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Abstract

We present a new genuine jackknife estimator for instrumental variable inference
with unknown heteroskedasticity. It weighs observations such that many-
instruments consistency is guaranteed while the signal component in the data is
maintained. We show that this results in a smaller signal component in the many-
instruments asymptotic variance when compated to estimators that neglect a part of
the signal to achieve consistency. Both many-instruments and many-weak-
instruments asymptotic distributions are derived using high-level assumptions that
allow for the simultaneous presence of weak and strong instruments for different
explanatory variables. Standard errors are formulated compactly. We review briefly
known estimators and show in particular that our symmetric jackknife estimator
performs well when compared to the HLIM and HFUL estimators of Hausman et
al. in Monte Carlo experiments.
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1 Introduction

The presence of unknown heteroskedasticity is a common setting in microeconometric re-
search. Inference based on many instruments asymptotics, as introduced by Kunitomo
(1980), Morimune (1983) and Bekker (1994), shows 2SLS is inconsistent under homoske-
dasticity. Bekker and Van der Ploeg (2005) show LIML is many-instruments inconsistent
as well under heteroskedasticity. A number of estimators have been considered, including
the two step feasible GMM estimator of Hansen (1982), the continuously updated GMM
estimator of Hansen, Heaton and Yaron (1996), the grouping estimators of Bekker and
Van der Ploeg (2005), the jackknife estimators of Angrist, Imbens and Krueger (1999), the
modified LIML estimators of Kunitomo (2012) and the HLIM and HFUL estimators of
Hausman et al. (2012). In particular this last paper has been important for the approach
that we present here.

Our starting point is aimed at formulating a consistent estimator for the noise compon-
ent in the expectation of the sum of squares of disturbances when projected on the space
of instruments. That way a method of moments estimator can be formulated similar to the
derivation of LIML as a moments estimator as described in Bekker (1994). Surprisingly
the estimator can be described as a symmetric jackknife estimator, where ‘omit one’ fitted
values are used not only for the explanatory variables but instead for all endogenous vari-
ables including the dependent variable. Influential papers on jackknife estimation include
Phillips and Hale (1977), Blomquist and Dahlberg (1999), Angrist, Imbens and Krueger
(1999), Donald and Newey (2000), Ackerberg and Deveraux (2003). Our genuine jackknife
estimator shares with LIML the property that the endogenous variables are treated sym-
metrically in the sense that it is invariant to the type of normalization, as discussed by
Anderson (2005).

Hausman et al. (2012) and Chao et al. (2012a,b) use a LIML version of the JIVE2
estimator of Angrist, Imbens and Krueger (1999). The JIVE2 estimator treats endogenous

variables symmetrically, but it is not a genuine jackknife estimator. In case of homoske-



dasticity and many weak instruments, while assuming the number of instruments grows
slower than the number of observations, the authors show the HLIM estimator is as efficient
as LIML. Thus it seems the efficiency problems of jackknife estimators noted in Davidson
and McKinnon (2006) are overcome. Here we show there is room for improvement. The
symmetric jackknife estimator is a genuine jackknife estimator and it has a signal com-
ponent that is larger than that found for HLIM, resulting in a smaller component in the
asymptotic covariance matrix. Monte Carlo experiments show it performs better than
HLIM and its Fuller modifications in terms of the bias-variance trade-off.

The asymptotic theory allows for both many instruments and many weak instruments
asymptotics. Influential papers in this area include Donald and Newey (2001), Hahn,
Hausman and Kuersteiner (2004), Hahn (2002), Hahn and Inoue (2002), Chamberlain and
Imbens (2004), Chao and Swanson (2005), Stock and Yogo (2005), Han and Phillips (2006),
Andrews and Stock (2007) and Van Hasselt (2010)). Our results are formulated concisely.
They are based on high level assumptions where the concentration parameter need not
grow at the same rate as the number of observations and the quality of instruments may
vary over explanatory variables.

The plan of the paper is as follows. In Section 2 we present the model and some earlier
estimators. Section 3 uses a method of moments reasoning to formulate a heteroskedasti-
city robust estimator that is subsequently interpreted as a symmetric jackknife estimator.
Asymptotic assumptions and results are given in Section 4 and proved in the Appendix.
Section 5 compares asymptotic distributions and Section 6 compares exact distributions

based on Monte Carlo simulations. Section 7 concludes.



2 The Model and some estimators

Consider observations in the n vector y and the n x g matrix X that satisfy

y=Xp+e, (1)

X=ZII+V, (2)

where the g vector B and the k x g matrix IT contain unknown parameters, and Z is an
n X k observed matrix of instruments. Similar to Hausman et al. (2012) we assume Z to
be nonrandom, or we could allow Z to be random, but condition on it, as in Chao et al.
(2012). The assumption E(X) = ZIT is made for convenience and could be generalized
as in Hausman et al. (2012), or as in Bekker (1994). The disturbances in the n x (1 + g)
matrix (e, V') have rows (g;, V;), which are assumed to be independent, with zero mean

and covariance matrices

g 012
Ei -
Oo1; Yo
The covariance matrices of the rows (y;, X;), i = 1,...,n, are given by
1 4 1 0
2, = o : (3)
0 I, B 1,

Throughout we use the notation where P = Z(Z'Z)~'Z’ has elements P;; = e,Pe;, and
e; and e; are conformable unit vectors.
The estimators that we consider are related to LIML which is found by minimizing the

objective function

(y— XB)P(y — XB)

QLIML(ﬁ) = (y _ X,B)/(In — P)(y - X/B)’




The LIML estimator and Fuller (1977) modifications are given by

B={X'PX - \X'(I, - P)X}) " {X'Py — \;X'(I, - P)y},
)\f:)\_a/(n_k)a

A= 1//\max[{(y7 X)/P<y7 X)}_l (y7 X)/<In - P)(y7 X)],

where . indicates the largest eigenvalue. For o = 0 LIML is found, which has no
moments under normality. For a = 1 the Fuller estimator is found. Under normality and
homoskedasticity, where the matrices 3; do not vary over ¢ = 1,...,n, it has moments
and is nearly unbiased. If one wishes to minimize the mean square error, o = 4 would be
appropriate. However, as shown by Bekker and Van der Ploeg (2005), LIML is inconsistent
under many-instruments asymptotics with heteroskedasticity.

