter of 2014 (source Federal Reserve Economic Data of St. Louis Bank). The
MS–AR model adopted is the following:

mst,t = µst + φ1(yt−1 − µst−1) + φ2(yt−2 − µst−2) + εt st = 0, 1

εt ∼ IIN(0, σ2)
(3.1)

In the case of FSMS model the first equation in (3.1) is substituted by:

m∗st,t = µst + φ1(yt−1 − µ∗t−1,st−1
) + φ2(yt−2 − µ∗t−2,st−2

) + εt st = 0, 1, 2 (3.2)

where:

µ∗t,st =

{
µ0f0,t + µ1(1− f0,t) if st = 0
µ1f1,t + µ2(1− f1,t) if st = 1

3The VXD index is a proxy of the volatility of the DJ index, constructed in the same way as the well
known VIX index, which is referred to the Standard & Poor 500 index.
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Table 1: Parameter estimates (standard errors in parentheses) and evaluation criteria of
AR(2), MS–AR(2) and FSMS–AR(2) models for the US GDP data set

µ0 µ1 µ2 φ1 φ2 σ p00 p11
AR 1.722 0.053 -0.001 0.895

(22.842) (0.094) (0.002) (0.082)
MS 1.307 2.815 0.398 -0.040 0.892 0.985 0.935

(0.096) (0.354) (0.072) (0.014) (0.048) (0.008) (0.026)
FSMS 0.069 2.402 4.760 0.452 0.071 0.806 0.984 0.626

(1.354) (6.717) (1.109) (0.317) (0.241) (0.061) (0.007) (0.565)
pv1 pv5 pv10 Log − Lik AIC MSE U

AR 0.000 0.000 0.000 -453.99 3.405 1.193 1.556
MS 0.189 0.000 0.000 -366.95 2.780 0.921 0.551
FSMS 0.565 0.276 0.042 -349.38 2.687 0.873 0.550

Note: the symbol pvi indicates the p-value of the Ljung-Box statistic to verify the presence of autocorrela-
tion at lag i.

The only switching coefficient is the mean of the process µst; to ensure the increase
in the level when changing the state we impose that µ0 ≤ µ1 ≤ µ2. Moreover the wsd
function chosen is the smooth transition function:

fi,t = [1 + exp(−γi(µ∗t−1 − ci))]−1,with γi > 0 i = 0, 1. (3.3)

where
µ∗t = Pr(st = 0|It)µ∗t,0 + Pr(st = 1|It)µ∗t,1

is the estimated mean at time t; we simply are hypothesizing that the most recent (esti-
mated) value of the unconditional level of GDP can drive the movements in level within
the states.

Table 1 shows the estimation of the parameters of the two alternative MS models,
jointly with the linear AR(2) model, and some statistics. The three models have different
estimates of the common coefficients; in particular the unconditional mean in regime 0
estimated with FSMS includes levels until 2.40, whereas in regime 1 it varies between
2.40 and 4.76; the constant unconditional mean obtained from the linear AR(2) model is
equal to 1.72. In practice model FSMS considers in regime 1 only the highest peaks of the
series, whereas, in the same regime, model MS considers the levels of the series around a
mean equal to 2.81 with a larger standard deviation than the FSMS case. Moreover, the
duration of regime 1 (obtained by 1/(1− p11)) is in average 16.7 quarters with model MS
and 2.7 quarters with model FSMS; this is a consequence of the interpretation of regime 1
of FSMS, which contains only the highest peaks. Of course, given this characteristic, only
a few observations fall in state 1, explaining the large standard errors in some coefficients
of model FSMS.

In Figure 2 we show the two estimated wsd functions; notice as both the functions are
approximately constant around 0.43 and 0 respectively with abrupt jumps, reaching the
maximum value 1 in correspondence of the highest peaks of GDP; this result implies that,
when the state is 0, the estimated mean is around 1.3, as in the MS model, whereas near to
µ1 (if the state is 0) and µ2 (if the state is 1) in correspondence of the highest peaks. This
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f0,t

f1,t

Figure 2: Smooth transition swd functions for the US GDP data set.

would be clearer observing Figure 3, where the GDP is plotted with the estimated means
obtained by the two alternative models. Notice as the unconditional means are practically
the same in both models, excluding the two sub-periods underlined in the Introduction.
In 1950 the FSMS model shows some movements in the mean following the dynamics of
the GDP series; in the period 1971-1980 only the peaks higher than 4 are assigned to state
1, whereas the rest, more coherently, belongs to state 0.

