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Abstract 

Clustering financial time series is a recent topic of statistical literature with important 
fields of applications, in particular portfolio composition and risk evaluation. The 
risk is generally linked to the volatility of the asset, but its level of predictability also 
plays a basic role in investment decisions. In particular, the classification of a certain 
asset could be linked to its dependence on the volatility of a dominant market: 
movements in the volatility of the dominant market can provide similar movements 
in the volatility of the asset and its predictability would depend on the strength of 
this dependence. Working in a model based framework, we base the classification of 
the volatility of an asset not only on its volatility level, but also on the presence of 
spillover effects from a dominant market, such as the U.S. one, and on the similarity 
of the dynamics of the asset and the dominant market. The method is carried out 
using an extended version of the Multiplicative Error Model and is applied to a set 
of European assets. 
 
Keywords: MEM, unconditional volatility, spillover effect, common dynamics, 
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1 Introduction

Clustering financial time series is a topic which creates an increasing interest in statistical liter-
ature, with several practical aspects largely used in portfolio management, the study of risk, the
classification of volatility (see, for example, Pattarin et al., 2004, Otranto, 2008 and 2010, Lisi
and Otranto, 2010, De Luca and Zuccolotto, 2011). In particular, the possibility of classifying
markets by homogeneous degrees of volatility is a useful tool for financial actors to provide bal-
anced portfolios or funds with different degrees of risk. Recent works have underlined how, in
the last few decades, the increasing level of globalization of world economies (see, for example,
Forbes and Chinn, 2004) has provided increasing levels of interdependence and spillover effects
in financial markets. This fact has important consequences in investor choices. For example,
if an asset seems to be sensitive to the U.S. variations with a lag (spillover effect), the move-
ments in the U.S. stock indices could help to forecast the movements of the asset of interest.
The spillover effects are evident during periods of turmoil, in correspondence with particular
shocks, such as the Lehman Brothers’ crack in September 2008 (see, for example, Bordo, 2008,
and Frank and Hesse, 2009).

In this framework, it is important to distinguish between the volatility proper of the asset
and the volatility transmitted by the dominant market. For this reason, a basic tool is capturing
and quantifying the spillover effect in the volatility of a certain financial time series. This
purpose can be achieved using several approaches, for example operating in a classical GARCH
framework, but also extending the recent Multiplicative Error Model (MEM).

The GARCH models put forth by Engle et al. (1990) consider the dependence of the con-
ditional variances on squared innovations occurring in other markets. The extension of the
multivariate ARCH models to include changes in regime (Edwards and Susmel 2001, 2003)
implies the possibility to observe if switches from a regime of low to high volatility (or vice
versa) in a pair of markets are contemporaneous or lagged.1 Gallo and Otranto (2008) propose
a battery of tests to detect and distinguish the several possible scenarios (spillover, interdepen-
dence, co–movements, independence).

A recent strand of econometric literature is devoted to model unbiased measures of volatility,
more efficient with respect to the estimated volatility derived from the GARCH models. Gallo
and Otranto (2007, 2008) analyze the spillover effects in financial markets using the range as a
measure of volatility, which is a very good alternative to the most frequently used proxy, the so–
called realized volatility (see, for example, Andersen et al., 2000, 2003), which requires, for its
computation, a large collection of intra–daily data. Engle (2002) and Engle and Gallo (2006) in-
troduce the Multiplicative Error Model (MEM) to represent the (non–negative) volatility levels
with multiplicative disturbances without resorting to logarithms. This has the great advantage of
producing direct forecasts of volatility and not of log–volatility; moreover the Quasi Maximum
Likelihood interpretation ensures consistency of parameter estimators. A first extension of this

1The latter implies that one market leads the movements of the other one.
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model, present also in Engle and Gallo (2006), provides the inclusion of asymmetric effects in
the dynamics of volatility, depending on the sign of returns; this model is called Asymmetric
MEM (AMEM). Otranto (2013) has extended this model to include asymmetric spillover ef-
fects, developing a factorial model with two unobserved components representing the proper

volatility of the asset and the volatility due to spillover effects respectively. He calls this model
the Asymmetric MEM with Spillover effects (SAMEM).

A different characteristic is the similarity of the dynamics of the assets of interest and that of
the dominant market: the movements of the volatility of the assets are similar to the movements
of the volatility of the dominant market, also in quiet periods.2 The similarity of the dynamics
can be studied in terms of similarity of the models representing the dynamics of the volatilities.
For this purpose Piccolo (1990) proposed an AR distance between ARMA processes, extended
to the GARCH case in Otranto (2008), which can be easily extended to the AMEM case.

In this work we propose to classify the markets in terms of unconditional volatility levels,
spillover effects from a dominant market and similar dynamics of volatility with respect to a
dominant market. For this purpose we will develop some indicators derived from the SAMEMs,
which are the models chosen to represent the volatility. We will use a hierarchical clustering
algorithm to classify the assets according to these indicators, representing the previous three
characteristics.

