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Abstract

Several models have been developed to capture the dynamics of the conditional cor-
relations between time series of financial returns, but few studies have investigated
the determinants of the correlation dynamics. A common opinion is that the market
volatility is a major determinant of the correlations. We extend some models to cap-
ture explicitly the dependence of the correlations on the volatility of the market of
interest. The models differ in the way by which the volatility influences the corre-
lations, which can be transmitted through linear or nonlinear, and direct or indirect
effects. They are applied to different data sets to verify the presence and possible
regularity of the volatility impact on correlations.
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1 Introduction
Several studies have tried to uncover the determinants of correlations between time series
of financial returns, but few of them are based on econometric models that relate explicitly
the correlations to their determinants. This is an important topic, because the increase in
correlation is linked to the phenomenon of contagion (Forbes and Rigobon, 2002), so the
possibility to forecast the correlations is crucial in the study of spillover effects between
financial markets, as well as of portfolio choice, hedging, and option pricing.

Some of these studies link the correlations in financial markets to economic and geo-
graphical variables (see, for example, Karolyi and Stulz, 1996, and Bayoumi et al., 2007),
or to the market trend. In particular, Longin and Solnik (2001), using monthly data, no-
tice that correlations tend to increase in correspondence with negative returns, arguing
that correlations tend to increase in bear markets but not in bull markets. Modeling the
multivariate distribution tails, they derive the distribution of extreme correlations for a
wide class of return distributions and their finding is that high volatility per se does not
seem to lead to an increase in conditional correlations, whereas correlations are mainly
affected by the market trend.

Most empirical studies conclude that stock market correlations between countries in-
creases in crash times (see, for example, Forbes and Chinn, 2004). Knif et al. (2005),
using a logit functional relation between conditional correlation and conditional volatil-
ity, provide evidence that increases in the stock market volatility at the local and national
level push the correlations up between stock market returns. Many authors notice that the
correlations among international markets tend to increase when stock returns fall precip-
itously (see King and Wadhwani, 1990, Solnik et al., 1996, Chesnay and Jondeau, 2001,
Ang and Bekaert, 2002). Ramchand and Susmel (1998), by using a SWARCH model
(Hamilton and Susmel, 1994) with weekly data, obtain that the correlations between US
and other stock markets are 2 to 3.5 times higher when the US stock market is in a high
volatility state rather than a low one. Similarly, using a bivariate GARCH model, Longin
and Solnik (1995) found that the episodes of abnormal volatility of the U.S. stock market
are the main determinant of increasing stock market correlations. Boudt et al. (2012),
analyzing series of US deposit bank holding companies, notice a significant better per-
formance of regime switching models when switching probabilities are time-varying and
driven by the VIX index1 rather than constant. The common feeling is that in a time series
context, volatility is a major determinant of correlations, in particular in presence of high
volatility regimes.

These considerations are also implicitly present in other works. For example, En-
gle and Figlewski (2012) develop factorial models with time-varying correlations driven
by shocks correlated across stocks, finding a strong relation between the changes in the
implied volatilities of the stocks and the VIX index. In another study, Otranto (2012), ana-
lyzing the Italian market, finds a strong relationship between similar conditional variance
structure of two assets and their conditional correlation.

d’Actions de Recherche Concertées” 12/17-045”, granted by the ”Académie universitaire Louvain”. The
scientific responsibility is assumed by the authors.

1The VIX index is a kind of implied volatility index for the 30-day options on the Standard and Poor’s
500 index, introduced by the Chicago Board Options Exchange in 1993 (see CBOE, 2003, for details).

1



The one-factor ARCH of Engle et al. (1990), with the market return as factor, directly
implies that the conditional volatility of the market return is the single determinant of the
conditional correlations between the individual assets. The factor double ARCH intro-
duces idiosyncratic volatilities as additional determinants, and the factor DCC (Colacito
et al., 2011) enriches this structure to make it more flexible. See Engle (2009, Ch. 8) for
a review.

Accepting the idea that the volatility affects the degree of correlation, several ques-
tions arise to introduce this effect in an econometric model of correlations:

1. Are the correlations sensitive to the volatility itself or to the regime (low or high) of
the volatility?

2. Given a model that incorporates in some way a volatility effect, what is the marginal
impact of the volatility on the correlation between two assets? Is this effect varying
with the level of volatility?

3. Does the volatility affect the unconditional correlation (long-run effect) or the con-
ditional correlation (short-run effect)?

4. Does the volatility help in forecasting the correlations between assets?

In this paper we try to answer to these questions by proposing several models able
to capture in different ways the dependence of the conditional correlations of a set of
financial time series on the volatility of the market of interest. In particular we extend
the Dynamic Conditional Correlation (DCC) model of Engle (2002) in different ways: by
including the volatility, or its regime, as an additive independent variable, or by including
its effect in the value of the scalar coefficients of the DCC. The effect of changes in the
regime of the volatility is also considered by extending the Regime Switching Dynamic
Correlation (RSDC) model of Pelletier (2006) to include the effect of the volatility, or the
regime of volatility, in the transition probabilities.

The new models are applied to two data sets. A detailed analysis is provided for a case
with three assets, in which the volatility is represented by the VIX index; the explanation
of this case is useful to illustrate in detail the main characteristics of the proposed models
and the results. Then we extend the analysis to a data set constituted by the thirty assets
composing the Dow Jones industrial index.

The paper is structured as follows. In the next section we describe the models pro-
posed, whereas in Section 3 we detail the results relative to the example of three assets.
In Section 4 we describe the results relative to the larger data set and in Section 5 we
conclude the paper with some remarks. The Appendices provide the estimation results
for the univariate models relative to the conditional variances and the volatility indices
(first-step estimation) and explicit formulas of the marginal impact of the volatility on the
conditional correlations in each model.

2 Volatility Dependent Conditional Correlation Models
Several existing models for dynamic conditional correlations can be extended to include
some form of dependence on the volatility of a certain market, measured with a known
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indicator (such as the VIX). We consider a common structure for all the models, rep-
resented by the conditional variance-covariance matrix. More precisely, let rt denote a
(n× 1) vector of returns (with mean equal to zero) of n time series (t = 1, . . . , T ). Let us
indicate with Ht the conditional covariance matrix of rt. It can be represented as

Ht = StRtSt, (2.1)

where St is a diagonal matrix containing the conditional standard deviations and Rt is
a time-varying positive definite matrix of correlations. Following Engle (2002), we can
estimate the elements of Ht in two steps: in the first step we estimate the parameters of
St (call them θV ) using n univariate models for the conditional variances (for example,
simple GARCH models); in the second step we estimate the parameters present in Rt

(call them θR), conditioning on the estimate of θV . This is possible because the full
log-likelihood function can be split into the sum of the following components:

L(θV ) = −
∑T

t=1 [log(|St|) + 0.5u′
tut] ,

L(θR|θV ) = −
∑T

t=1

[
log(|Rt|) + 0.5u′

tR
−1
t ut

]
,

(2.2)

where ut = S−1
t rt is the vector of degarched returns.

We are interested to develop models for Rt including a dependence on the volatility
index. We call this class of models the Volatility Dependent Conditional Correlation
(VDCC) models.

We consider two possibilities: 1) the level of volatility (call it vt) affects the condi-
tional correlations; 2) the regime of the volatility (high or low) affects the conditional
correlations.

The second approach requires to explicit a regime switching model for the volatility.
Formally we consider the (n+ 1) vector wt = (r′

t; vt)
′, where the last element vt follows

a proper dynamics, for example a Markov Switching (MS) ARIMA with two regimes; we
label with 1 the regime of high volatility, 0 the regime of low volatility. We assume that
vt is not correlated with each element of rt, so the conditional correlation matrix of wt is
given by:

R∗
t =

[
Rt 0
0 1

]
.

Let ζt denote the regime of vt at time t, with ζt = 1 to indicate the high volatility
regime and ζt = 0 the low one. The conditional covariance matrix of wt is given by

H∗
t = S∗

tR
∗
tS

∗
t ,

where

S∗
t =

[
St 0
0 σζt

]
and σζt is the switching standard deviation of vt in correspondence with the regime ζt.