This major flexibility is confirmed in terms of fitting. In the bottom part of Table 1 we
show some criteria to evaluate the model fitting. The FSMS model outperforms the others
in terms of AIC; also the Mean Squared Error (MSE) decreases sensibly in the FSMS case
with respect to the linear and the MS models. A specific loss function for the analysis of
the GDP is expressed by the Theil U (see, for example, Greene, 2008), given by:

U =

√∑
t(∆yt −∆ŷt)2∑

t(∆yt)
2

where ŷt is the estimated yt, ∆yt = (yt − yt−1)/yt−1 and ∆ŷt = (ŷt − yt−1)/yt−1. Theil
U is particularly useful to detect the capability of the model to identify the turning points;
better performances are expressed by lower values (as MSE). It is evident the better pre-
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Figure 3: First differences of the logarithms of Quarterly U.S. GDP series (gray contin-
uous line) from QI:1948 to QIV:2014 and estimated unconditional mean using a MS–
AR(2) model with two states (dotted line) and a FSMS–AR(2) model with two states
(black continuous line).

dictive accuracy, in terms of turning points, of the MS models respect to the linear one,
with a small preference for the FSMS model respect to the MS one.

In the same Table we show the p-values of the Ljung-Box statistic for residuals in
correspondence of lags 1, 5 and 10; we can notice as the corresponding test rejects the
null hypothesis of autocorrelation for the linear model, after lag 1 for the MS model,
whereas the FSMS seems not affected by residual autocorrelation.

In practice, the comparison of the three models for the US GDP data set seems to favor
the FSMS model not only in terms of interpretability of the regimes but also in terms of
fitting and diagnostic checking.

3.2 FMSM–GARCH Model
A recent large use of MS models concerns the analysis of the volatility of financial time
series, in particular inserting a Markovian dynamics in the coefficients of the GARCH
model (Bollerslev, 1986).

Let us consider the series of the returns4 of the Nasdaq index from 2 January 2004 to
5 May 2015 (2840 daily observations; source Oxford-Man Institute realised library); the
gray line of Figure 4 illustrates the dynamics of this series, where it is evident the high
volatility (i.e. large conditional variance) period between October 2007 and July 2009,
corresponding to the world financial crisis.5 The model we adopt is a MS–GARCH(0,1)

4In financial analysis the return at time t is the logarithm of the ratio of the price of the asset at time t
and the price of the asset at time t− 1, multiplied by 100.

5The dates on the x axis of Figure 4 are put in correspondence of the beginning of each year.
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Figure 4: Returns of the Nasdaq 100 index (gray continuous line) from 2 Jan 2004 to 5
May 2015 and estimated unconditional variance using a MS Asymmetric GARCH(0,1)
model with two states (dotted line) and a FSMS Asymmetric GARCH(0,1) model with
two states (black continuous line).

with asymmetric effects;6 calling rt the series of the returns, we hypothesize that the
conditional distribution of rt is given by:

rt|It−1 ∼ N(µ, yt)

and the conditional variance yt follows the structure (2.1) in the case of MS model and
(2.2) in the case of FSMS model; the components of the FSMS models are given by:

m∗st,t = ωst + βyst−1,t−1 + γI(rt−1 < 0)ε2t−1 st = 0, 1, 2

fj,t =
exp(aj+bjPr(st−1=0)|It−1)

1+exp(aj+bjPr(st−1=0)|It−1)
j = 0, 1

(3.4)

where I(·) is the indicator function which provides the asymmetric effects due to the sign
of the return at time t− 1.

In the MS casemst,t is the same ofm∗st,t, but st = 0, 1. In model (3.4) the wsd function
is a logistic driven by the filtered probabilities of state 0 obtained, step by step, from the
Hamilton filter during the estimation procedure.