We will consider the US market as the origin of the spillovers. This choice is natural because
of the dominance of this market in the world finance; for example, the collapse of the US
housing prices and the consequent subprime mortgage crises started in the US in the summer
2007 were transmitted first to the US financial market and then to all the world markets with a
clear spillover effect (Penny Angkinand et al., 2010). This fact has generated different reactions
in the world markets and also in the single assets.

The paper is organized as follows: in the next section we briefly recall the SAMEM and
we introduce the main tools used in this analysis. In Section 3 we apply our methodology to a
set of 37 assets belonging to the Euro Stoxx 50 index, using the S&P500 index to represent the
US market; in the same section we will provide evidence for the robustness of the classification
in terms of the unconditional volatility derived from the SAMEM, comparing it with the same
indicator derived from the AMEM, and we will emphasize the differences in classification when
we consider or not the effects of the dominant market. Some final remarks will conclude the
paper.

2 Statistical Tools

In this section we will describe the tools (models, indices, distances and classification algorithm)
that will be adopted to perform the classification proposed.

2As said, the spillovers are typical in turmoil periods and their effect is transmitted with a lag; the similarity of
dynamics is referred to similar movements in the full span considered.
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2.1 The model

The AMEM is discussed in Engle and Gallo (2006), who develop the MEM basic idea of Engle
(2002). The main hypothesis of the model is that the volatility yt of a certain financial asset
is obtained as the product of the time varying conditional expectation of yt (call it µt) and a
stochastic non-negative error term εt, which follows a Gamma distribution depending only on
one unknown coefficient a. The unobservable factor µt follows a GARCH(1,1) dynamics with
asymmetric effects due to the sign of the zero median returns rt of the asset at the previous time.
Formally:

yt = µtεt, εt ∼ Gamma(a, 1/a) ∀t
µt = ω + αyt−1 + βµt−1 + γDt−1yt−1

Dt =

{
1 if rt < 0

0 if rt ≥ 0

(2.1)

The Gamma distribution is used because, as shown in Engle and Gallo (2006), it is a very
flexible distribution to represent a non-negative disturbance; moreover the dependence on just
one parameter provides a mean equal to 1, so that µt is the expected value of yt (the variances
of εt and yt are 1/a and µ2

t/a respectively). Under sufficient conditions for the stationarity of
the model (ω > 0; 0 ≤ α, β, γ; α+ β + γ/2 < 1), the unconditional mean of volatility is given
by:

uA =
ω

1− α− β − γ/2
(2.2)

It could be considered as the long–run level of volatility, which represents a sort of level of risk
of the asset.

The extension of model (2.1) to include spillover effects was provided by Otranto (2013).
The idea is that the conditional mean µt can be decomposed into the product of two factors,3

representing the volatility transmitted from the dominant market (the spillover effect; call it ξt)
and the proper volatility of the asset (call it ζt), which includes the volatility due to idiosyncratic
effects, eventually also including spillover effects from other markets. The SAMEM adopted
here is defined as:

yt = µtεt εt ∼ Gamma(a, 1/a) for each t
µt = ζt + ξt

ζt = ω0 + α0yt−1 + β0ζt−1 + γ0D0,t−1yt−1

ξt = α1xt−1 + β1ξt−1 + γ1D1,t−1xt−1

(2.3)

where Di,t is a dummy variable assuming value 1 when the return of the corresponding market
is negative, 0 otherwise; i = 0 represents the market (asset) with volatility yt, i = 1 represents
the dominant market with volatility xt.

Substituting ζt and ξt in the second equation of (2.3) with the two successive equations, the

3In Otranto (2013) a general case with more factors is illustrated.
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unconditional expected value of µt is given by:

uS =
ω0 + 1−β0

1−β1 (α1 + γ1/2)x̄

1− α0 − β0 − γ0/2
(2.4)

where x̄ is the mean of the volatility of the dominant market. We expect that the difference
between uA and uS , calculated on the same time series, is not large because both the indices
represent the unconditional mean of the full volatility. In equation (2.4) we can separate the
effect of the dominant market from the rest of the volatility. This is given by:

tS =
(α1 + γ1/2)x̄

1− β1
(2.5)

The ratio
fS =

tS
uS

(2.6)

will provide the fraction of the full volatility level due to the spillover effect from the dominant
market.

2.2 AMEM distance

Another important aspect is relative to the dynamics of the volatility in the time span consid-
ered. Similar dynamics could underline similar co–movements, which could be interpreted as
similar behaviors of the assets. To compare them, it is necessary to define a distance measure
between the dynamic parts of the data generating processes. Otranto (2008) introduced the idea
of a distance between GARCH processes, a simple extension of the AR metric proposed by
Piccolo (1990). Let A and B be a certain asset and the dominant market respectively. For our
purposes, we consider that both the asset and the dominant market follow an AMEM, as in
(2.1), and we will extend the AR metric in this framework; then we will extend this metric to
measure the distance between a SAMEM (representing the dynamics of assetA) and an AMEM
(representing the dynamics of the dominant market B).