Notice that the likelihood function can be split again in two parts; it is sufficient to sub-
stitute in (2.2) St with S∗

t and Rt with R∗
t . The first likelihood contains the parameters of

the n univariate GARCH models and the MS-ARIMA, and the second one the parameters
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relative to the correlation part, conditional on the first group of parameters. Moreover, in
the first part, we obtain the filtered one step ahead probabilities (Pr(ζt = i|Ψt−1)), the
same updated at the current time (Pr(ζt = i|Ψt)), and the smoothed ones Pr(ζt = i|ΨT ),
where Ψt represents the information available at time t (see Hamilton, 1990). The ex-
pected value of the regime at time t, conditional on the information available at the same
time t, is equal to Et(ζt) =

∑1
i=0 iPr(ζt = i|Ψt) = Pr(ζt = 1|Ψt). We use Et(ζt) as a

conditioning variable to represent the effect of the regime of volatility on the conditional
correlations. Note that if we label with 0 the high volatility regime and 1 the low volatil-
ity regime, Et(ζt) will change, but the corresponding coefficients of the model adopted to
measure its effect would adjust to that.

2.1 Smooth Transition VDCC
A first model that can be included in the VDCC family was introduced by Silvennoinen
and Teräsvirta (2012), who suppose that the conditional correlation matrix changes along
the time according to a smooth function ft ranging in the interval [0, 1]. We suppose that
ft is a function of xt, where xt is either the volatility vt or its expected regime Et(ζt) .
This model, known as the Smooth Transition Conditional Correlation (STCC) model, is
given by:

Rt = Rlft +Rh(1− ft),
ft = [1 + exp(−γ(xt−1 − c))]−1,with γ > 0.

(2.3)

The matrices Rl and Rh are positive definite correlation matrices. The former corre-
sponds to the low correlation regime and the latter to the high one, since ft is increasing
in x. As said in the Introduction, several authors distinguish the effect of volatility on
correlations for periods of turmoil (high volatility) and quietness (low volatility). This
is consistent with the presence of two regimes, which can be included in a model for
conditional correlations; model (2.3) is a way to represent this hypothesis.

This structure ensures that Rt is a positive definite correlation matrix at each point in
time. We call model (2.3) the STCC-V model when xt = vt and the STCC-R model when
xt = Et(ζt) (V stands for volatility, R for regime).

2.2 VDCC with Markov Switching
A different way to consider the presence of regimes is to model the conditional corre-
lations with MS dynamics. Pelletier (2006) proposes a Regime Switching for Dynamic
Correlations (RSDC) model by specifying

Rt = Rst , (2.4)

where st is a discrete unobservable random variable, ranging in [1, k], for which he hy-
pothesizes a Markovian dynamics, with pij representing the probability to switch from
regime i at time t − 1 to regime j at time t. We consider two regimes (k = 2), labeled
again l (low correlation regime) and h (high correlation regime).

A simple extension of the RSDC model includes the volatility as a determinant of
the regime of the correlations. We propose two cases that correspond to two alternative
specifications of the transition probability matrix of the RSDC model.
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The first case is implemented by specifying a time-varying transition probability ma-
trix, as in Filardo (1994). In practice, we parameterize pij using a logistic function. Con-
sidering a two-regime MS model, the transition probabilities are expressed as:

pii,t =
exp(θ0,i+θ1,ivt−1)

1+exp(θ0,i+θ1,ivt−1)

pij,t = 1− pii,t i = l, h, i ̸= j
(2.5)

We call this model the Time-Varying transition probability (TV-RSDC) model. Notice
that TV-RSDC nests RSDC, by constraining θ1,h = θ1,l = 0. A simple Wald test can
be used for checking this joint hypothesis, or individual t-tests to verify the hypothesis
θ1,i = 0 for each i can be used to detect the presence of the volatility effect in each regime.

To represent the second case, the one of dependence on the regime of the volatility (in-
stead of the volatility itself as in the first case), we can introduce an effect of the regime of
volatility on the regime of correlations. We hypothesize different Markov chains driving
the regimes of Rt and vt. The basic idea is similar to the one proposed by Otranto (2005)
who introduces the Multi-Chain MS model, but its estimation is simpler. We assume that
the elements of the transition probability matrix relative to the regime of Rt depend on
the volatility regime indicator variable ζt:

pij|m = Pr(st = j|st−1 = i, ζt−1 = m).

The advantage of this specification is the fact that it is possible to distinguish the effect
of the volatility on the regime of correlations during high and low volatility regimes,
obtaining time-varying transition probabilities in the following way:

pij,t =
1∑

m=0

pij|mPr(ζt−1 = m|Ψt−1). (2.6)

The constant probability model is not nested in this new model, but we can test with a
simple Wald test if

H0 : pij|0 = pij|1.

If the null is accepted, we obtain evidence in favor of a constant probability model, repre-
sented by the RSDC model. We call this model the Double Chain (DC-RSDC) model.

2.3 Dynamic VDCC
The most widespread model for conditional correlations is the DCC model of Engle
(2002), where the time-varying correlation matrix Rt is obtained by the following equa-
tions (we use the consistent specification of Aielli, 2009):

Rt = Q̃−1
t QtQ̃

−1
t ,

Qt = (1− a− b)R+ aQ̃t−1ut−1u
′
t−1Q̃t−1 + bQt−1,

Q̃t = diag(√q11,t
√
q22,t, . . . ,

√
qnn,t),

(2.7)

where a and b are unknown non negative scalar coefficients constrained by a + b < 1. A
natural way to extend the DCC model for our purpose is to consider an additive effect of
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the volatility, or its expected regime, on the conditional correlations. Thus we modify the
second equation of (2.7) in the following way:

Qt = (1− a− b− gx̄)R+ aQ̃t−1ut−1u
′

t−1Q̃t−1 + bQt−1 + gxt−1, (2.8)

where x̄ is the mean of xt and g is a parameter; the constant is modified to do correlation
targeting. We call this model the DCC with Additive Volatility Effect (DCC-AVE) when
xt = vt and the DCC with Additive volatility Regime Effect (DCC-ARE) if xt = Et(ζt).

The additive effect is not the only possibility to include the effect of volatility in the
DCC model; a non-linear effect is obtained by rendering the coefficients a and b in (2.7)
time-varying and dependent on the level of volatility or its expected regime. In this case
the second equation of (2.7) is:

Qt = (1− at − bt)R+ atQ̃t−1ut−1u
′

t−1Q̃t−1 + btQt−1, (2.9)

where at = a0+a1fa,t and bt = b0+b1fb,t are functions of xt for each t, with the constraint
at + bt < 1 for all t. In our experiments we have obtained good results adopting logistic
functions, such as:

fa,t =
exp(θa,0+θa,1xt−1)

1+exp(θa,0+θa,1xt−1)
,

fb,t =
exp(θb,0+θb,1xt−1)

1+exp(θb,0+θb,1xt−1)
.

(2.10)

We call model (2.9) the DCC with Time-Varying coefficients depending on Volatility
(DCC-TVV) if in (2.10) xt = vt, and the DCC with Time-Varying coefficients depending
on the Regime of volatility (DCC-TVR) if xt = Et(ζt).

3 Empirical Evidence for Three Stocks
We perform a comparison of the models, with the purpose to answer to the questions
listed in the Introduction, using a data set of daily returns relative to three of the most
frequently traded stocks at the New York Stock Exchange included in the S&P500 index:
Ford (labeled with F), Hewlett-Packard (H), IBM (I). They are also three of the five series
analyzed by Silvennoinen and Teräsvirta (2012) to illustrate their STCC model, with dif-
ferent time span, preliminary transformations and transition variable. The data span the
period from January, 2 1990 to September 17, 2012 (source Yahoo Finance). The clos-
ing price data are transformed into returns for a total of 5725 observations for each time
series. The volatility index adopted is the VIX, its sample mean is 20.5, and its standard
deviation 8.2.

For each series of returns we have estimated the univariate GARCH(1,1) model ob-
taining the corresponding degarched returns, whereas for the VIX series (divided by 100)
we have estimated a MS-AR(2) model with two regimes to obtain the variable Et(ζt). The
results relative to this first estimation step, corresponding to the maximization of the first
equation of (2.2), are shown in Appendix 1. In Figure 1 we show the VIX series with the
corresponding filtered updated probabilities of the state of high volatility. We notice that
the filtered probabilities follow the dynamics of the VIX, capturing not only the highest
peaks, but also several jumps in the VIX index identifying strong relative increases in the
volatility.
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Figure 1: VIX series (continuous line and left axis) and filtered probabilities of state 1
(high volatility) obtained with a MS-AR(2) model (dotted line, right axis)

3.1 In-sample Comparison
Our first purpose is to check if the models for the analysis of conditional correlations
can be extended to include the effect of the volatility and how this effect enters in the
correlation dynamics. We have estimated all the models previously defined, in addition
to the models that do not include the volatility effects, including the Constant Conditional
Correlation (CCC) model of Bollerslev (1990), which corresponds to the DCC model in
(2.7) with a = b = 0. Summarizing, we have estimated eleven different models:

• Three Conditional Correlation (CC) Models without volatility effects: CCC, RSDC,
DCC;

• Two Smooth Transition VDCC models: STCC-V, STCC-R;

• Two VDCC models with Markov Switching: TV-RSDC, DC-RSDC;

• Four Dynamic VDCC models: DCC-AVE, DCC-ARE, DCC-TVV, DCC-TVR

The estimation results are shown in Table 1. The corresponding log-likelihood functions
and model choice criteria are in Table 2. For the DCC-TVV and DCC-TVR models, the
coefficient bt is found constant, so we have suppressed the coefficient b1 and the nuisance
parameters θb,0 and θb,1. The coefficients rij (i, j = F,H, I) are the elements of the
constant correlation matrices R between assets i and j in the different DCC models, and
the indices h and l distinguish the elements of Rh and Rl in (2.3) and (2.4).