Similarly, the Hansen (1982) two-step GMM estimator is inconsistent under many-

instruments asymptotics. It is found by minimizing

n

—1
Qeu(B) = (y — XB)'Z {Z 6?2221} Z'(y - XB), (5)
i=1
where 62 = (y; — X;3)? and B is a first stage IV estimator such as 2SLS or LIML. A
many-instruments consistent version is given by the continuously updated GMM estim-
ator of Hansen, Heaton and Yaron (1996), which is found by minimizing the objective
function (5)) where 62 is replaced by 62(3) = (y; — X;3)%. Newey and Windmeijer (2009)
showed this estimator and other generalized empirical likehood estimators are asymptot-
ically robust to heteroskedasticity and many weak instruments. Donald and Newey (2000)
gave a jackknife interpretation. However, the efficiency depends on using a heteroskedastic
consistent weighting matrix that can degrade the finite sample performance with many
instruments as was shown by Hausman et al. (2012) in Monte Carlo experiments.

To reduce problems related to the consistent estimation of the weighting matrix Bekker

and Van der Ploeg (2005) use clustering of observations. If this clustering, or grouping, is



formulated as a function of Z, it is exogenous and continuously updated GMM estimation
can be formulated conditional on it. Bekker and Van der Ploeg (2005) give standard errors
that are consistent for sequences where the number of groups grows at the same rate as the
number of observations. Contrary to LIML, the asymptotic distribution is not affected by
deviations from normality. It uses the between group heteroskedasticity to gain efficiency,
yet it loses efficiency due to within group sample variance of the instruments.

Another way to avoid problems of heteroskedasticity is to use the jackknife approach.
The jackknife estimator, suggested by Phillips and Hale (1977) and later by Angrist, Imbens
and Krueger (1999) and Blomquist and Dahlberg (1999) uses the omit-one-observation
approach to reduce the bias of 2SLS in a homoskedastic context. The JIVE1 estimator of

Angrist, Imbens and Krueger (1999) is given by

anm = (X/X)_lxlya (6)
i / —1 ! _ . .
eX = X, - Z,(Z'Z2)'Z'X thZ7
1 —hy
where h; = P, and ¢ = 1,...,n. It is robust against heteroskedasticity and many-

instruments consistent. The JIVE2 estimator of Angrist, Imbens and Krueger (1999) is
not a genuine jackknife estimator but it shares the many-instruments consistency property

with JIVEL. It uses X = (P — D)X and thus minimizes a 2SLS-like objective function

QJIVE2<IB) = (y - Xﬁ)/{P - D}(y - XB), (7)

where D = Diag(h) is the diagonal matrix formed by the elements of h = (hy,..., h,)".
JIVE2 is consistent under many instruments asymptotics as has been shown by Ackerberg
and Deveraux (2003). However, Davidson and McKinnon (2006) have shown that the
jackknife estimators can have low efficiency relative to LIML under homoskedasticity.

Therefore, Hausman et al. (2012) consider jackknife versions of LIML and the Fuller



(1977) estimator by using the objective function

(y — XB){P - D}y — XPB)
(y—XB)(y—XB)

QHLIM (6) =

The estimators are given by

B={X'(P-D)X —-aX'X} '{X(P-D)y—aX'y}, (9)
. (n+ca—-c
o= ———="",
n—+co—-c

& = Amin[{(y, X) (v, X)} " (y,X){P — D}(y, X)].

For ¢ = 0, L:]HLIM is found, and ¢ = 1 produces BHFUL. Hausman et al. (2012) consider
many-instruments and many-weak-instruments asymptotics and show the asymptotic dis-
tributions are not affected by deviations from normality. The estimators perform much
better than the original jackknife estimators.

Kunitomo (2012) considered modifications of the LIML objective function result-
ing in many-instruments consistent estimators under heteroskedasticity. The modification
amounts to replacing the diagonal elements of P by values whose difference with k/n van-
ishes asymptotically. The resulting estimators have the same many-instruments asymptotic
distribution as HLIM. By replacing the diagonal elements of P by values that converge to
their average value the LIML modifications lose signal just as HLIM. As the asymptotic
requirement does not define a unique estimator, there are many possibilities to use for
finite-sample comparisons. Kunitomo (2012) claims one of these improves on HLIM in

finite samples.

3 A method of moments and jackknife estimator

In order to handle heteroskedasticity the grouping estimators use data clustering. In many

cases this means information will be lost in the process, although between-group het-



eroskedasticity is used to improve efficiency. The jackknife approach maintains original
instruments to a larger extent, but seems to remove possibly relevant information on 3
contained in the matrix (y, X ) D(y, X). As an alternative to the objective function Qyypy,
we consider a method-of-moments approach that maintains the signal component in the
expectation of (y, X) P(y, X) and aims at estimating the noise component consistently.
Thus we try to maintain the information contained in the data to a larger extent without
adding much additional noise. The estimator can be interpreted as a symmetric jackknife
estimator.