First, we explicit the ARMA representation of the AMEM (2.1) for the volatility series yi,t
(i = A,B); it is given by :

yi,t = ωi + (αi + γiDi,t−1 + βi)yt−1 − βi(yi,t−1 − µt−1) + (yi,t − µt) (2.7)

Then we rewrite the ARMA(1,1) representation in (2.7) as an AR(∞) process; following the
iterative procedure illustrated in Brockwell and Davis (1996) to explicit the AR coefficients in
correspondence of each lag, it is easy to show that:

yi,t =
∞∑
j=0

[
(αi + γiDi,t−1)β

j
i

]
yi,t−j−1

5



Substituting the dummy with its expected value (recalling that the returns have zero median, it
is equal to 1

2
), the AR distance is defined as the Euclidean distance between the two sequences

of AR coefficients of the volatilities of asset A and market B; extending the results of Otranto
(2010), this AMEM distance is given by:

dA =

[
(αA + γA/2)2

1− β2
A

+
(αB + γB/2)2

1− β2
B

− 2(αA + γA/2)(αB + γB/2)

1− βAβB

]1/2
. (2.8)

Along the lines of Otranto (2010), it is possible to show that (2.8) is a metric. If dA = 0, the
two volatilities follow the same dynamics; in practice values of dA near to zero show evidence
for very similar movements in the volatilities of A and B.

Estimating a SAMEM for asset A with xt = yBt, there are two different equations express-
ing the dynamics of yAt, one relative to ζt and the other to ξt. We can consider the proper

volatility AMEM distance:

dζ =

[
(α0A + γ0A/2)2

1− β2
0A

+
(αB + γB/2)2

1− β2
B

− 2(α0A + γ0A/2)(αB + γB/2)

1− β0AβB

]1/2
(2.9)

and the transmitted volatility AMEM distance between A and B:

dξ =

[
(α1A + γ1A/2)2

1− β2
1A

+
(αB + γB/2)2

1− β2
B

− 2(α1A + γ1A/2)(αB + γB/2)

1− β1AβB

]1/2
. (2.10)

To derive the global distance between asset A and market B we could use a weighted mean
of dζ and dξ, using the proportions of proper and transmitted volatility present in the asset A as
weights. In other words, we define the statistic:

dS = dζ(1− fS) + dξfS (2.11)

where fS is derived from (2.6).4

2.3 The classification steps

The grouping of the set of financial time series can be made using classical clustering algo-
rithms. For this purpose we will use the agglomerative hierarchical clustering method, adopting
the complete linkage criterion and the Euclidean distance to merge the two most similar clusters
at each step. The number of clusters k is detected with the support of a quality index, the C

4The statistic (2.11) is the sum of two metrics, so it is again a metric. Anyway, we will use it as an index to
measure the distance between the dynamics of the volatility of the asset A and the dynamics of the volatility of the
dominant market B.
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index (Hubert and Schultz, 1976), defined as:

C =
SW − Smin
Smax − Smin

(2.12)

where SW is the sum of the distances over all pairs of patterns from the same cluster. Let n
be the number of those pairs; Smin and Smax are the sum of n smallest and largest distances,
respectively, between all the pairs of points in the entire data set. The C index falls in the
interval [0, 1]; smaller values of C indicate a better clustering performance. In our strategy,
starting from the cluster with 1 group, following the hierarchical clustering, we will choose the
clustering with k groups if its C index is lower than the C index of the cluster with k−1 groups
and not greater than the C index of the cluster with k + 1 groups.

For the purposes of this paper, we perform three sets of experiments:

1. Classification of the unconditional volatilities: We compare the classifications of the
assets obtained from (2.4) (SAMEM-based classification) and from (2.2) (AMEM-based
classification). If they are similar, this would be evidence for the robustness of the clas-
sification because different models provide similar clustering. The similarity of the clus-
tering can be based on the Rand index (Rand, 1971, Hubert and Arabie, 1985):

Ra =

∑k
i=1

∑k′

j=1

(
nij

2

)
− [
∑k

i=1

(
ni

2

)
][
∑k′

j=1

(
nj

2

)
]/
(
n
2

)
[
∑k

i=1

(
ni

2

)
+
∑k′

j=1

(
nj

2

)
]/2− [

∑k
i=1

(
ni

2

)
][
∑k′

j=1

(
nj

2

)
]/
(
n
2

) ,
where k is the number of groups in the SAMEM clustering, whereas k′ is the number of
groups in the AMEM clustering; ni and nj represent the number of series belonging to the
group i of the SAMEM clustering and the group j of the AMEM clustering respectively;
nij is the number of series belonging to the group i in the SAMEM case and assigned to
the group j in the AMEM clustering. Ra lies in the interval [0, 1] and it is equal to 1 in the
case of coincidence between the two classifications, whereas it is 0 when the differences
between them are at their maximum.