The bad performance of the STCC models in terms of likelihood function is clear
(and perhaps surprising). The worst performance achieved by the CCC model is not
surprising since the dynamic correlations cannot be constant over the long sample that we
use. With the exception of the STCC-V model,2 all the VDCC models have significant (at
conventional levels) coefficients of the volatility or its expected regime, implying that the
volatility (or its regime) has an impact on the dynamics of the conditional correlations.

2The estimate of γ, equal to 39.2, suggests a swift transition mechanism. It is common in ST models
that the estimate of γ is insignificant when it is large. See Teräsvirta (1994).

7



Table 1: Parameter estimates of CC and VDCC models
No Volatility Effect

rFH rFI rHI a b
CCC 0.28 0.28 0.42

(0.02) (0.01) (0.02)
DCC 0.29 0.31 0.43 0.008 0.988

(0.01) (0.01) (0.01) (0.002) (0.003)
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l phh pll

RSDC 0.61 0.60 0.79 0.10 0.10 0.21 0.76 0.77
(0.04) (0.05) (0.03) (0.02) (0.02) (0.03) (0.04) (0.03)

Smooth Transition VDCC
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l γ c

STCC-V 0.38 0.44 0.60 0.24 0.21 0.35 39.24 0.25
(0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (33.09) (0.02)

STCC-R 0.56 0.61 0.87 0.17 0.16 0.26 1.45 1.03
(0.08) (0.11) (0.09) (0.05) (0.04) (0.05) (0.10) (0.27)

VDCC with Markov Switching
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l θ0,h θ1,h θ0,l θ1,l

TV-RSDC 0.60 0.60 0.79 0.09 0.09 0.20 0.14 4.06 1.81 -3.78
(0.04) (0.05) (0.03) (0.03) (0.02) (0.03) (0.07) (0.82) (0.23) (1.42)
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l phh|0 phh|1 pll|0 pll|1

DC-RSDC 0.60 0.59 0.78 0.09 0.09 0.20 0.67 0.91 0.75 0.74
(0.04) (0.05) (0.03) (0.03) (0.02) (0.03) (0.05) (0.03) (0.04) (0.05)

Dynamic VDCC
rFH rFI rHI a0 a1 b g θa,0 θa,1

DCC-AVE 0.10 0.11 0.27 0.010 0.979 0.011
(0.00) (0.00) (0.00) (0.001) (0.002) (0.001)

DCC-ARE 0.18 0.19 0.34 0.010 0.972 0.009
(0.00) (0.00) (0.00) (0.001) (0.003) (0.001)

DCC-TVV 0.25 0.25 0.38 0.000 0.017 0.979 -3.06 15.46
(0.00) (0.00) (0.00) (0.000) (0.002) (0.004) (0.67) (3.06)

DCC-TVR 0.24 0.23 0.37 0.000 0.023 0.977 -1.23 2.52
(0.00) (0.00) (0.00) (0.000) (0.002) (0.002) (0.13) (0.18)

Robust standard errors in parentheses.
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Table 2: Log-Likelihood, AIC and BIC of CC and VDCC models
Model Log-Lik AIC BIC
CCC -7676.25 2.685 2.688
DCC -7609.78 2.662 2.668
RSDC -7383.69 2.584 2.593
STCC-V -7621.25 2.667 2.676
STCC-R -7644.20 2.675 2.684
TV-RSDC -7363.51 2.578 2.589
DC-RSDC -7366.05 2.579 2.590
DCC-AVE -7607.20 2.661 2.668
DCC-ARE -7598.99 2.659 2.666
DCC-TVV -7604.71 2.661 2.671
DCC-TVR -7601.18 2.660 2.669

From Table 2, we notice that the VDCC models with MS have much smaller AIC and
BIC values than the other VDCC models. The RSDC model has the third rank among all
models according to the criteria values. Notice that the log-likelihood value of the TV-
RSDC is 20 units larger than the corresponding value of the RSDC. For DC-RSDC, the
increase is 17. In both cases, the increase is quite significant for two additional parameters.

The Wald tests favor the existence of the volatility effect in the TV-RSDC models, in
particular in the case of high volatility: the p-value for the hypothesis θ1,h = 0 is less than
0.001, for the hypothesis θ1,l = 0 it is equal to 0.035. In the case of DC-RSDC model,
the Wald test rejects the null hypothesis phh|0 = phh|1 (p-value less than 0.01), whereas
it does not reject the null hypothesis pll|0 = pll|1 (p-value equal to 0.17). These results
suggest that the high volatility regime impacts the probability to change the regime of
the conditional correlations, whereas the low volatility periods do not seem to have any
effect. Considering that in the DC-RSDC model the probability to stay in the regime of
high correlation is higher when the volatility is high (0.91) than low (0.67), whereas in
the low correlation case it is almost constant (0.75 versus 0.74), this result is consistent
with the works finding that correlations increases in turmoil periods (see Introduction).
This fact can be appreciated also for the TV-RSDC model with a graphical analysis of the
probability to change regime.

In Figure 2 we plot the logistic functions, defined in equation (2.5): phl,t (probability to
switch from the high to the low correlation regime; continuous line) and plh,t (probability
to switch from the low to high; dash line) as functions of the volatility level. Notice that
the probability phl,t decreases quickly when the volatility increases and reaches virtually
zero when the VIX index is at 100 or more; the opposite behavior can be observed for
plh,t, with a slower convergence to 1. In the data set used, the minimum value of the VIX
index is 9.31 and the maximum 80.86 (the scale is divided by 100 on the graph).

The four DCC-type VDCC models hardly improve the AIC and BIC values of the
DCC model; there are even two cases (DCC-TVV and DCC-TVR) where the BIC in-
creases (by 0.003 and 0.001 respectively). Judging by likelihood ratios, however, these
VDCC models improve significantly the DCC model: the p-values of the χ2(1) statis-
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Figure 2: TV-RSDC model: probability to switch from high to low correlation regime
(continuous line) and from low to high (dash line), as functions of VIX/100

tics are 0.02 (DCC-AVE) and less than 0.0001 (DCC-ARE); those of the χ2(3) are 0.02
(DCC-TVV) and less than 0.001 (DCC-TVR). For the last two, the p-values are probably
underestimated, since the volatility expected regime is a generated regressor.

Another interesting result in Table 1 is that, comparing each VDCC with MS model
with the corresponding model without volatility effects, the estimates of the constant
terms of the correlation matrices hardly change and the main difference is in the dynamic
coefficients. Some differences can be noted in the Dynamic VDCC models with respect
to DCC, in particular in the DCC-AVE and DCC-ARE, probably due to the presence of
the g coefficient in the constant part. In practice, TV-RSDC and DC-RSDC provide a
similar inference on the level of the correlations in each regime as RSDC, and the differ-
ence is just in the capability of the two VDCC models to capture the effect of the volatility
through the volatility regime variable. In the Dynamic VDCC models the presence of the
volatility (regime of volatility) modifies the level of correlation and the b coefficient is
lower with respect to the DCC case.

The previous interpretations can be related to the results of the evaluation of the in-
sample forecasting performance for the correlation matrices obtained with the eleven
models.3 We have applied the Model Confidence Set (MCS) approach of Hansen et al.
(2003); in particular we have used the Quasi-Likelihood (QL) loss function with the semi-
quadratic statistic (TSQ); see Clements et al. (2009) for details. The results are presented
in Table 3. We can notice that the MCS approach excludes first the CCC model, then the
STCC models, next the DCC models, and the final group is the one of MS models. The
RSDC and DC-RSDC models show a significant improvement respect to TV-RSDC at the
test size of 5% (but not at 1%). We have repeated the MCS procedure only for the STCC
models and only for the DCC models. In both cases there is no significant difference in
the performance within these two groups in terms of the QL loss function.