In MS–GARCH models a path dependence problem arises, due to the unobservability
of the volatility and the dependence on all the past values of the state st: at the end of the
t-th step of the Hamilton filter, it would be necessary to keep track of all possible paths

6We have estimated, both in MS and FSMS cases, the usual GARCH(1,1) model, but the coefficients
corresponding to the lagged effect of the returns were estimated equal to zero. The asymmetric effects are
referred to the fact that the level of volatility in general increases in correspondence of the most recent
negative returns (see Glosten et al., 1993).
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Table 2: Parameter estimates (standard errors in parentheses) and evaluation criteria of
Asymmetric GARCH(0,1) and MS and FSMS Asymmetric GARCH(0,1) models for the
Nasdaq 100 data set

µ ω0 ω1 ω2 β γ p00 p11
GARCH 0.024 0.035 0.893 0.107

(0.015) (0.002) (0.005) (0.005)
MS 0.014 0.037 0.138 0.873 0.127 0.999 0.994

(0.002) (0.003) (0.008) (0.007) (0.007) (0.000) (0.000)
FSMS 0.013 0.023 0.152 0.152 0.870 0.130 0.999 0.997

(0.013) (0.001) (0.009) (0.007) (0.007) (0.000) (0.000)
pv1 pv5 pv10 Log − Lik AIC MSE ρ

GARCH 0.522 0.530 0.932 -3766.68 2.656 0.414 0.793
MS 0.541 0.505 0.890 -3743.43 2.642 0.403 0.798
FSMS 0.525 0.502 0.883 -3742.09 2.644 0.401 0.799

Note: the symbol pvi indicates the p-value of the Ljung-Box statistic to verify the presence of autocorre-
lation at lag i. MSE compares the estimated conditional variance with the realized kernel variance (both
standardized), whereas ρ is relative to their correlation.

taken by the regime until time t, making the model intractable. Several solutions were
proposed in literature; see, for example, Gray (1996), Klaassen (2002), Haas et al. (2004).
The proposal we adopt is similar to the one of Dueker (1997), who extends the method
of Kim (1994), developed in a state-space framework with a simple approximation. The
Kim approximation consists in collapsing at each step of the Hamilton filter the 4 possible
values of the estimated volatility yst,st−1,t into 2 values, by:

yst,t =

∑2
j=1 Pr(st = i, st−1 = j|It)yi,j,t

Pr(st = i|It)
(3.5)

Kim (1994), using real data, and Gallo and Otranto (2015), via simulations in an asym-
metric multiplicative error model framework, show that the Kim approximation provides
good results, with decreasing bias when the sample size increases. This approximation
can be used also for the FSMS model.

In Table 2 we show the estimates of the common coefficients, jointly with the results
for the simple GARCH case; for the FSMS case we obtain that ω1 = ω2, so, to avoid
overparameterization, we have fixed the wsd function f1t = 1 for each t; in practice we
impose that state 1 has a constant unconditional level of the volatility, whereas it can
change within state 0.

Given the impossibility to observe the variance, the MSE is calculated comparing the
estimated unconditional variance yt with the realized kernel variance (Barndorff-Nielsen
et al., 2008), a realized volatility estimator with the property of robustness to market mi-
crostructure noise;7 both the variables are standardized to avoid scale problems. Moreover
the correlation between the two variables could be an alternative indicator which bypasses
the problems linked to the scale.

7The realized volatility is considered an unbiased estimator of the variance of financial markets with
several desirable properties; see Andersen et al. (2000) and (2003).
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Figure 5: Logistic swd function for state 0 of the Nasdaq 100 data set (continuous line)
and inference on the state with FSMS–GARCH(0,1) model with two states (dotted line).

The MS and FSMS models outperform the simple GARCH model, but, differently
from the GDP example, the estimations of the two alternative Markovian models provide
very similar results, with uncorrelated residuals, similar behavior with respect to the real-
ized kernel variance and levels of the unconditional volatility, which, for state i, is given
by:

uvi =
ωi

1− β − γ/2
(3.6)