In order to formulate a method-of-moments estimator similar to LIML, we consider

minimizing a criterion given by

Q(B) = (10)

where, conditional on the instruments Z, A and B are fixed positive semidefinite matrices.

We find the following conditional expectations

E{(y,X)A(y,X)} = ( g) II'Z'AZII(B, 1, +ZA“Q“ (11)

E{(y,X)B(y,X)} = ( g) II'Z'BZI1(8,1,) ZB”.Q (12)

The method-of-moments approach amounts to solving these equations for 3. Typically

this occurs for solving

B {(y, X) Ay, X)} — 1 E{(y. X)B(y. X)} (_15) —o, (13)

when the signal matrix IT'Z'(A — |B)Z 11 is positive definite, preferably large, and the
noise component vanishes: y " | A; 82, =1 " | By ‘QZEI
For example, LIML uses A = P and B = I,, — P, which allows for the solution 3 if

YActually, only Y7, A;92,(1,8) = Y., Bif2(1,—8')" needs to hold, which amounts to
Z?:l 14“0'12 = lZ?:l .B“O'Z2 and Z?:l AiiO'Qh' = ZZ?:l B“-a'gu.




all matrices £2; are equalﬂ In case of heteroskedasticity, however, the noise term does not
drop out which renders LIML many-instruments inconsistent.

Hausman et al. (2012) achieve consistency by using A = P—D,so A; =0,i=1,...,n
and B = I,,. That way alone is enough to solve for 3. By removing the diagonal
from P, however, the signal contained in (3, 1,)'II'Z'DZII (3, 1,) is removed as well.

In our approach we maintain the signal matrix by requiring Z’AZ = Z'Z and Z'BZ =
O and we remove the noise component by requiring only that the diagonal of A is a scalar
multiple of the diagonal of B, i.e. | =tr(A)/tr(B) and A; = By, i = 1,...,n. In that
case ([13)) is satisfied and the many-instruments consistency of the minimizer of Q(3) would
follow easily.

Without loss of generality we use [ = 1, so A and B should have the same diagonal, and
A = P+ A where A satisfies Z' AZ = O. To stay close to LIML we would like Z?:l N;; 82,
to be small. As A;;82;; = h; 82, + A;82;, and E{(y, X)'B(y, X)} = > | Aif2;, we find
o A2, is small if (y, X)'B(y, X) is a good estimator, with small bias, of " | h;§2;.

We formulate such an estimator for £2; intuitively as

(I, — P)e;ei(I, — P)

2,=(y,X) X 14

(y’ ) e;(In _ P)el (y7 )7 ( )
which amounts to choosing

B=(I,-P)D(I, - D) '(I, - P). (15)

This fixes the diagonal elements of A as the difference between the diagonal elements of

B and P[] A choice for A with such diagonal elements and satisfying ZAZ = O is given

2A less restrictive sufficient requirement is that the covariances between the error term e; and all
endogenous variables do not vary.
h.
3We find A” = —h' + Z?:l 1_9}” e;(In — P)eje;-(In — P) = h + W + Zg;ﬁz 1— J P2 =

h + ZJ 17 ]h P7. As both terms on the right hand side are bounded, so is [Aj;| < h; max;(h l)/{l -

maxl( )} It maxl(h ) — 0, then A;; — 0, but that will not happen with many instruments if k/n — 0
does not hold. Yet k/n may be small in practice.




A:PD@-DWP—;th—m1+D@-D)T} (16)

To further motivate the choice of A we observe that the minimizer of Q(3) in can

be interpreted as a normalized symmetric jackknife estimator. That is

BSJIVE = arggnin{Q(/B)} = a’rgﬁrrlin{QSJIVE(IB)}7 (17)

_ (y—Xp)Cy—Xp)
QSJIVE(/B) - (y—X,B)/B(y—X,B), (18)
C=A-B, (19)

=P-D(I,-D)'+{PD(I,- D) "'+ (I,— D)"'DP} /2
= (P +P')/2,
P=P-D(I,-D)'+D(I,-D)'P

— (I, - D)"(P - D).

The jackknife estimator Byvg = (X’X)_lX’y in @ is based on X = PX. So, if we

define § = Py, then we find the numerator of the objective function is given by

(v~ XBYCly~ XB) = (5~ XB)(y ~ XB) + L (y~ XB)(5 — XB)

=(y - XB)(y — XP).

That is to say, genuine jackknife prediction is used for all endogenous variables symmet-
rically, including the dependent variable. As the statistical problem is basically symmetric
in the endogenous variables, it seems a good property the symmetry is maintained in the
jackknifing procedure, so that the estimator is invariant with respect to the particular type

of normalization.



We find the signal matrix is larger for SJIVE than for HLIM since

Ig
Bl X)(P - D). X)) = (]

9

B{(y. X)C(y, X)} = ( ) 02/ ZI(3.1,) >

) IZ'ZI(B,1,) - (?

g

) OZ'DZI(B.1,). (20)

In Section [5] we find as well that the signal component in the many-instruments asymptotic
covariance matrix is smaller for SJIVE than for HLIM for cases where the heteroskedasticity
Is not extreme.