Our conclusion is that the VDCC models show a better performance (AIC and BIC)
than the corresponding models without volatility effect. The volatility effect is statisti-

3For the MS models, all the estimates of the correlation coefficients are conditional on the full informa-
tion available, so the estimated correlations are given by Rt = RhPr(st = h|ΨT ) +RlPr(st = l|ΨT ).
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Table 3: MCS results for individual in-sample forecasts, using the Quasi-Likelihood loss
function and the TSQ statistics

Model p-value
CCC 0.000
STCC-R 0.000
STCC-V 0.000
DCC-AVE 0.000
DCC-TVV 0.000
DCC-ARE 0.000
DCC-TVR 0.000
DCC 0.000
TV-RSDC 0.023
DC-RSDC 0.094
RSDC 1.000
The first row represents the first model removed, down to the
best performing model in the last row.

cally significant, except in the STCC-V model. In terms of in-sample forecasting, the
VDCC models and their counterparts without volatility effect do not seem to differ sig-
nificantly. In other terms, it seems that the volatility or its expected regime is a relevant
determinant of the periods of high and low correlations, but it does not increase the in-
sample fitting significantly. More precisely, the dynamics of the conditional correlations
seems subject to abrupt changes, given the better performance of the MS models with
very different matrices Rh and Rl. These results are consistent with those of Boudt et al.
(2012), who apply a particular regime switching model to a set of four US deposit bank
holding companies over the period 1994-2011 and find evidence in favor of time-varying
switching probabilities driven by the VIX index, with a constant correlation within the
regimes, as in our VDCC RSDC models.

3.2 Marginal Impact of Volatility
Given our conclusion in favor of a statistically significant effect of the volatility on the
conditional correlations, it is interesting to investigate how the correlations change in re-
action to a given variation of the volatility, in the different models. This type of marginal
impact can be calculated by evaluating the derivative of each conditional correlation func-
tion with respect to vt−1 or to Et−1(ζt−1). Clearly, the interpretation is different: in the
first case we evaluate the impact of the increase of 100 points in volatility on the correla-
tions (recall that vt = V IX/100); in the second case we evaluate the impact of a change
in the regime of volatility (from low to high or high to low).

The formulas of the marginal impact for each model are provided in Appendix 2,
where it is also underlined that the marginal impact in the STCC-V, TV-RSDC and DCC-
TVV models depends on the value of vt−1, in the STCC-R and DCC-TVR on the value of
Et−1(ζt−1), in the DC-RSDC model on the value of Pr(ζt−1), whereas it is constant for
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Table 4: Marginal impact of volatility and regime of volatility on conditional correlations

vt−1 variation STCC-V TV-RSDC DCC-TVV
rFH rFI rHI rFH rFI rHI rFH rFI rHI

0.093 (min) 0.1 0.001 0.002 0.002 0.064 0.064 0.073 0.003 0.003 0.002
0.147 (Q1) 0.1 0.009 0.015 0.016 0.070 0.070 0.080 0.004 0.004 0.003
0.190 (Q2) 0.1 0.042 0.070 0.074 0.073 0.072 0.083 0.005 0.005 0.004
0.240 (Q3) 0.1 0.132 0.220 0.232 0.073 0.072 0.084 0.004 0.004 0.003
0.809 (max) 0.1 0.000 0.000 0.000 0.009 0.009 0.010 0.000 0.000 0.000

variation DCC-AVE
0.1 0.001 0.001 0.001

Et−1(ζt−1) variation STCC-R DCC-ARE DCC-TVR
0 1 0.084 0.100 0.133 0.006 0.006 0.005 0.007 0.007 0.005
1 -1 -0.141 -0.167 -0.222 -0.006 -0.006 -0.005 -0.008 -0.008 -0.006
Pr(ζt−1 = 1) variation DC-RSDC
0 1 0.093 0.091 0.104
1 -1 -0.181 -0.178 -0.203

DCC-AVE and DCC-ARE. In Table 4 we show the results for the MS and the dynamic
VDCC models for these cases:

• for vt−1 we report the impact of a 0.1 point increase of the variable, i.e. 10 points of
the VIX (about one standard deviation), at the minimum, at the three quartiles and
at the maximum values of the VIX index in the period considered;

• for Et−1(ζt−1) we consider the impact of the regime of volatility by a change of the
variable from 0 to 1 and a change from 1 to 0;

• in the DC-RSDC case, we consider the impact of a change of Pr(ζt−1) from 0 to 1
and from 1 to 0.

The first clear evidence derived from Table 4 is that the marginal impact of the volatil-
ity (or regime of volatility) is visible in the STCC and MS models, whereas it is very small
in the DCC models. The explanation is obvious: the DCC models include the dependence
of the conditional correlations on the past values of the degarched returns and the matrix
Qt, whereas in the STCC and MS models the dynamics is only relative to the change in
regime of the correlation matrix.4 It is interesting to underline that the time series correla-
tions between the elements of the Qt matrix and the vt index are rather high: 0.58 for the
element referred to (F,H), 0.62 for (F,I), 0.55 for (H,I), so it seems clear that the presence
of the autoregressive dynamics obscures the volatility effect.

For the TV-RSDC case, we can notice that the marginal effect of volatility increases
until the third quartile, whereas it is very low when the level of volatility is at its maximum

4Theoretically, it is possible to add a similar MS dynamics to the VDCC models, but this creates a path
dependence problem (see, for example, Bauwens et al., 2010), due to the presence of the lagged value of
Qt, which renders ML estimation impossible. We have tried a MS DCC model with only the ARCH term
(i.e. imposing b = 0) but the corresponding coefficient (a) is not significantly different from zero.
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Figure 3: Marginal impact of the volatility on the correlation between F and H using
STCC-V (dotted line) and TV-RSDC (continuous line)

because it is likely that the correlation is already in the high regime. In the DC-RSDC and
STCC-R cases, notice that switching from regime 1 to regime 0, the correlations decrease
by about 0.2. and this is twice larger (in absolute value) than when the volatility switches
from a quiet regime to a turmoil (0 to 1).

The STCC-V model shows a particular behavior; in fact the marginal impact of the
volatility is very strong in correspondence of the third quartile (with increases of more
than 0.2 for the pairs T-I and H-I), whereas it is low for the other cases. In Figure 3 it
is possible to analyze more in detail the behavior of the marginal impact function of the
STCC-V model, compared with the marginal impact function of the TV-RSDC model
(we show the results only for the pair F-H, but the behavior of the other two pairs is very
similar). We can notice that the effect of volatility for STCC-V is concentrated around
values of the VIX index between 20 and 30, whereas it is tiny in the other cases; on the
other hand the TV-RSDC model shows a lower impact of volatility on correlation spread
out on a much wider set of volatility values.5

Our conclusion is that the marginal effect of the volatility, or its regime, is evident
when we consider an indirect effect, working through the regime of correlations. The
direct marginal effect in DCC models, and the indirect effect through the time-varying
coefficient of the DCC are tiny.

3.3 Long-run and short-run effects
Bauwens et al. (2012) have distinguished between long-run and short-run correlations
in the analysis of financial markets, introducing the multiplicative DCC (mDCC) model.
Given the presence of a volatility effect, we wonder if the volatility impacts both kinds
of correlations or just one of them. For this purpose, following the three-step procedure
of Bauwens et al. (2012), we first estimate the long-run covariance matrix of the three
assets, then we model the conditional variance of the standardized returns with univariate

5Since the observed values of the VIX between 20 and 30 represent only 34% of the observed sample,
this explains the lack of significance of the estimate of γ, see also footnote 2.
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Figure 4: VIX index (gray line and right axis) and estimated long-run covariances (left
axis) between F and H (continuous line), F and I (dotted line), H and I (dashed line)

GARCH models, and finally we apply the eight VDCC models proposed in this work to
the degarched residuals. 6

In this approach the matrix Ht is decomposed as

Ht = Σ
1/2
t GtΣ

1/2
t , (3.1)

where Gt follows a VDCC process. The unconditional covariance matrix Σt is esti-
mated non-parametrically using the Nadaraya-Watson kernel estimator (see Bauwens et
al., 2012, for details):7

Σ̂t =

∑T
i=1 Kh(

i
T
− t

T
)rir

′
i∑T

i=1 Kh(
i
T
− t

T
)

(3.2)

where Kh(·) = 1
h
K( ·

h
), K(·) is a kernel function, h is a positive bandwidth. In our

application the nonparametric procedure provides h equal to 0.015, with a very smoothed
dynamics of the elements of Σ̂t.