2. Other SAMEM–based classifications: the clustering algorithm is used to classify the
series according to the following criteria:

(a) classifying the series with similar proportion of transmitted volatility (2.6);

(b) classifying the series with similar dynamics with respect to the dominant market,
using the statistic (2.11).

3. Multiple classification: the several characteristics of the assets derived from the SAMEM
specification (uS , fS and dS) are considered simultaneously, obtaining groups of series
with similar unconditional volatility levels, similar proportions of transmitted volatility
from a dominant market, similar dynamics with respect to the dominant market.
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3 Empirical Evidence for European Assets

We have considered 37 of the 50 assets compounding the Euro Stoxx 50 index. The list of
the assets considered is shown in Appendix A, where we show the symbols which we will use
hereafter, the starting date and the number of observations considered for each time series. The
dominant market is the US and we use the S&P500 index to represent it. The bivariate SAMEM
analysis involves the use of pairs of series with different lengths, due to different closing days of
each market; for each model we have considered only the common dates of the two series. For
each series the volatility has been measured using the intra–daily log–range with the correction
proposed by Parkinson (1980), given by:

yi,t =
[
ln(phi,t)− ln(pli,t)

] [1

4
ln(2)

]1/2
where phi,t and pli,t are the highest and lowest price respectively, of the asset (market) i during the
day t. For a comparative analysis of the properties of the daily range with respect to alternative
measures of volatility, see Patton (2011).

We perform the three sets of experiments described in the previous section, distinguishing
them by subsections. For this purpose 37 SAMEMs and 37 AMEMs are estimated; the tables
with the estimation results are shown in Appendix B.

3.1 Classification of the unconditional volatilities

First, we have applied the clustering algorithm described in the previous section to classify the
37 assets by different levels of unconditional volatility, obtained alternatively from the AMEM
(equation (2.2)) and the SAMEM ((equation (2.4)). In both cases we obtain three groups, that
can be interpreted as groups of low (L), medium (M) and high (H) unconditional level of volatil-
ity; they are illustrated in Figure 1.

Observing the SAMEM classification (right panel) we notice that a large part of the assets (25
assets) belong to the medium group, with an average level of volatility equal to 1.12, whereas
the low and high unconditional volatility groups are composed of 7 (average level equal to 0.91)
and 5 (average level equal to 1.40) assets respectively. Also the groups seem clearly separated
in the graph, in the sense that the presence of a jump between the levels of two groups seems
clear. It is interesting to notice that the cluster of low volatility is composed only by French
and Italian assets, whereas eleven of the twelve German assets belong to the cluster of medium
volatility. The AMEM classification (left panel) shows small differences with respect to the
SAMEM case: the only different classification is relative to three assets (11DE, 1IE, 1NL)
which belong to group M in the SAMEM classification, whereas they are included in group H
in the AMEM classification. The average levels of each group in the AMEM case are 0.93,

8



Figure 1: Clustering based on the unconditional volatility (left panel) derived from the AMEM
and from the SAMEM (right panel)

1.20, 1.37 respectively. A Rand Index equal to 0.85 is a further support to the intuition that the
two classifications are very similar, so the classification of the unconditional volatility derived
by the SAMEM can be considered as a robust starting point for our successive experiments.

The different behavior of the series belonging to different groups is clear observing Figure
2, where the volatility of three Italian series (one for each group) is shown. It is evident how
the series belonging to the first group (1IT) has small levels of volatility, with some jumps in
correspondence to the main global shocks, such as the Afghan war in October 2001 and the
Iraqi war in March 2003, or the more evident 2008-09 financial crisis. The series belonging
to Group M (5IT) shows more similar levels of volatility in the span considered, with a higher
level (in average) with respect to the previous one. The last series (4IT), belonging to Group
H, has a similar behavior with respect to 1IT, but the peaks and the general level of volatility
are higher. The horizontal lines, in correspondence of the unconditional level of volatility uS of
each series, represent the long–run level of the volatility of each series.

9



Figure 2: Volatility series of three assets, belonging to different unconditional volatility level
groups, derived from the SAMEM (1IT to Group L, 5It to Group M, 4IT to Group H). The black
lines are in correspondence to the unconditional volatility level.
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3.2 SAMEM-based classification

The 37 assets have been classified for different levels of unconditional volatility (2.4). Stop-
ping our classification at this point and interpreting the volatility as a proxy of risk, we could
conclude that the group H is the most risky, whereas the group L the most tranquil because less
volatile.