To compute the symmetric jackknife estimator and its Fuller modifications, let X =
(X1, X5) and Xy = Z,, where Z = (Z1,Z,), so the explanatory variables in X, are
assumed to be exogenous. Let B = (8,3,) be partitioned conformably. Let C* =
C — AX,(X},X,) ' X} A, then the SJIVE estimator and its Fuller modifications (SJEF)

can be computed by

3= <X’CX - ;\XBX> - (X’Cy . ;\XBy> , (21)
A= \—a/tr(B),

A= i | {(y. X2V Bly. X0} (9. X0)C"(y. X))

For a =0 BSJWE is found. Based on the Monte Carlo experiments we would use a Fuller
modification BSJEF with @ = 2. Using Theorem (1| below we compute standard errors as
the square root of the diagonal elements of the estimated covariance matrix, which is

formulated concisely as

Var(8) = (X'CX)"'X' (CDXC + D.C®D.) X(X'CX)™", (22)

—~

X =X — 6 %61,

where C = C—AB and C® is the elementwise or Hadamard product C'«C'. The diagonal

matrix Dg has the residuals é = y — X3 on the diagonal. Finally, 62 and &, are found

10



based on £2 = (y, X ) B(y, X)/k, which is transformed to X similar to 3.

4 Asymptotic distributions

We consider many instruments and many weak instruments parameter sequences to de-
scribe the asymptotic distributions of the heteroskedasticity robust estimator SJIVE as
given in . Our formulation allows for the presence of both weak and strong instru-
ments within a single model. The derivation is based on high-level regularity conditions,
since primitive regularity conditions could be formulated very similar to earlier ones. For
example, the ones used by Hausman et al. (2012) could be used, although our results hold

more generally.
Assumption 1. The diagonal elements of the hat matriz P satisfy max; h; <1 —1/c,.

Assumption 2. The covariance matrices of the disturbances are bounded, 0 < X; < ¢, Iy,

and satisfy k=' Y"1 e.Be;X; — X.

We partition X' as we partitioned X; and use {2 defined similar to , where X is used
instead of X;. So we find lim,, ., k™' E{y, X)B(y, X)} = £2, and E(X'CX) = H, where

H is the signal matrix
H=I1I'Z'ZII. (23)

Assumption 3. plim,_, k' (y,X)B(y, X) = £, and plim,, , H'X'CX =1,

Let 7min = Amin(H ) be the smallest eigenvalue of the signal matrix.
Assumption 4. r.;, — co.

Let Q%,ve(B) = kQsyve(B), then the many-instruments asymptotic approximations are

based on the following high-level assumption.

11



Assumption 5. Many instruments: k/ry, — 7, and

920* 12 520" _1/28 i} )
{ afigésﬁ)} W—ﬁ):—{—gggg@} QS#E(@—FOPO)NN(O, P),

where @ = E-Y20E-12 and

_120%Q5vu(B) - ~1/29Q%1v5(B) a
1/2 SJIVE 1/2 1/2 SJIVE 2

e = nh_)rgo Var {Hl/Q—aQ:gg('g) + op(l)} . (24)

= = plim

The 0,(1) term in is defined explicitly in in the Appendix.

Using Assumptions the many-instruments asymptotic distribution of SJIVE can
be formulated as in Theorem [I] given below. Its derivation is given in the Appendix. In
particular and show that Assumption |5 boils down to the asymptotic normality
of

H'?*(B—8)=H *(ZII + V) Ce + 0,(1), (25)

‘N/:V—EUlg/O'Q. (26)

Instead of the high-level Assumption [5] more primitive assumptions can be considered for
specific cases that are sufficient for Assumption [5| to hold true.

For example, consider primitive conditions rather similar to the assumptions of Haus-

man et al. (2012). Assume, in addition to Assumptions , and 4| the disturbances

have bounded fourth-order moments and let
ZII =n'?ZIID,,S, (27)

where S is nonsingular, D, = Diag(p,) and p, is a g-vector with elements p;, that

satisfy either u;, = y/n or pj,/v/n — 0. Furthermore, assume the existence of H =

12



limy, oo n "I Z' ZIT > 0, F = lim,, oo 'Y, 02IT' Z'Ce;e,C ZII, and

v, = lim k¥ 'G, (28)
n—oo

G - Z Z 0,37 (J?§i22 + &i21&;21> 3 (29)
i=1 j=1

3, = Var(e;, Vi). (30)

Together with the assumption k/rp;, — 7y, these conditions imply Assumption [5| as is
further discussed in Appendix [8.4 Of course these conditions are not necessary and other
less restrictive specifications may be sufficient as well.

The asymptotic distribution of SJIVE can be formulated based the high-level assump-

tion.

Theorem 1. Many instruments If Assumptions 1-5 are satisfied, then ,é = BSJWE 1S con-
sistent and (X CX)V2(8—B) < N(0, ¥), where C = C—AB and ¥ = lim,,_,.. H V/2(F+
G)H /2, where F = Y1 | 0?II'Z'Ce;e,CZII and G s defined in (29).

=1 "1

To formulate a consistent estimator for ¥ we need a condition that guarantees that &;
converges to ¢; uniformly in probability. This requires uniform convergence of || Z;IT (,é —
B)|| to zero, which is guaranteed by the assumption below. Let d; denote the ith diagonal
element of the projection matrix Py = ZII(II'Z'ZIT)'II'Z'.

Assumption 6. max;<;<, d; — 0.

The restricted specification , where Py = P, and H = lim,, oo IIZ' ZIT /n >0, is

sufficient for Assumption [6] to hold true.

Theorem 2. If Assumptions[1H0 are satisfied, a consistent estimator for W is given by

¥ — (X'CX)"'2X' (CD:C + D.C®D;) X(X'CX)'/?,

X = (X —67%61,)

13



where X, Dg, € =y — XB, C®? | 6% and 641 are defined as in .

The proofs of Theorems [T and [2] are given in the Appendix.

The asymptotic covariance matrix ¥ has two terms. Under large-sample asymptotics,
when k/rpim — 0 the second term vanishes. As the second term may be relevant in the
finite sample, the many instruments asymptotic approximation to the finite distribution
is usually more accurate than the large-sample approximation as was shown by Bekker
(1994). Under homoskedasticity 1 = 0, i = 1,...,n, so the second part of G drops out.