In the second step we calculate the ‘long-run standardized’ returns ξt = Σ̂
−1/2
t rt,

and then we estimate the conditional variances of the elements of ξt using n univariate
GARCH models. Finally we apply the VDCC models to the degarched (long-run stan-
dardized) returns. Our finding is that the volatility (or the regime of volatility) does not
have any effect on these degarched returns, so our conclusion is that the volatility effects
are relevant for the long-run correlation matrix.8 This is confirmed by a direct look at Fig-
ure 4. The relationship between each estimated long-run covariance series and the VIX
index is clear; the correlations between the time series of covariances and VIX are equal
to 0.74 (F-H), 0.75 (F-I) and 0.65 (H-I).

More evidence can be provided by fitting VDCC-type models to the estimated long-
run covariances. We show the results for the models that performed best in the previous

6In the third step Bauwens et al. (2012) adopt the DCC model.
7We have tried to generalize this approach using kernel with different bandwidth parameters for each

variance and for the covariances, but the comparison with the original estimator with a common bandwidth
does not provide relevant differences.

8To save space we do not show all the estimation results of the third step.
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in-sample comparison, the MS VDCC models. We consider the k-dimensional vector
χ̂t (k = n(n − 1)/2, so k = 3 in this section) containing the covariances of the upper
triangular part of Σ̂t. The corresponding RSDC model is defined as

χ̂t = ςst + ϵt, (3.3)

where ςst is a vector with elements rij,stσ̂i,tσ̂j,t, with rij,st the unknown correlation coef-
ficients (to be estimated) and σ̂i,t and σ̂j,t the square root of the variances contained in the
diagonal of Σ̂t. The vector of disturbances ϵt is hypothesized to follow a multivariate Nor-
mal distribution with zero mean and a diagonal covariance matrix Ω = diag(ω1, . . . , ωk).
The choice to model the long-run covariances and not the long-run correlations is moti-
vated by the possibility to use the Normal distribution without constraints. The hypothesis
of diagonal covariance matrix of the disturbances is made for the sake of simplicity, but
it could be easily removed. As in the RSDC model, we suppose that st is a latent dis-
crete variable representing the regime of the correlations, changing according to a Markov
chain, with transition probability matrix represented by one of the RSDC, TV-RSDC or
DC-RSDC specifications. In Table 5 we show the estimation results for the long-run
covariance matrix and for the short-run MS VDCC models for the degarched (long-run
standardized) residuals.

The first obvious result is that the correlation coefficients do not vary by changing the
model (in particular in the long-run case) and that in the short-run case there is a clear
change of regime only for the correlation between H and I. In the long-run case all the
models show a very high persistence in the same regime (probability to stay in the same
regime near to 1), but the volatility seems to have a significant effect, as shown by the
Wald statistics; in particular, in the DC-RSDC model, a change in the regime of volatility
seems necessary to obtain a change in the regime of correlations (otherwise the probability
to stay in the regime of high (low) correlation with high (low) volatility is equal to 1). In
the short-run case, the Wald tests carry out a strong evidence in favor of the acceptance
of the null of no volatility effect. It is important to underline that Σt is an unconditional
covariance matrix, whereas in the previous experiments we have modeled the conditional
correlations with VDCC models. The lesson we learn from this experiment is that the
volatility has an effect on the long-run covariance matrix and not on the short-run one.

3.4 Out-of-sample Comparison
To verify if volatility helps to forecast correlations we have performed a comparison in
terms of out-of-sample forecasts. The last 400 observations were deleted from the sam-
ple and then we have re-estimated the models, adding up iteratively one observation and
obtaining 400 one-step ahead forecasts for each model. Of course, to perform this ex-
periment, we have calculated also the one-step ahead forecasts for the three univariate
GARCH models, providing the degarched returns, and the one-step ahead forecasts of the
probabilities of the regimes of high and low volatility, using the MS-AR(2) model, to be
used in the VDCC models depending on the regime of volatility.

The out-of-sample forecasts are compared again using the MCS approach, analo-
gously to the in-sample case; the results are shown in Table 6. The procedure does not
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Table 5: Parameter estimates of Markov Switching models for the long-run covariances
and Markov Switching (short-run) VDCC models for the degarched standardized returns
(with standard errors in parentheses), and Wald statistics

Long-run Correlation Coefficients
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l

RSDC 0.41 0.44 0.57 0.21 0.18 0.43
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TV-RSDC 0.41 0.44 0.57 0.21 0.18 0.43
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DC-RSDC 0.41 0.44 0.57 0.21 0.18 0.43
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Short-run Correlation Coefficients
rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l

RSDC -0.07 -0.09 0.44 0.03 0.05 -0.20
(0.03) (0.03) (0.08) (0.02) (0.03) (0.04)

TV-RSDC -0.04 -0.08 0.43 0.02 0.05 -0.20
(0.05) (0.05) (0.07) (0.05) (0.04) (0.04)

DC-RSDC -0.06 -0.09 0.43 0.02 0.05 -0.20
(0.02) (0.03) (0.07) (0.02) (0.04) (0.04)

Long-run Variance of Disturbances
ωFH ωFI ωHI

RSDC 0.14 0.12 0.21
(0.00) (0.00) (0.01)

TV-RSDC 0.14 0.12 0.21
(0.00) (0.00) (0.01)

DC-RSDC 0.14 0.12 0.21
(0.00) (0.00) (0.00)

Long-run Probability Coefficients
RSDC TV-RSDC DC-RSDC

phh pll θ0,h θ1,h θ0,l θ1,l phh|0 phh|1 pll|0 pll|1
0.999 0.999 6.38 1.50 9.84 -14.90 0.998 1.000 1.000 0.994

(0.000) (0.000) (0.009) (0.34) (0.05) (0.25) (0.000) (0.000) (0.000) (0.000)
p-values of the Wald statistics

H0 : θ1,h = 0 H0 : θ1,l = 0 H0 : phh|0 = phh|1 H0 : pll|0 = pll|1
0.00 0.00 0.00 0.00

Short-run Probability Coefficients
RSDC TV-RSDC DC-RSDC

phh pll θ0,h θ1,h θ0,l θ1,l phh|0 phh|1 pll|0 pll|1
0.658 0.782 1.68 -3.48 2.34 -3.93 0.776 0.558 0.855 0.713

(0.073) (0.078) (1.08) (3.81) (1.23) (4.68) (0.095) (0.108) (0.084) (0.084)
p-values of the Wald statistics

H0 : θ1,h = 0 H0 : θ1,l = 0 H0 : phh|0 = phh|1 H0 : pll|0 = pll|1
0.36 0.40 0.15 0.11
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Table 6: MCS results for individual out-of-sample forecasts, using the Quasi-Likelihood
loss function and the TSQ statistics

Model p-value
STCC-R 0.206
CCC 0.638
STCC-V 0.649
RSDC 0.714
TV-RSDC 0.768
DCC-ARE 0.655
DCC-RSDC 0.839
DCC-AVE 0.592
DCC-TVR 0.996
DCC 0.865
DCC-TVV 1.000
The first row represents the first model removed, down to the
best performing model in the last row.

identify any relevant difference among the models, which do not differ in their out-of-
sample forecasting performance. This results is not so unexpected, in particular referring
to the findings of Hansen (2010). In this paper it is shown that the in-sample and out-
of-sample fits are strongly negatively related and that good in-sample fit translates into
poor out-of-sample fit, not only in expectation, but one-to-one. In practice Hansen (2010)
shows that more complexity is added to a model the better will the model fit the data in-
sample, while the contrary tends to be true out-of-sample. This finding is consistent with
our results.

4 Evidence for Thirty Stocks
A more interesting scenario is one in which a large number n of assets is analyzed, and we
shall proceed with n = 30 in Section 4.2. In this case, we are confronted with the problem
of estimating correlation matrices of dimension 30×30 in all models. Therefore, we must
impose some restrictions on the parameter space to make the estimations feasible. We
explain how we do this in Section 4.1, where we also test the restrictions on the trivariate
data set of the previous section. This motivates our choice of restricted models in the
application to thirty stocks.

4.1 Restricted Models
Dynamic VDCC models

In the Dynamic VDCC models, we substitute the sample correlation matrix R̄ for the
parameter matrix R. This is known as ”correlation targeting” (or tracking) and amounts
to use a method-of-moments estimator for R. Thus we estimate the remaining parameters
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after imposing R = R̄ and we test (using the LR statistic) if the restricted DCC model is
not rejected with respect to the unrestricted model.