In Figure 5 we show the behavior of the swd function for state 0 with the inference
on the regime obtained from the FSMS model; it is almost constant around 0.87 for a
large part of the span considered, implying an unconditional variance uv0 around 0.61
(the linear combination of ω0 and ω1 with weights equal to f0t and (1−f0t) respectively).
The exceptions are the period of crisis October 2007-July 2009, which belongs to state
1 and has fixed unconditional variance uv1 = 2.33, and two brief successive periods,
the end of July 2010 and the end of 2011, in which there is an increase in volatility,
with lower level with respect to the long previous crisis. We can observe in Figure 4 the
unconditional volatilities (3.6) estimated with the two models; both the models assign the
first long high volatility period to state 1 with similar estimated level, but MS assigns also
the two brief successive periods to state 1, with the same level of unconditional volatility
of October 2007–July 2009. More coherently, the FSMS model assigns these periods to
state 0 but the levels have a clear increase with respect to the rest of state 0 with a smooth
return to the previous level. Similarly, the switch to state 0 after the long crisis of October
2007-July 2009 is not abrupt, but gradual.
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3.3 FSMS RSDC Model
A recent strand of the literature is devoted to the analysis of the time-varying conditional
correlation of a set of financial time series; this is due to the empirical evidence that
financial time series are subject to comovements and this relationship is more evident in
the periods of high volatility (see, for example, Longin and Solnik, 1995). Several models
have been developed to represent the dynamic conditional correlation, adopting some
reparameterization to avoid the so-called curse of dimensionality: generally a large set
of assets (or financial indices) are considered and the number of parameters is explosive.
Feasible models were proposed by Engle (2002), Tse and Tsui (2002), Silvennoinen and
Teräsvirta (2015), to cite just a few. The increase in correlation in correspondence of high
volatility regimes can be developed inserting a MS dynamics in the conditional correlation
models; this idea was developed, for example, by Billio and Caporin (2005), Pelletier
(2006), Otranto (2010). In particular, Pelletier (2006) proposes the simple RSDC model,
in which the full correlation matrix can switch from a regime to another one, without
path dependence problems; referring to the notation in (2.1), yt represents the conditional
correlation matrix Rt and mi is the conditional correlation matrix Ri in state i. Calling
n the number of time series considered, each conditional correlation matrix will contain
n(n− 1)/2 coefficients, requiring a reparameterization to reduce the number of unknown
parameters. We follow the proposal of Bauwens and Otranto (2015), adopting:

Ri = R̄λi + In(1− λi) i = 0, 1
λ0 ∈ [0, 1], λ1 ∈ [1, 1/r̄max],

(3.7)

where In is the n × n identity matrix, r̄max(> 0) is the maximum correlation coefficient
in the sample correlation matrix R̄. We extend the RSDC model to the FSMS case; we
adopt a reparameterization as (3.7) with i = 0, 1, 2 with the constraints 0 ≤ λ0 ≤ λ1 ≤ 1
and λ2 ∈ [1, 1/r̄max]. The wsd functions are represented by smooth transition functions
as (3.3), using the expected value of volatility at time t as forcing variable.

We apply the RSDC and the FSMS RSDC models to the same data set used by
Bauwens and Otranto (2015), developing their Volatility Dependent Conditional Corre-
lation (VDCC) models, relative to the 30 assets composing the DJ index from January
2, 2002 to May 23, 2012 (2617 daily returns for each series; source: Yahoo Finance).
Also we consider, as a benchmark, the Constant Conditional Correlation (CCC) model
of Bollerslev (1990), in which the correlation matrix is constant in the full span consid-
ered (Rt = R̄). In their work Bauwens and Otranto (2015) hypothesize that the one-step
ahead forecasts of the VXD index drive the transition probabilities of the RSDC model;
in a similar way we use these forecasts, obtained by a 2–state MS AR(4) model, as forc-
ing variable for the swd functions. We adopt the two-step estimation procedure of Engle
(2002): in the first step we estimate 30 univariate asymmetric GARCH(1,1) models to
represent the conditional variances of each asset, and in the second step we estimate the
correlation parts on the standardized residuals derived from the first step.

In Table 3 we show the estimation results relative to the λ coefficients and the transi-
tion probabilities; the inference on the regime is very similar, given the similar estimation
of the transition probabilities. Moreover the fitting, evaluated in terms of AIC, favors the
FSMS model, which shows an increase in the likelihood function of 67 points respect to
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Table 3: Parameter estimates (standard errors in parentheses) and evaluation criteria of
MS–RSDC and FSMS–RSDC models for the DJ data set

λ0 λ1 λ2 p00 p11
MS 0.323 1.092 0.377 0.880

(0.039) (0.004) (0.070) (0.009)
FSMS 0.003 0.661 1.118 0.380 0.874

(0.041) (0.081) (0.008) (0.056) (0.010)
Log − Lik AIC VP

CCC -18794.02 14.407 4.790
MS -17283.43 13.252 4.788
FSMS -17216.45 13.205 4.697

Figure 6: Smooth transition swd function for state 0 (gray line) and state 1 (black line) of
the DJ data set.

the MS model and more than 1500 respect to the CCC model. In Figure 6 the behaviors of
the two swd functions is illustrated; it is clear that regime 0 is subject to larger oscillations,
as better illustrated in Figure 7, where the values of λ0 and λ1 of the MS model are com-
pared with the FSMS time-varying values of λ0f0,t +λ1(1−f0,t) and λ1f1,t +λ2(1−f1,t)
respectively.