When instruments are weak the second term may be dominant and the first term may
even be negligible. Chao and Swanson (2005) used many-weak-instruments asymptotic
sequences and showed the first term actually vanishes, while estimators such as LIML
under homoskedasticity are still consistent. Hausman et al. (2012) derived the many-
weak-instruments asymptotic distribution of HLIM and HFUL as given in @ We have a
similar result, although in our formulation the asymptotic covariance matrix need not be
singular as a result of the inclusion of endogenous variables with different signal strengths.

Let Tmax = Amax(IT'Z' ZIT) be the largest eigenvalue of the signal matrix.

Assumption 7. Many weak instruments: k/ry.c — 00, kY2 /rpum — 0 and

_ azQ;IIVE(/ﬁ) 2 — aQ;JIVE(/@) a
/ —_— — f— / ——ee Y
K gep BB =k H () SN (0, Bu),
b, = nlim Var {/{;_1/2—8 ‘%’g( ) + Op(l)} . (31)

The 0,(1) term in is defined explicitly in in the Appendix. Instead of the normality

of , Assumption |7| boils down to the asymptotic normality of
kTV2PH(B - B) = k™ V2(ZIT + V) Ce + 0,(1) = k™/?V'Ce + 0,(1).

Theorem 3. Many weak instruments If Assumptions [}f] and [] are satisfied, then
B = By is consistent and k:’l/QXCA’X(B—B) ~ N(0, @), where ,, is defined in (28).

14



For the actual computation of standard errors the many weak instruments asymptotic

distribution is not needed, since the many-instruments standard errors remain consistent.

5 A comparison of asymptotic distributions

Comparing many-instruments asymptotic distributions usually does not give a clear-cut
ordering of asymptotic covariance matrices with positive semidefinite differences. Many-
instrument asymptotic distributions are good for detecting inconsistency and to formulate
standard errors, but to use them for efficiency comparisons would be too restrictive. Only in
restrictive classes such efficiency exists. Typically such classes, as in Kunitomo (2012), ex-
clude relevant alternatives, which makes them less useful for making relevant comparisons.
For example, contrary to large-sample asymptotic approximations, there is no guarantee
that using more instruments increases asymptotic efficiency. Dropping a weak instrument
may well increase efficiency. Consequently, it might happen that estimators that treat high-
signal instruments poorly perform quite well when instruments have low signal strength.
In parts of the high-dimensional parameter space one estimator may perform well, while
in other parts other estimators dominate.

Under homoskedasticity Anderson et al. (2010) described a class of estimators for
which LIML is many-instruments asymptotically efficient. However, in an interesting
example Hausman et al. (2012, p.224) show that under homoskedasticity LIML is not
many-instruments asymptotically efficient relative to HLIM. Similar results can be found
in Van der Ploeg and Bekker (1995), Hahn (2002), and Chioda and Jansson (2009). With
unknown heteroskedasticity things become more complicated, since instruments and vari-
ances may covary in ways that affect the asymptotic distributions substantially. Under
heteroskedasticity Kunitomo (2012) describes a class for which a modified LIML estim-
ator is asymptotically optimal. However, similar to the case of homoskedasticity, it is
rather restrictive as it excludes relevant alternatives. Interestingly under homoskedasti-

city LIML is not many-instruments asymptotically efficient relative to its heteroskedastic
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modification. So, the property of asymptotic efficiency as it is commonly required with
large-sample asymptotic theory is simply too strong for inferential comparisons based on
many-instruments asymptotic theory.

In addition to these difficulties, the accuracy of the asymptotic approximation to the
finite-sample distributions is relevant as well. For example, the continuously updated
GMM estimator may perform quite well when compared to the other estimators in terms
of asymptotic variances, but its actual performance in the finite sample shows a differ-
ent picture. So comparing the performance of the estimators and the accuracy of the
asymptotic approximations in Monte Carlo simulations remains important.

Before turning to the Monte Carlo experiments, however, we can make a comparison of
the signal components in the many-instruments asymptotic covariance matrices of SJIVE
and HLIM. To make a comparison we assume the heteroskedasticity is not extreme so
that a positive definite difference found under homoskedasticity is present as well in a
neighborhood of moderate heteroskedasticity.

For both SJIVE and HLIM the many-instruments asymptotic approximation to the
finite distribution of the estimators can be formulated as a normal distribution with mean

(3 and covariance matrix H~'(C*) {F(C*) + G(C*, X*)} H~(C*) where

H(C*=1II'Z'C*ZI, (32)
F(C*) =) o0/II'Z'C*e;e,C*ZII, (33)
=1
G,z =) > c (g]?;\igz + &izla—;zl) .V, =Vi—¢e08,/0%, (34)
i=1 j=1

and the submatrices of X, have been computed as in (30). For SJIVE we have C* = C,
and X* = X as defined in and Assumption [2] respectively. For HLIM C* = P — D
and X* =n~'Y"" | X should be used. Furthermore, when we assume homoskedasticity

and normality, the many-instruments asymptotic distribution for LIML is found for C* =

P — k(n—k)\(I, - P).
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Under homoskedasticity the signal part H'FH ' of LIML is smaller, in terms of
positive definite differences, than both SJIVE and HLIM, but the difference is smaller for
SJIVE than it is for HLIM when the diagonal elements h; of P are not too big, as follows

from Theorem [] below, which is proven in Appendix 8.5

Theorem 4. Let the difference between the signal components in the many-instruments
asymptotic covariance matrices of HLIM and SJIVE under homoskedasticity be given by
o?Y, where ¥ = H Y (C*)IT'Z'C*ZITH ' (C*) — HY\(C)II'ZC?*ZITH'(C), and
C*=P—-D. If D<1I,/2 thenY >0 and rank(Y") = rank{(I,, — Pyn)DZII}, where
Pyn=ZI(II'Z'ZII) 'II'Z'.