RSDC and STCC models

A possible solution is the one proposed by Pelletier (2006) for the RSDC models, re-
placing Rh with the sample correlation matrix R̄, and Rl with the identity matrix In;
they represent the two extreme cases of maximum correlation and absence of correla-
tion, respectively. In the case of RSDC models, the conditional correlation matrix is then
parameterized in the following way:

Rt = Rst , st = h, l,
Rh = R̄, Rl = R̄λl + In(1− λl),
λl ∈ [0, 1],

(4.1)

where λl is the only unknown switching coefficient. Our viewpoint is that this param-
eterization is too restrictive because the high correlation matrix is equal to the sample
correlation, which can be considered as the mean of the correlations in the period ana-
lyzed.

A more coherent model lets the high correlation matrix surpass the sample one, with

Rh = R̄λh + In(1− λh), Rl = R̄λl + In(1− λl),
λl ∈ [0, 1], λh ∈ [1, 1/r̄max],

(4.2)

where r̄max(> 0) is the maximum correlation coefficient in R̄. We call the latter proposal
the ”2-λ” RSDC model, and (4.1) the ”1-λ” RSDC model, since it fixes λh = 1.

In the same spirit, a third restricted RSDC model has an equi-correlated matrix in the
the high correlation regime.

Rh = RMλh + In(1− λh), Rl = R̄λl + In(1− λl)
λl ∈ [0, 1], − 1

|r̄M | ≤ λh ≤ 1
|r̄M | , λh ≥ λl,

(4.3)

where RM is a correlation matrix having all its off-diagonal elements equal to the mean
of all the sample correlations, denoted by r̄M (with r̄M > −1/n). We call this model the
”high equi-correlation” (hec) RSDC model. This can be motivated by the observation that
in a high correlation state, the correlations tend to be close to 1 and thus to be similar.

To compare the unrestricted and the three restricted RSDC models, we proceed ac-
cording to the following steps:

1. Estimate the three restricted RSDC models and choose the best-fitting one.

2. Compare the inference on the regime using the smoothed probabilities derived from
the selected restricted model and the unrestricted model; a simple way is a graphical
analysis of the absolute differences between the two sets of probabilities

3. Using the Wald statistic, test the null

rFH,i

r̄FH

=
rFI,i

r̄FI,i

=
rHI,i

r̄HI

, i = h, l,
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Table 7: Estimates of the parameters of the restricted RSDC models and criteria
Model

Parameters 1-λ 2-λ hec
λh 1 1.871 2.462

(0.046) (0.081)
λl 0.000 0.414 0.649

(0.000) (0.076) (0.058)
phh 0.966 0.785 0.603

(0.004) (0.032) (0.063)
pll 0.647 0.765 0.832

(0.041) (0.041) (0.023)
Log-Lik -7613.80 -7391.93 -7446.11

AIC 2.673 2.586 2.604
BIC 2.666 2.590 2.609

Robust standard errors in parentheses.

where r̄ij indicates the (i, j) element of the sample correlation matrix R̄. These
tests serve to check if all the correlation coefficients within the same regime de-
crease in the same proportion. If the parameterization selected is (4.3), when i = h
the denominator of each element under the null is given by r̄M .

For the STCC model, we can also use the 1-λ, 2-λ and hec specifications of Rh and
Rl in (2.3).

Application to the three stocks

Table 7 shows the estimation results for the three restricted RSDC models, with the cor-
responding log-likelihood, AIC and BIC values. The three models provide very different
values of the λ coefficients and transition probabilities. In particular in the 1-λ case, the
parameter λl is estimated to be 0 (at a boundary of its admissible values), so that the two
correlations matrices correspond to the sample correlation and the identity matrix.9 This
result sounds as an alarm, indicating that the choice of a restricted model is a crucial
step when it must be adopted. In terms of log-likelihood values and other criteria, the
preference for the 2-λ rmodel is quite clear, so we adopt it for the comparison with the
unrestricted model. To ease the comparison, we recall in Table 8 the estimates of both
models, with other results useful for the comparison.

The estimates of the correlation coefficients are very similar in regime l, whereas
there is a difference of 0.08 in rFH,h and rFI,h. The transition probabilities are very sim-

9Pelletier (2006) evaluates the goodness of the 1-λ model in a 4-variate case with two regimes, by com-
paring the values of the estimated correlations in the restricted and unrestricted models, and by performing
a LR test of the restrictions. He finds that there is an ordering in the magnitude of the correlations across the
different regimes (also in the unrestricted case all the correlations decrease when switching from the regime
of high correlation to the one of low correlation), but the LR test rejects the restrictions imposed under the
null (statistic equal to 16.48, to be compared to a chi-squared with 4 degrees of freedom).
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Table 8: Comparison of restricted and unrestricted RSDC models
Parameter Estimates

Model rFH,h rFI,h rHI,h rFH,l rFI,l rHI,l phh pll
Unrestricted 0.61 0.60 0.79 0.10 0.10 0.21 0.76 0.77

Restricted 0.52 0.52 0.79 0.12 0.12 0.17 0.79 0.76
Log-Likelihood Criteria

Model Log-Lik AIC BIC
Unrestricted -7383.7 2.58 2.59

Restricted -7391.9 2.59 2.59
Absolute differences in smoothed probabilities

Min Q0.25 Q0.50 Q0.75 Max
0.000 0.009 0.025 0.058 0.320
Wald test for proportional decreasing in correlations

Statistic p-value
Regime h 8.55 0.01
Regime l 6.62 0.04

The estimates of the correlations of the restricted model are obtained by computing (4.2) at the ”2-λ”
estimates of λh and λl reported in Table 7, using the known value of R̄.

Figure 5: Absolute differences between the smoothed probabilities from the 2-λ and un-
restricted RSDC models
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ilar, supporting the choice of the 2-λ model. Both models provide a similar inference on
the regime, as is revealed by a graphical inspection of the absolute differences between
the smoothed probabilities (see Figure 5). We notice that most differences are very small,
and the maximum difference is 0.3. Moreover, observing also the five summary numbers
of the absolute differences reported in Table 8, it is clear that many of the absolute differ-
ences are less than 0.1; in particular the values higher than 0.1 correspond to the 10.4% of
the set of absolute differences, the values higher than 0.2 to 1.4%, and the values higher
than 0.3 to 0.07%.

In the last part of Table 8 we show the results of the Wald tests to check a proportional
decrease in the correlations within each regime. The two statistics, distributed as chi-
squared with 2 degrees of freedom, indicate that the null hypothesis is not rejected at the
0.01 size. Given the similarity of the inferences on the regime and the results of these tests,
we can conclude that the restricted 2-λ RSDC model is a sufficiently good approximation
of the unrestricted model.

We have estimated the restricted model also in the DCC case. The LR test to compare
it with the unrestricted model in (2.7) does not reject the restrictions, since the test statistic,
equal to 1.108, has a p-value (calculated for a chi-squared with 3 degrees of freedom) of
0.775.

To save space, we do not report the not so interesting results for the STCC models.

Application to other subsets of stocks

As a check for robustness, we have applied the procedure for comparing the restricted
models and the unrestricted one to 100 subsets of three stocks, and to 100 subsets of
seven stocks.10 These subsets were selected randomly from the 30 stocks composing the
Dow Jones index, described in subsection 4.2.

For the RSDC models and the 100 groups of three stocks, the BIC selects the 2-λ
model in 46 cases, the hec in 54 cases, and the 1-λ model in no case. If we include the
unrestricted model in the comparison, the numbers are 26 for the latter, 32 for 2-λ, 42
for hec, and zero for 1-λ. For the 100 groups of seven stocks, the BIC selects the 2-λ
model in 54 cases, the hec in 46 cases, and the 1-λ model in no case. If we include the
unrestricted model in the comparison, the numbers are 29 for the latter, 40 for 2-λ, 31 for
hec, and zero for 1-λ.11

We also did the comparisons of the DCC models. In the case of the groups of three
stocks, using a test size of 0.01, the LR test does not reject the null of equality of the
constrained and unconstrained model in 97 out of 100 cases. For the 100 groups of seven
stocks, the non-rejection holds for all groups. Whether for groups of three or of seven
stocks, the BIC always selects the restricted model.