Following our procedure, the 37 assets in terms of proportion of transmitted volatility are
now classified with respect to the total. In the right panel of Figure 3 we can observe the com-
position of the 4 groups obtained following the C index criterion; in this case the lowest group
is the one with the lowest proportion of transmitted volatility, whereas the highest group is the
one most affected by the volatility of the dominant market. In particular, it can be noted that a
large part of the assets (15 assets) belong to the cluster with a low-medium (LM) proportion of
transmitted volatility (average proportion equal to 0.13), whereas both the clusters of low (L)
and medium-high (MH) transmitted volatility are composed of 9 assets, with an average propor-
tion equal to 0.06 and 0.19 respectively. Four assets (with an average equal to 0.26) compose
the cluster with high (H) proportion of transmitted volatility. To understand the differences be-
tween the four clusters, we show in Figure 4 the proportion of transmitted volatility from S&P
to four German assets (ratios ξt

ζt+ξt
): 4DE (belonging to cluster H), 12DE (cluster MH), 9DE

(cluster LM), 7DE (cluster L). It is evident how the transmitted volatility is almost constant in
the series 7DE, whereas it follows the US shocks in the other cases, with different magnitude.
The horizontal black lines, representing the value of fS for each series, show that this ratio is a
synthesis (a sort of average) of the information deriving from the graphical inspection.

It is apparent that this classification seems really different from the previous one and our
feeling is confirmed in Table 1, where the 37 assets are classified in terms of the two criteria. In
particular the two classifications can be considered independent, as confirmed by a chi-squared
statistic equal to 6.09, with the corresponding p-value (derived from a chi-squared distribution
with 6 degrees of freedom) equal to 0.41.

Table 1: Distribution of the assets in terms of unconditional volatility clustering and proportion
of transmitted volatility clustering

Proportion of Unc. Vol.
Transm. vol. L M H Total
L 1 6 2 9
LM 5 9 1 15
MH 0 7 2 9
H 1 3 0 4
Total 7 25 5 37

11



Figure 3: Clustering based on the unconditional volatility (left panel) and the proportion of
transmitted volatility (right panel) derived from the SAMEM.
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Figure 4: Series of the proportion of transmitted volatility of four assets, belonging to different
fS ratios groups, derived from the SAMEM (4DE to Group H, 12DE to Group MH, 9DE to
Group LM, 7DE to Group L). The black lines are in correspondence of the fS ratio of each
series.

The lesson we learn from this experiment is that, if we consider the risk of an asset linked
to the unforecastable movements of the price of the asset, the unconditional volatility level can
not be interpreted as a proxy of the risk because it considers the full dynamics of the volatility,
included the part due to spillover effects that could be expected observing the movements of
the dominant market. A more correct risk-based classification of the 37 assets is illustrated in
Figure 5; each panel represents the three different groups of unconditional volatility (from the
lowest on the left to the highest on the right). Within each panel, the assets by different degrees
of transmitted volatility are classified; the groups at the top of each panel are characterized by a
high proportion of transmitted volatility. In practice, based on this classification, the less risky
asset is 2IT, whereas the assets more risky are 3DE and 4IT.

On the other hand, in particular for investments and disinvestments in the short term, it
might be convenient to classify the assets in terms of similar dynamics with respect to the
dominant market, using the distance (2.11). We have re-run the clustering algorithm for this
index, obtaining the results illustrated in Figure 6. Six clusters are obtained, but several assets
follow a dynamics very similar to the S&P index, with a dS statistic close to zero; we label
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the six groups with the letters from A to F, where A is the group with more similar dynamics
with respect to S&P, whereas F the most different. The three clusters in the lower part of the
graph (A, B and C), which contains the three groups of assets with more similar dynamics with
respect to the S&P index, contain 29 of the 37 assets. The assets 3DE and 2NL (which belong
to the group of high unconditional volatility, but with low and medium-high proportions of
transmitted volatility respectively) show the lowest similarity in the dynamics with respect to
S&P (Group F). Notice that 4FR and 4IT belong to Group A, but they were classified as assets
with high unconditional volatility. In practice the movements of the volatility of an asset that,
at a first stage, we could evaluate as risky, could be in part expected following the US market
movements.

Figure 5: SAMEM-based classification within the three unconditional volatility groups (L, M,
H) in terms of proportion of transmitted volatility
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Figure 6: SAMEM-based classification in terms of distance from the S&P model.

To show that the statistic dS in (2.11) really measures the similarity in the dynamics of the
volatility of an asset A and the volatility of the dominant market B, we have calculated the
following loss functions (Root Mean Squared Difference of Variations -RMSDV- and Mean
Absolute Difference of Variations -MADV):

RMSDV =
√∑

t (∆yA,t −∆yB,t)
2

MADV =
∑

t |∆yA,t −∆yB,t|
(3.1)

where ∆yi,t = yi,t − yi,t−1 (i = A,B). In practice we verify if variations in asset A are
similar, in sign and magnitude, with respect to the variations in market B. In the extreme case
of equal movements, the two loss functions are equal to zero. In Table 2 we show the average
values of RMSDV and MADV within each group. It can be noted how the two indicators
increase when the group is more distant with respect to the benchmark represented by the S&P
dynamics, confirming the interpretation of the distance as a measure of the similarity between
the dynamics of two volatility series.
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Table 2: Average values of two loss functions within each group obtained classifying the assets
by dS (standard deviations in parentheses).