As shown in the signal matrix is larger for SJIVE than for HLIM since E(X'C X)) >
E{X'(P — D)X}. As aresult we find, based on Theorem [4] that under homoskedasticity
the signal component H'FH ! in the aymptotic covariance matrix is smaller for SJIIVE
than for HLIM. If the difference is positive definite, the ranking of the signal components

also holds when heteroskedasticity is sufficiently moderate.

6 Monte Carlo simulations

We compare the finite sample properties of the HLIM and SJIVE and their Fuller modi-
fications given by @ and , respectively. We use the same Monte Carlo set up as
Hausman et al. (2012). The data generating process is given by y = ¢y + xf + € and
x = zm + v, where n = 800, v = § = 0. The strength of the instruments is varied by
using two values 7 = 0.1 or 7 = 0.2, so that pu? = n7? = 8 and p? = 32, respectively.
Furthermore, z ~ N (0, I,,) and independently v ~ N (0,I,). The disturbances € are

generated by

1—p?
F g

where p = 0.3, ¢ = 0.86 and conditional on z, independent of v, w; ~ N (0, Diag(z)?)

€=vp+ (pw; + Yw,),

and wy ~ N (0, ¢¥?I,). The values ¢ = 0 and ¢ = 1.38072 are chosen such that the R-
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squared between &7 and the instruments equals 0 and 0.2, respectivelyﬁ The instruments

Z are given for k = 2, k =5 and k = 15 by matrices with rows (1, 2;), (1, z;, 22, 23, 2}) and

17710

2

(1,24, 22, 23, 2}, 2;bys, . . ., 2;b10;), respectively, where independent of other random variables,
the elements by;, ..., bo; are i.i.d. Bernoulli distributed with p = 1/2. We used 20,000
simulations of estimates of /.

Figure [1| plots the nine decile ranges—between the Hth and 95th percentiles—and
the median bias of Fuller modifications HFUL for ¢ = 0,1, 2,3,4,5, and SJEF for a =
0,1,2,3,4,5, when R:f?'z = 0. As observed by Hausman et al. (2012), LIML is many-
instruments consistent for this case and no big differences were found between HLIM and
LIML. Here we see that the HFUL and SJEF estimators are very similar as well and the
differences are due mainly to the degree of Fullerization.

When R§2‘Z = 0.2 this situation changes. Table (1| compares the outcomes for HFUL
when ¢ = 1 and SJEF when a = 2. We see that SJEF dominates HFUL in terms of median
bias and nine decile range. The rejection rates of SJEF are smaller than the ones found
for HFUL, indicating that confidence sets based on SJEF are more conservative. Figure
plots the median bias and nine-decile ranges for all Fullerizations when R§2\z =0.2. We
find SJEF performs better for this setup than HFUL. That is to say, HFUL with ¢ = 1
is dominated by SJEF with a = 2. Other choices of these coefficients result in estimators
with varying location and spread characteristics. When instruments are weak Fullerization

is useful since allowing for some bias reduces the spread considerably. We find that this

trade-off is better for SJEF than for HFUL.

4R§2|Z = var{E(e2|2)}/[var{E(e?|2)} + E{var(¢?|2)}].
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Figure 1: R% = 0: Median bias against the Nine decile range of HFUL with ¢ =
0,1,2,3,4,5 from right to left, and SJEF for a = 0,1,2,3,4,5 from right to left, based on
20,000 replications.
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Figure 2: R§2|Z = 0.2: Median bias against the Nine decile range of HFUL with ¢ =
0,1,2,3,4,5 from right to left, and SJEF for a = 0,1,2,3,4,5 from right to left, based on
20,000 replications.
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Median bias

Nine decile range

Rejection rates

p?> k HFUL SJEF HFUL SJEF HFUL SJEF
8 2 0071 0.067 1484 1.393 0.033  0.026
8 o 0.093 0.058 2211 1.959 0.042  0.021
8 15 0.104 0.069 2.853 2.464 0.044  0.030
32 2 0.017 0.016 0.850 0.846 0.048  0.043
32 5 0.022 0.011 0972 0.947 0.045 0.036
32 15 0.018 0.009 1.171 1.099 0.047  0.039

Table 1: R3_2|Z = 0.2: Median bias, Nine decile range and 5% Rejection rates for HFUL

(c=1)

and SJEF (a = 2) based on 20,000 replications.
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Figure 3: R;‘Z = 0.2, u? = 8: QQ plots for quantiles of HFUL with ¢ = 1 and SJEF with
a = 2 based on 5,000 replications against quantiles of their asymptotic normal approxim-

ations.

Concerning the accuracy of the asymptotic approximations we find that in particular

HFUL is more spread out than its asymptotic approximation if k > ZE This holds for

both strong and weak instruments. Figure [3] gives QQ plots for the heteroskedastic case,

SKunitomo (2012) noticed the difference between the finite-sample distribution of HLIM and its asymp-

totic approximation as well.
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of HFUL with ¢ = 1 and SJEF with o = 2, based on 5000 replications, against quantiles

= (.2, with weak instruments, ;> = 8. It plots quantiles of the empirical distributions

of the normal distribution with a variance given by element (2,2) of the covariance matrix
{H(C")+ fX*} " {F(C*) + G(C*, X*)} {H(C*) + fX*}~!, where the matrix functions
have been defined in —, and for SJEF we used C* = C, X* = Y and f = a = 2.
For HFUL we used C* = P—D, X* =n~ 'Y " X and f = nc/(n—c), where ¢ = 1. For
the choice ¢ = a = 0 the asymptotic normal approximation has a larger variance but still
the empirical distribution of HFUL has fatter tails than the normal. For SJEF we find the

asymptotic approximation is more accurate.