These results tell us that the results for the three stocks presented above are not specific
to the choice of the three stocks. They also tell us that for the higher dimension, the

10Increasing the dimension above seven renders the estimations too difficult. With seven stocks, the
number of correlations is 28 in Rh and the same in Rl in the unrestricted RSDC model.

11If we use LR tests, the null of equality between the best restricted model and the unrestricted model is
not rejected in 41 cases for groups of three, but it is rejected in all cases for groups of seven. There is thus
some discrepancy between the BIC and LR results.
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same type of results seem to hold, although we are limited to a dimension that is still
much lower than the dimension used in the next subsection. Thus the procedure we have
proposed for selecting a restricted RSDC model and we want to apply for thirty stocks
can be considered to be sensible.

4.2 The Dow Jones Components
We have applied eleven models to the 30 stocks composing the Dow Jones for the period
2 January 2002-23 May 2012 (2617 daily returns for each series), using as measure of
volatility the VXD index,12 an indicator constructed following the same methodology
as to obtain the VIX, but referred to as real-time prices of options on the Dow Jones
Industrial Average.13 For the Markov Switching models and the STCC models we have
used the three restricted models (1-λ, 2-λ and hec). As in the trivariate case, the 2-λ
model is clearly better in terms of AIC and BIC, so we have adopted it in the following
experiments.14 In the STCC case, in particular STCC-R, the estimated smooth transition
function varies in a small range: it is almost constant (values between 0.88 and 1) for
STCC-R, whereas, in the STCC-V case, its range is [0.64;1].

In Table 9 we show the estimation results and the log-likelihood evaluation of the
eleven models. A certain consistency with the results obtained in the three asset case
emerges immediately: the STCC models show high values of AIC and BIC with a non
significant γ coefficient in STCC-R; the RSDC models show the best performance in
terms of AIC and BIC, with a significant increase in the likelihood of the VDCC versions;
the effect of the volatility in the probabilities of the regimes are significant at 5% in the
high correlation case, whereas the low volatility case does not seem affected by them; in
DCC-TVV and DCC-TVR, only the a coefficient is time-varying. The parameters λh and
λl are the same in the three Markov Switching models; this implies a correlation in state h
between 0.24 and 0.90 and in regime l between 0.07 and 0.26 (of course each correlation
increases when switching from l to h). State h is much more persistent than state l; for
example, in the fixed probability case of the RSDC model, the expected duration15 of
regime h is 8.77 and 1.61 for regime l. A novelty is due to the very good performance,
in terms of likelihood values, of the Dynamic VDCC models depending on the regime
of the volatility with respect to the analogous models using the VXD index; on the other
hand DCC-AVE does not show a clear improvement with respect to the simple DCC, with
a tiny g coefficient. Notice also that the λh coefficient of STCC-R is only slightly larger
than 1, whereas λl = 0. Considering that the smooth transition function provides values
almost constant and near to 1, the STCC-R model is very similar to the CCC model.

The MCS procedure in terms of in-sample forecasting favors again the MS models
(Table 10), which do not show significant differences between them. STCC models and
CCC are the first models excluded from the procedure, then the DCC group. If we ap-
ply the MCS procedure without the MS models, we detect a clear separation between

12Available at the web site http://www.cboe.com/micro/vxd/.
13We have also used alternative estimators of the volatility, such as the realized kernel volatility, but, for

this kind of data, the VXD seems to perform better.
14Notice that two of the three stocks of the trivariate example, H and I, are also included in this data set.
15In MS models the expected duration of regime i is given by 1/(1− pii).
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Table 9: Parameter estimates of CC and VDCC models for the Dow Jones data set and
corresponding log-likelihood, AIC and BIC

No Volatility Effect
Log-Lik AIC BIC

CCC -18343.1 14.04 14.04
a b Log-Lik AIC BIC

DCC 0.005 0.979 -17986.3 13.77 13.77
(0.000) (0.001)
phh pll λh λl Log-lik AIC BIC

RSDC 0.89 0.38 1.09 0.32 -16780.5 12.85 12.86
(0.01) (0.03) (0.00) (0.03)

Smooth Transition VDCC
γ c λh λl Log-lik AIC BIC

STCC-V 9.95 0.04 1.11 0.47 -18177.7 13.92 13.93
(1.58) (0.03) (0.02) (0.03)

STCC-R 3.68 -0.52 1.09 0.00 -18182.7 13.92 13.93
(2.49) (0.35) (0.02) (0.00)

VDCC with Markov Switching
θ0,h θ1,h θ0,l θ1,l λh λl Log-lik AIC BIC

TV-RSDC 1.01 5.32 -0.34 -1.02 1.09 0.32 -16766.4 12.84 12.85
(0.36) (1.85) (0.98) (6.60) (0.00) (0.03)
phh|0 phh,1 pll|0 pll,1 λh λl Log-lik AIC BIC

DC-RSDC 0.86 0.95 0.39 0.24 1.09 0.32 -16768.7 12.84 12.85
(0.01) (0.02) (0.05) (0.31) (0.00) (0.04)

Dynamic VDCC
a b g Log-lik AIC BIC

DCC-AVE 0.005 0.978 0.001 -17985.2 13.77 13.77
(0.000) (0.001) (0.000)

DCC-ARE 0.006 0.944 0.016 -17843.5 13.66 13.67
(0.000) (0.003) (0.001)
a0 a1 b θa,0 θa,1 Log-lik AIC BIC

DCC-TVV 0.000 0.010 0.975 -3.79 18.51 -17875.7 13.69 13.70
(0.000) (0.000) (0.001) (0.14) (0.69)

DCC-TVR 0.000 0.030 0.970 -2.38 2.09 -17810.8 13.64 13.65
(0.00) (0.001) (0.001) (0.04) (0.04)

Robust standard errors in parentheses. The RSDC and STCC models use the 2-λ version, see (4.2).
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Table 10: Dow Jones components: MCS results for individual in-sample forecasts, using
the Quasi-Likelihood loss function and the TSQ statistics

Model p-value
STCC-V 0.000
CCC 0.000
STCC-R 0.000
DCC 0.000
DCC-AVE 0.000
DCC-TVV 0.000
DCC-TVR 0.000
DCC-ARE 0.000
TV-RSDC 0.245
RSDC 0.090
DC-RSDC 1.000
The first row represents the first model removed, down to the
best performing model in the last row.

the group of constant (or quasi-constant) correlation models and the models of the DCC
group, the latter showing a similar performance, as in the trivariate case.

The marginal impacts of the volatility and regime of volatility seem less strong than
in the trivariate case for each estimated model. In Table 11 the average of the volatility
(or regime of volatility) of the 435 correlations and the corresponding standard deviations
are shown. The standard deviations are small in most cases, indicating that these mean
impacts are quite similar for all the correlations. In general, the behavior of the models
with marginal impact depending on the level of volatility is opposite to what we find in
the trivariate case, in the sense that the STCC-V and TV-RSDC models show a decreasing
marginal effect when volatility increases; again these variations are moderate for the MS
model. DC-RSDC shows a weak impact of a change in regime on the volatility. The DCC
models, with a practically null marginal effect of volatility and regime of volatility, con-
firm the feeling that the autocorrelated dynamics of the conditional correlations capture
most of the volatility effect on correlations.

For this data set we have also performed the estimation of the long-run correlation
matrix using the Nadaraya-Watson kernel estimator; the estimated bandwidth coefficient
is 0.035. In this case we cannot repeat the estimations made in the trivariate case based on
the comparison of MS models and applied to long-term covariances and degarched stan-
dardized residuals, to evaluate analytically the presence of the volatility effect. Actually,
the estimation of MS models as (3.3) is not feasible due the large number of parameters
involved. On the other hand the RSDC models for the standardized degarched returns
cannot be estimated with the parameterization adopted; in fact, the sample correlation
matrix of the degarched residuals is approximately an identity matrix and the matrices
multiplying of λh and λl in (4.1) are therefore the same. Anyway, the visual inspection
of the graphs of the correlations between the VXD index and each long-run and short-run
covariance time series provides some heuristic conclusions. In Figure 6 we show the cor-
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Table 11: Dow Jones components: Marginal impact average∗ of volatility and regime of
volatility on conditional correlations

vt−1 variation mean st.dev. mean st.dev. mean st.dev.
STCC-V TV-RSDC DCC-TVV

0.093 (min) 0.1 0.060 0.054 0.027 0.054 0.001 0.000
0.138 (Q1) 0.1 0.050 0.010 0.024 0.005 0.002 0.000
0.179 (Q2) 0.1 0.040 0.008 0.022 0.004 0.003 0.000
0.234 (Q3) 0.1 0.028 0.006 0.018 0.004 0.003 0.000
0.746 (max) 0.1 0.000 0.000 0.002 0.000 0.000 0.000

variation DCC-AVE
0.1 0.000 0.000

Et−1(ζt−1) variation STCC-R DCC-ARE DCC-TVR
0 1 0.179 0.036 0.010 0.001 0.003 0.000
1 -1 -0.006 0.001 -0.010 0.001 -0.009 0.001
Pr(ζt−1 = 1) variation DC-RSDC
0 1 0.041 0.008
1 -1 -0.035 0.007
∗Average of the impacts for the 435 correlations between the 30 stocks.