Group RMSDV MADV
A 0.035 0.056

(0.031) (0.013)
B 0.086 0.058

(0.022) (0.013)
C 0.096 0.064

(0.018) (0.011)
D 0.117 0.079

(0.015) (0.008)
E 0.152 0.100

(0.024) (0.012)
F 0.182 0.110

(0.040) (0.017)

3.3 Multiple classification

As a consequence of the previous comments, a logical classification of the assets is based on a
clustering which considers simultaneously the level of volatility, the proportion of transmitted
volatility and the similarity of the dynamics. In other words, we classify the 37 series consid-
ering the variables uS , fS and dS . The hierarchical algorithm and the C index identify nine
clusters, as shown in Table 3; the mean of each variable within each cluster helps to interpret
the groups.

The groups are ordered by increasing unconditional volatility, but their characteristics are
clearly different; in the following points they are briefly described.

• Group 1: it is characterized by a low volatility level but a high degree of transmitted
volatility. Its dynamics is not very different from the one of S&P (Group C in terms of
the clustering based on dS). The asset 2IT is the only one belonging to this group and
seems to be the less risky asset.

• Group 2: a low volatility level, but also a lower proportion of transmitted volatility with
respect to the previous group and a higher similarity in the dynamics with respect to S&P.

• Group 3: a medium-low level of volatility with a small transmitted volatility proportion.

• Group 4: a medium-low level of volatility with a higher transmitted volatility proportion.

• Group 5: a medium-high level of volatility with a medium transmitted volatility propor-
tion and a strong similar dynamics with respect to S&P.

• Group 6: a medium-high level of volatility with a high transmitted volatility proportion
and a different dynamics with respect to S&P.
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Table 3: Multiple SAMEM–based classification in terms of uS , fS , dS .
Group 1 Mean

uS fS dS
0.873 0.287 0.095

Assets
2IT

Group 2 Mean
uS fS dS

0.925 0.127 0.059
Assets

1FR 6FR 7FR 12FR 15FR 1IT 3IT
Group 3 Mean

uS fS dS
1.052 0.084 0.061

Assets
7DE 8DE 9DE 10DE 11DE 3FR 8FR

Group 4 Mean
uS fS dS

1.084 0.196 0.094
Assets

1BE 1DE 2DE 12DE 5FR 11FR 1NL
Group 5 Mean

uS fS dS
1.211 0.103 0.058

Assets
5DE 2FR 10FR 13FR 1IE 5IT 3NL

Group 6 Mean
uS fS dS

1.229 0.235 0.102
Assets

4DE 6DE 14FR
Group 7 Mean

uS fS dS
1.364 0.097 0.033

Assets
4FR 4IT

Group 8 Mean
uS fS dS

1.402 0.194 0.152
Assets

9FR 2NL
Group 9 Mean

uS fS dS
1.479 0.057 0.170

Assets
3DE
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• Group 7: a high level of volatility with a low transmitted volatility proportion and a strong
similar dynamics with respect to S&P.

• Group 8: a high level of volatility with a medium-high transmitted volatility proportion
and a different dynamics with respect to S&P.

• Group 9: a high level of volatility with a low transmitted volatility proportion and a
different dynamics with respect to S&P. The only asset belonging to this group, 3DE, is
clearly the most risky asset.

4 Final Remarks

The volatility of a certain asset is often considered as a proxy of the risk of the same asset and the
classifications are made according to this idea. But the degree of risk is particularly linked to the
possibility of expecting the volatility movements, in particular to the sensitivity of the asset to
the shocks or the dynamics of a dominant market; in this case, the investor possesses important
information which can guide his choices. In a clustering framework it is important to identify
measures to evaluate the propensity to absorb the spillovers deriving from a dominant market,
and the similarity of the dynamics of the volatility series overtime. We propose a model-based
approach, developing the SAMEM of Otranto (2013), which extends the AMEM of Engle and
Gallo (2006) to include the spillover effects deriving from dominant markets. Extending the
definitions of unconditional volatility and AR distance (Piccolo, 1990) we are able to define
three measures representing the volatility level, the proportion of transmitted volatility and the
similarity of the dynamics, respectively. Applying a hierarchical algorithm and obtaining the
number of clusters following a quality criterion (C index), our approach provides groups of
assets different with respect to the classification based only on the volatility levels: groups with
similar volatility levels are split according to different degrees of dependence and similarity
with respect to the dominant market.

Of course this approach could be extended to include also other variables of interest, such
as the volume of exchanges, economic indicators or statistical indicators (such as the degree of
asymmetry, the autocorrelation, etc.; see, for example, Wang et al., 2006).

The choice of a stopping rule, such as the one based on the value of the C index, helps
users in the detection of the number of groups, which is automatic. Of course, users possessing
statistical skills could base their choice on the number of clusters observing the dendrogram or
using alternative stopping rules. The C index criterion favors the clear separation of the groups
with an optimal clustering quality; on the other hand it could favor a large number of groups,
but, in the portfolio choices, this could be an advantage because the investor can choose among
several different portfolio compositions with different degrees of risk.