7 Conclusion

We considered instrumental variable estimation that is robust against heteroskedasticity.
A new estimator has been based on a method-of-moments reasoning and interpreted as
a symmetric jackknife estimator. It preserves the signal component in the data. Asymp-
totic theory based on high level assumptions, which allow for both many instruments and
many weak instruments, resulted in a concise formulation of asymptotic distributions and
standard errors. We found a smaller signal component in the asymptotic variance when
compared to estimators that neglect a part of the signal to achieve consistency. Sufficient
primitive conditions were given as well. A Monte Carlo comparison with the HFUL es-
timator of Hausman et al. (2012) showed the Fuller modification of symmetric jackknife
estimator performs better in terms of trade-off between bias and spread. It showed as well
the asymptotic approximation of the finite-sample distribution of the symmetric jackknife

estimator is more accurate.
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8 Appendix

8.1 Derivation of Theorem 1

To derive Theorem (1| we use the notation § = (1,-3")', M = (y, X) A(y,X) and S =

(y, X)'B(y, X). So (y,X)Ce = (M — S)d. We find

E{M — S} =0,

Var [{M - S}(S] =E {(y> X)/C(ya X)(S(S,(ya X),C<y7 X)}

= EZ Z yv Ce 6 )66/(3/7 ) 6]6 C(y7 )

i=1 j=1

_EZE y, C’eleCy, "—EZZEzE] 1] yv ) je;(an)a

=1 j=1

_Z ( )H'ZCeleCZH(ﬁI —1—22 2!21»—1—_(21»55’_()]-)_

=1 j=1

Using Assumption [2 we find §2; < (14 8'8)c2I,,; and

i i C? (0792 + £2,66'12;) < 2¢,(1 + 8'6) i i C2I

=1 j=1 i=1 j=1

=2¢2(1 4 8'6) tr(C*) 1,44,
which is of order O(k), since Cj; = 0 and, for i # j,
Ch =Pl = h) ™ + (1= hy)™'}? < dci Py
for i,7 = 1,...,n by Assumption [l and tr(P?) = k. Consequently,

&' (M — 8)86 = O,(k'?).
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For the first term we find

Zo’? <ﬁ > H’Z’Ceie;CZH(ﬁ,Ig) S Cu <I?
g

I ) I'zZ'C*ZI(3,1,)
=1

=, (?) mz {In + EDQ(In — D)‘Q} ZII(B,1,)
0121 ﬂ/ !/ !
< ey, (1 + Z) (I ) m'z'zmB,1,),

g

so by Assumption |5, where k/ryin — v we find, using H = II'Z' ZIT as in (23)),

H7'20,1,)(M — 8)8 = O,(1). (40)

The first derivative of the objective function is given by

aQ;JIVE(ﬁ) _ 0'Sé ! 6’ Mo
o3 2 {tr<B>} (0-1;) {M‘S - < 556 ) 5‘5}

I 00 (S (s

Using Assumptions [3] and [5| we find,

L[&S8 ) pro1/20Q5mve . .
_§{tr(3)}H 1/27@ = H '{(0,I,) — 0 %058} {M - S}5 -

ENY2/ |\ Y2 (0.1,)86 oz 1
Ny et — /2 / .
(Tmin> (rmin> { 6'So o2 } k o {M S}(s

=H ?{(0,I)) — 0 2028} {M — S}5 +0,(1). (41)

The second derivative of the objective function is given by

Qine(B) [ 885 588 &' M6
opos {tr<B>} (01, <2W - Ig“) {M - (6’55 ) S} "

56'S 0
(2555~ %) (1)

_g{t‘ilg)}_l (0,I,)(M — S+ R) (Z)
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where

&S Ss ,
R_—Q(M—S)aé,sa—25,565(M—S)—5(M—5)5<

S _,S68s
5'S5  (8'S6)?

Due to and we find

0 _
I ) H Y2 =0,(1).

9

HI/Q(O,IQ)R<

Consequently

/ 20*
: { 9'So }H—1/2MH—1/2 = H'*(0,1,) {M - S} (?

-1/
(B 0800 g)H 12 4 0,(1).

Based on Assumption [3] we thus find

1/2 azQ;JIVE (IB)

H =508

H'? =20 {H'?X'CXH?} + 0,(1)

o2 {H "?E(X'CX)H '} + 0,(1) = 2021, + 0,(1). (42)

2 ¥
So, & = 207 21,. Assumption Y| says 7y, — 00, S0 implies that Ay, (%{W) —

00, and by Assumption |5 we find 3 -2+ 8. Finally we find, applying B7), and ,

¥ = lim [H—I/Z {Zafﬂ’Z’Ceie;CZH

n—00 -
=1

+ ZZ (-3 L) (015 + Beiel3)) (—%,g)'} Hm] _

=1 j=1

8.2 Derivation of Theorem [2

To compute standard errors, we estimate Var [{M — S}8] using (36)). Asé; = &;—Z,I1 (B—
B)— (,8 B) and Hl/Q(ﬂ B) = Opy(1), rmin — 00 and £2; = O(1), we may use &; instead

of &; if max;<;<, || Z,JTH~/?|| = o(1), which is guaranteed by Assumption [§] A consistent
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estimator for ¥ is then given by

¥ = (X'CX)V20,1,) - 626,68\ Var [{M — SV8] x
g

{(0.1,) — 6%, } (X'Cx)2,
where

Var [{M — 5}8] =Y 2y, X)'Ceie,Cly, X) +

The estimated covariance matrix for B is given by

Var(8) = (X'CX)™! {(o, I,) - &*2&215'} Var [[M — §}8]  x
{(0.1) — 672560, } (X'Cx) ™

= (X'CX) (X — 6 %61, <6’D§6’ + Déé@)Dé) (X — 67 %61)(X'CX)7Y,
which is .