Of course in this case it does not make sense to evaluate the performance of the mod-
els by MSE because the true correlation is unknown and there are not logical proxies,
as in the volatility case. When dealing with financial markets, it is frequent to compare
the performance of alternative models in terms of minimum variance portfolio rather than
statistical criteria. Following Engle and Colacito (2006), we consider a set of 30 expected
returns, each one equal to 1/

√
(30), and we construct two alternative portfolios with the

30 assets with weights minimizing the portfolio variance (see Markowitz, 1959); using
the same expected returns and the same conditional variance for both the portfolios, the
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Figure 7: Time-varying λ coefficients for state 0 (gray line) and state 1 (black line) of the
DJ data set, derived from the FSMS–RSDC model; the dotted lines are in correspondence
of the fixed λ0 (gray) and λ1 (black) derived from the MS–RSDC model.

differences will be due only to the conditional correlation matrices. The best model will
be the one with minimum sample portfolio variance. The VP index in Table 3 represents
the portfolio variance obtained from the two models; notice as the FSMS model performs
better than MS and CCC (the last one performs better than the MS case). It is also in-
teresting to note that FSMS portfolio performs better than the alternative RSDC models
with transition probabilities proposed by Bauwens and Otranto (2015); in particular the
so–called Time-Varying Transition Probability RSDC model had a VP equal to 4.789,
whereas the Double–Chain RSDC model equal to 4.790 (see Bauwens and Otranto, 2015,
for details about these models).

4 Final Remarks
We have proposed an extension of the MS model to allow the switching coefficients to
vary within the states, increasing the flexibility of the model; as a consequence we are able
to gain in interpretability of the dynamics of the time series and in terms of fitting. The
framework adopted is very general, in the sense that we have illustrated our theory using
a very general model, whereas the examples of Section 3 want to show as this general
framework can be adapted to specific MS models and applications. In our applications
we have considered as switching the coefficients that affect the levels of the time series
(in particular the mean in the GDP example, the unconditional volatility in the Nasdaq
example and the scale coefficients of the conditional correlation matrix in the DJ data
set). This is made because the analysis of the levels can be made in graphical terms
and provides a better appreciation of the interpretability of the new model; anyway it
is possible to extend the analysis considering as switching and flexible also the other
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coefficients of the models, or a subset of flexible switching parameters and a subset of
fixed switching parameters; in fact these cases are consistent with both equations (2.1)
and (2.2), representing the general MS and FSMS models respectively.

We have considered only 2-state FSMS models; the formal extension to a larger num-
ber of states is not difficult, but, as in the MS case, it involves some computational prob-
lems, in particular when a few observations belong to a single state. Anyway, the flex-
ibility added to the MS model changing the switching coefficients within the regimes
provides the possibility to capture extreme jumps that, in a classical MS model, would
belong to a further regime; in other words a FSMS model with two states would be suf-
ficient to represent several real cases of series subject to change in regime and abrupt
jumps.

The comparison with the classical MS models was performed in in–sample terms,
given the characteristics that the FSMS models would capture (interpretability and fitting);
an out–of–sample analysis is beyond the scope of this work, but it could be interesting to
perform it, although there are no reasons to think that FSMS has a better out–of–sample
performance than MS.

In the examples we have considered also the corresponding models without switching
coefficients (AR, GARCH and CCC models) to verify the increase in fitting including
the presence of regimes in the analysis; for the first two examples we have tried also to
estimate Smooth Transition models (see Teräsvirta, 1994, for the AR case, and Teräsvirta,
2009, for the GARCH case). They do not show relevant movements in the parameters and,
in practice, are equivalent to the corresponding AR and GARCH models illustrated in this
work.

The changes within the states in FSMS models are driven by selected forcing vari-
ables; a nice characteristics is that these variables are not necessarily observed, but they
could be derived also during the estimation process. For example, in the GARCH case we
have used the filtered probabilities, derived from the Hamilton filter, to drive the within
state dynamics of the unconditional volatility. This idea is particularly appealing when
observed forcing variables are not available.
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[29] Teräsvirta, T. (2004). Specification, Estimation, and Evaluation of Smooth Tran-
sition Autoregressive Models, Journal of the American Statistical Association 89,
208–218.
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