The choice of the MEM approach is due to the recent development of this family of models
and the possibility to model a measure of the volatility directly, without resorting to the use
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of logarithms or other transformations. Of course, it is possible to extend our approach using
different models, which can incorporate the effects of dominant markets on the asset of interest
and that can provide measures of the spillover effects as in the SAMEM case.

The experiments could be repeated using alternative measures of volatility (we have used
the intra-daily log-range) or considering several dominant markets (as in the general SAMEM
formulation of Otranto, 2013).
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A Appendix A: The data set

The data set used in the experiments illustrated in this work is referred to 37 of the 50 assets
composing the Euro Stoxx 50 index, downloaded from the website of Yahoo Finance. We have
selected only the series available for the period 2000-2012. All the series end on 18 January
2013 (except CRG.IR that ends in 15/10/2012). The starting date is different, depending on the
availability of the data. In Table 4 we show the code used for each asset in the Figures and
Tables, the starting date and the number of observations.
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Table 4: List of the 37 assets considered in the classification experiments

Code Market Asset Starting date Observations
1BE Belgium ANHEUS.-BUSCH INBEV 01/12/2000 3148
1DE Germany Allianz SE 03/01/2000 3361
2DE Germany BASF SE 03/01/2000 3376
3DE Germany Bayer AG 03/01/2000 3374
4DE Germany Bayerische Motoren Werke Aktiengesellschaft 03/01/2000 3374
5DE Germany Daimler AG 03/01/2000 3375
6DE Germany Deutsche Bank AG 03/01/2000 3375
7DE Germany Deutsche Telekom AG 03/01/2000 3376
8DE Germany E.ON SE 03/01/2000 3380
9DE Germany M 03/01/2000 3235
10DE Germany RWE AG 28/11/2000 3385
11DE Germany SAP AG 03/01/2000 3375
12DE Germany Siemens Aktiengesellschaft 03/01/2000 3395
1FR France Danone 23/02/2000 3394
2FR France BNP Paribas SA 03/01/2000 3384
3FR France Carrefour SA 03/01/2000 3395
4FR France AXA Group 03/01/2000 3390
5FR France VINCI S.A. 03/01/2000 3394
6FR France Essilor International SA 03/01/2000 3384
7FR France Total SA 03/01/2000 3387
8FR France France T 03/01/2000 3395
9FR France Societe Generale Group 03/01/2000 2578
10FR France GDF Suez S.A. 03/01/2000 3395
11FR France LVMH Moet Hennessy Louis Vuitton 03/01/2000 3395
12FR France L’Oreal SA 03/01/2000 3088
13FR France Compagnie de Saint-Gobain 03/01/2000 3395
14FR France Schneider Electric S.A. 03/01/2000 3395
15FR France Unibail-Rodamco SE 03/01/2000 3395
1IE Ireland CRH PLC 01/01/2003 2493
1IT Italy Enel SpA 09/07/2001 3003
2IT Italy Eni SpA 18/06/2001 2992
3IT Italy Assicurazioni Generali S.p.A. 03/01/2000 3378
4IT Italy Intesa Sanpaolo S.p.A. 03/01/2000 3336
5IT Italy UniCredit S.p.A. 03/01/2000 3395
1NL Holland ASML Holding NV 03/01/2000 3385
2NL Holland ING Groep N.V. 01/01/2003 3388
3NL Holland ROY.PHILIPS 01/08/2000 3366
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B Appendix B: Parameter Estimates