8.3 Derivation of Theorem [3

Instead of we now have, using Assumptions [3| and ,

kY2 (8188 0Q%,e(8)
2 {tr<B>} B

k’_l/Q {(07 Ig) — 0'_20'21(5,} (M — 5)5 —

0,I1)S6 o _ ,
(03522}

=k12{(0,1,) — 0 205,8'} (M — S)8 + 0,(1). (43)
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Using we thus find
W, = lim k! {Zafﬂ'Z’CeiegCZH

n—00 —
+3 Y e <—%,Ig> (025, + Ziere| %)) (—%,Ig)/}

i=1 j=1

. R 021 021 !

= nh—>r20k 1 Z Z 07,2] <—?, Ig> ((7']22‘Z + 21'616/123‘) (—?, Ig> .
i=1 j=1

As remains valid under Assumption [7|we find the result of Theorem 2, where ﬁ 53

since ropin/k? — 00.

8.4 Primitive assumptions

In order to arrive at asymptotic distributions for their estimators Hausman et al. (2012)
and Kunitomo (2012) considered quite primitive assumptions. They applied martingale
central limit theorems for quadratic forms as used by Chao et al. (2012) and Anderson et
al. (2007), respectively. Here we consider the conditions of specification (27), which are
very similar to the ones used by Hausman et al. (2012). The only differences are that their
matrix P — D is replaced by our matrix C, and their vector Y. 91,/ >, 07 is replaced by
our oy, /0?.

To verify this, observe that ryy, and p2 = minj<;<, u?, have the same growth rate.
Furthermore, if 2/ = €,Z 1, then the existence of the positive definite limit H implies the
existence of ¢, such that || Y. z;2!/n|| < ¢, and Anin(D_,; 2i2/n) > 1/c, for n sufficiently
large, and Y., [|]|*/n* — 0, as required[f]

The asymptotic normality of Assumption [5| can now be verified by following the steps
made in Hausman et al. (2012) to derive the asymptotic normality of HLIM. Care should

be taken when the martingale central limit theorem is applied. That is to say, Lemma A6

6The convergence Y, ||z;||*/n?* — 0 is implied by the convergence > {z/(>", ziz}/n)"1z;}?/n* — 0,
since Y, zz)/n — H > 0. Furthermore, Y ,{z/(Y; ziz/n)"'2:}2/n? = 3., d?, where d; is the ith
diagonal element of the projection matrix P,g. As ZL df < gmaxi<i<n d; and maxi<;<, d; — 0 since
S zizl/n — H, we find ¥, | zi]|*/n2 — 0.
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in Hausman et al. (2012), which is Lemma A2 of Chao et al. (2012), is formulated explicitly
in terms of the off-diagonal elements of P. For our purposes the result should remain valid
when the off-diagonal elements of C' are used instead of P. As C;; = Py;{1/(1 — h;) +

1/(1 = hy)}/2, we find as a result of Assumption [1} C7; < PJc%. Using this bound we

ijut

can check the conditions of the martingale central limit theorem when P;; is replaced by
Ci; in the same way as is done in the proof of Lemma A2 of Chao et al. (2012). Thus
Assumptions and k/ryi, — 7, together with the conditions of specification are

sufficient for Assumption [5

8.5 Derivation of Theorem

To prove Theorem [4] let

H =(IT'ZCzo)'mr'z’'c’zri(mn'z'czi),

H,={IT'Z'(P-D)ZII} 'II'Z'(P - D*’ZII {IT'Z' (P - D)ZIT} ",

AsPZ =Zand CZ ={I,— (1/2)(I, — P)I,— D) '} Z, we find Z'CZ = Z'Z and
7Z'C’Z=2'Z+(1/4)Z'(I,— D)"'(I, — P)(I, — D)"'Z. Hence,

H =H'TI'z'{1,+ (1/4)(I, - D)"'(I, - P)(I,— D)"'} ZITH,

H,={IT'Z'(I, - D)ZII} 'II'Z'(I, — D)*ZI {IT'Z' (I, — D)ZIT} .
Let L =ZITH /2 so L'L = I, and LL' = Pyy is a projection matrix and

H,=H'’L'{I,+(1/4)(I,- D)"'(I, - P)(I,— D)™} LH '/,

H,=H'*{L'(I, - D)LY 'L'(I, - D’L{L'(I, — D)L} ' H '/,
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After premultiplying by L’(I, — D)LH?"? and postmultiplying by its transpose, we find
H, < H, if and only if

0 < L'(I, - D){I, — Pzu — (1/4)Pzn(I, — D)"'(I, — P)(I, — D)"'Pyn} (I, - D)L =

L,(In - D)(In - PZH) {In - (1/4)(In - D)_1<In - P)(In - D)_l} (In - PZH)(In - D)L7

where the equality follows from (I, — P)L = O. This inequality is implied by D < (1/2)I,

since, if it holds,
In - (1/4)(171 - D)_I(In - P)(In - D)_l > In - (1/4)(171 - D)_2 > O’

which establishes H; < H, as required. Furthermore, the rank of the difference is given

by rank{(I, — Py)(I, — D)L} = rank{(I, — Pyy)DZIT}.
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