In this Appendix we show the estimation results for the AMEM (Table 5) and SAMEM (Table 6)
coefficients that we have used to derive the indicators representing the unconditional volatilities
(2.2) and (2.4), the proportions of transmitted volatility (2.6) and the distances (2.11) . To save
space we have not inserted the standard errors of each estimator; this information is available
on request.
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Table 5: Estimate of AMEM coefficients for each asset and S&P500.
Asset ω0 α0 β0 γ0 a
1BE 0.03 0.14 0.81 0.04 3.93
1DE 0.03 0.16 0.78 0.07 3.77
2DE 0.03 0.14 0.80 0.07 3.65
3DE 0.02 0.24 0.73 0.04 2.96
4DE 0.02 0.14 0.82 0.04 3.55
5DE 0.03 0.13 0.82 0.05 3.52
6DE 0.02 0.16 0.80 0.05 3.44
7DE 0.02 0.14 0.83 0.03 4.05
8DE 0.02 0.12 0.83 0.06 5.18
9DE 0.01 0.12 0.84 0.04 4.33
10DE 0.01 0.14 0.82 0.06 3.44
11DE 0.02 0.12 0.83 0.07 4.55
12DE 0.02 0.12 0.85 0.05 3.92
1FR 0.02 0.16 0.81 0.02 4.29
2FR 0.03 0.16 0.78 0.07 4.46
3FR 0.02 0.13 0.84 0.04 4.33
4FR 0.02 0.13 0.83 0.07 4.28
5FR 0.03 0.15 0.79 0.05 3.83
6FR 0.02 0.15 0.79 0.07 3.91
7FR 0.01 0.13 0.83 0.05 4.02
8FR 0.02 0.16 0.80 0.04 3.91
9FR 0.03 0.14 0.81 0.04 4.38
10FR 0.02 0.20 0.75 0.07 5.13
11FR 0.02 0.18 0.78 0.05 4.57
12FR 0.01 0.11 0.85 0.06 4.87
13FR 0.01 0.12 0.84 0.06 3.46
14FR 0.02 0.13 0.82 0.07 2.47
15FR 0.01 0.14 0.82 0.06 3.98
1IE 0.01 0.09 0.90 0.00 3.27
1IT 0.03 0.14 0.79 0.07 4.87
2IT 0.03 0.15 0.79 0.06 3.87
3IT 0.02 0.17 0.79 0.06 3.96
4IT 0.02 0.11 0.85 0.06 4.40
5IT 0.04 0.14 0.79 0.03 3.66
1NL 0.02 0.10 0.86 0.04 3.76
2NL 0.02 0.13 0.82 0.05 3.59
3NL 0.03 0.16 0.79 0.04 5.79
S&P500 0.01 0.07 0.85 0.12 6.50
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Table 6: Estimate of SAMEM coefficients for each asset
Asset ω0 α0 β0 γ0 a α1 β1 γ1
1BE 0.04 0.13 0.76 0.02 4.04 0.50 0.17 0.07
1DE 0.02 0.17 0.73 0.07 3.80 0.96 0.01 0.00
2DE 0.04 0.14 0.73 0.06 3.69 0.93 0.01 0.03
3DE 0.00 0.26 0.72 0.00 2.99 0.40 0.00 0.16
4DE 0.01 0.16 0.76 0.04 3.58 0.98 0.01 0.00
5DE 0.03 0.13 0.81 0.02 3.55 0.62 0.06 0.09
6DE 0.00 0.18 0.72 0.05 3.46 0.99 0.01 0.00
7DE 0.01 0.14 0.83 0.02 3.42 0.49 0.00 0.10
8DE 0.03 0.13 0.78 0.04 3.93 0.58 0.04 0.11
9DE 0.02 0.18 0.75 0.05 4.61 0.97 0.00 0.01
10DE 0.03 0.15 0.80 0.02 5.86 0.59 0.00 0.10
11DE 0.02 0.13 0.81 0.06 3.46 0.98 0.00 0.01
12DE 0.02 0.12 0.78 0.06 3.49 0.97 0.00 0.02
1FR 0.03 0.15 0.78 0.00 4.37 0.46 0.06 0.11
2FR 0.02 0.16 0.78 0.05 4.50 0.57 0.03 0.09
3FR 0.02 0.12 0.83 0.02 4.41 0.66 0.00 0.12
4FR 0.02 0.11 0.84 0.04 4.34 0.53 0.05 0.15
5FR 0.06 0.16 0.68 0.05 3.88 0.91 0.01 0.03
6FR 0.03 0.13 0.81 0.01 4.12 0.73 0.00 0.09
7FR 0.02 0.11 0.82 0.04 5.26 0.58 0.04 0.10
8FR 0.01 0.13 0.83 0.05 4.03 0.98 0.00 0.00
9FR 0.00 0.19 0.73 0.06 3.99 0.98 0.00 0.01
10FR 0.02 0.13 0.81 0.02 4.46 0.44 0.06 0.13
11FR 0.02 0.11 0.80 0.06 4.45 0.97 0.00 0.02
12FR 0.02 0.12 0.82 0.01 4.40 0.46 0.08 0.10
13FR 0.02 0.12 0.81 0.07 4.57 0.97 0.00 0.01
14FR 0.03 0.11 0.82 0.02 3.98 0.53 0.12 0.12
15FR 0.05 0.14 0.77 0.01 3.73 0.46 0.06 0.11
1IE 0.01 0.10 0.88 0.00 3.27 0.96 0.00 0.01
1IT 0.02 0.13 0.80 0.04 3.96 0.56 0.02 0.10
2IT 0.04 0.12 0.72 0.06 4.99 0.85 0.03 0.05
3IT 0.02 0.15 0.81 0.02 3.94 0.56 0.00 0.09
4IT 0.02 0.12 0.83 0.04 3.62 0.44 0.02 0.13
5IT 0.02 0.13 0.82 0.05 2.47 0.58 0.00 0.07
1NL 0.00 0.13 0.82 0.05 3.77 1.00 0.00 0.00
2NL 0.00 0.21 0.68 0.08 5.21 0.99 0.00 0.01
3NL 0.02 0.11 0.82 0.05 4.90 0.96 0.00 0.02
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