Figure 6: Dow Jones Components: Correlation between the VXD index and the estimated
long-run covariances (continuous line) and between the VXD index and the rolling short-
time covariances (dotted line)
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Table 12: Dow Jones components: MCS results for individual out-of-sample forecasts,
using the Quasi-Likelihood loss function and the TSQ statistics

Model p-value
STCC-V 0.044
STCC-R 0.084
DCC-ARE 0.061
CCC 0.077
TV-RSDC 0.114
RSDC 0.635
DC-RSDC 0.282
DCC 0.070
DCC-AVE 0.028
DCC-TVV 0.637
DCC-TVR 1.000
The first row represents the first model removed, down to the
best performing model in the last row.

relations between each of the the 435 estimated long-run covariance time series and the
VXD index (continuous line), as well as the correlations between the 130-terms rolling
short term covariance time series of the degarched standardized residuals and the VXD
index (dotted line). A strong relationship is clear between the long-run covariances and
the VXD index since the correlations are ranging in the interval [0.67-0.85]. On the con-
trary, the correlations between the short-term covariances and the VXD index are weak,
lying in ([-0.35;0.35]), with 88.5% of them in [-0.2,0.2].

Finally, we have performed the out-of-sample forecasts; to reduce the computational
burden, we have considered only the last 100 observations as testing set, re-estimating
all the models when a new observation is added. The MCS approach (Table 12) shows
again a very similar performance among the eleven models, considering a 1% size test;
increasing the size to 10%, we can exclude until the CCC model in the sequence shown
in the Table. Thus it is confirmed that the MCS approach selects a large group of models
with similar out-of-sample forecasting performance. This group includes models without
volatility effect, such as RSDC and DCC. In substance, the conclusion seems to be that
volatility does not help in out-of-sample forecasting in this data set.

In general, our feeling is that the results obtained in the previous simple trivariate case
are confirmed also in this 30-variate experiment, in spite of the need to parameterize or to
estimate differently the unconditional correlation matrices.

5 Concluding Remarks
The idea of this work is to include the effect of the volatility in the widespread used mod-
els for dynamic conditional correlations (calling them VDCC models), using two data sets
(a 3-variate and a 30-variate model) to verify the presence of this effect, the marginal con-
tribution to the changes in conditional correlations, the time-horizon of this effect (short
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or long run effect) and the out-of-sample performance. The choice of a large and a small
data set is made to distinguish the case in which we need a suitable reparameterization
of the unconditional correlation matrix, which involves a dimensionality problem, from
the unrestricted case. In our experiments we notice that the reparameterization called 2-λ
provides a good approximation of the unrestricted model. In general, dealing with large
data sets, a good practice would be to perform a comparison between the restricted and
unrestricted models on one (or more) subsample of the full data set.

The results of the small and the large data sets are very similar; in particular we find
that VDCC models show a better performance than the corresponding models without
volatility effect. The volatility effect is statistically significant, except in the STCC mod-
els, which seem very sensitive to the choice of the variable driving the smooth function.
In particular, the presence of regimes seems evident, both in volatility and correlation
dynamics. The influence of the regime of volatility on the regime of correlations seems
consistent with the findings of many authors, that assess that the turmoil periods (char-
acterized from high volatility regimes) cause an increase in the correlation levels and
dynamics.

In terms of in-sample forecasting, the VDCC models and their counterparts with-
out volatility effect do not seem to differ significantly. In other terms, it seems that the
volatility or its expected regime is a relevant determinant of the periods of high and low
correlations, but it does not increase the in-sample fitting significantly.

The marginal effects of the volatility is more evident in the RSDC models, whereas
the DCC family shows significant but tiny effects, probably because part of the volatility
effects is included in the GARCH dynamics of this kind of models.

The volatility seems to have a long-run effect and not a short-run effect; this result was
obtained using the multiplicative approach proposed by Bauwens et al. (2012), which
is very simple because based on a nonparametric approach, avoiding the estimation of
additional parameters in our models. An alternative approach to distinguish between long-
run and short-run correlations is the DCC-MIDAS of Colacito et al. (2011), in which it
should be possible to insert directly the effect of volatility in the long-run dynamics.

In terms of out-of-sample performance, the presence of volatility does not seem to im-
prove it; anyway it is important to notice that all the models show a similar performance,
with or without switching, with or without dynamics, etc. This is consistent with the theo-
retical and empirical results of Hansen (2010). In practice it seems that the specification of
the model is not a crucial choice if the purpose is the out-of-sample forecasting, or, more
in general, that the forecast of an unobserved component, as the conditional correlation,
based on the estimation of other unobserved components, as the conditional variances and
covariances, is a difficult task.

Finally, it would be necessary to check if the specification of the model for the condi-
tional variances is a crucial or not. In our experiments we have used simple GARCH(1,1)
models, but of course we could use several other specifications. We have made some
experiments with GJR-GARCH models (Glosten et al., 1993) and the results are not af-
fected.
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Table 13: Estimates of the parameters of GARCH(1,1) (for three stocks) and MS-AR(2)
(for the VIX index).

Series GARCH parameters
µ c a b

Ford 0.020 0.085 0.063 0.923
(0.020) (0.010) (0.009) (0.010)

HP 0.069 0.093 0.048 0.938
(0.016) (0.031) (0.017) (0.020)

IBM 0.075 0.038 0.080 0.913
(0.017) (0.007) (0.018) (0.017)

MS-AR parameters
VIX κ0 κ1 ϕ1 ϕ2 ση,0 ση,1 p00 p11

1.410 2.462 1.426 -0.508 0.927 3.154 0.973 0.925
(0.060) (0.185) (0.013) (0.009) (0.061) (0.296) (0.003) (0.010)

Robust standard errors in parentheses.

Appendix 1: First-step Estimation Results
In the first-step estimation, to provide the estimates of the conditional variances hi,t for
each series i = 1, . . . , n, we have considered GARCH(1,1) models for the returns, i.e.

hi,t = ci + ai(ri,t−1 − µi)
2 + bihi,t−1,

where ri,t represents the return of series i at time t. If vt is also considered in the first-step
estimation, we hypothesize that it follows a MS-AR(2) model, written as

vt = κζt + ϕ1vt−1 + ϕ2vt−2 + ση,ζtηt,

where κζt and ση,ζt are switching coefficients that change according to the state ζt ∈
{0, 1}, and ηt are i.i.d. N(0,1) disturbances.16 The state ζt is driven by an ergodic Markov
Chain with unknown coefficients pii (i = 0, 1), representing the probability Pr(ζt =
i|ζt−1 = i), and pij = 1− pii = Pr(ζt = j|ζt−1 = i) for i ̸= j. The first-step coefficients
present in the first equation of (2.2), are

θV = (µ1, c1, a1, b1, . . . , µn, cn, an, bn, κ0, κ1, ϕ1, ϕ2, ση,0, ση,1, p00, p11)
′ .

If the VDCC model used does not depend on the regime of volatility, the MS-AR coeffi-
cients are not included in θV .

In Tables 13 and 14 we show the estimates of the GARCH and MS-AR coefficients
for the data sets analyzed in this paper.

Appendix 2: Marginal Impacts of Volatility on Correlation
We provide the formulas to calculate the marginal impact of the volatility for each model
considered. The variable xt represents the volatility or its expected regime, recalling that,

16We prefer to consider the intercept as switching coefficient and not the mean of vt because the first is
more sensitive to small jumps in the level of the volatility series.
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Table 14: Estimates of the parameters of GARCH(1,1) (for Dow Jones components) and
MS-AR(2) (for the VXD index).

Parameters Stocks
AA AXP BA BAC CAT CSCO CVX DD DIS GE

µ 0.02 0.07 0.09 0.03 0.09 0.02 0.09 0.05 0.07 0.03
(0.01) (0.02) (0.02) (0.02) (0.03) (0.06) (0.02) (0.02) (0.02) (0.02)

c 0.14 0.04 0.09 0.06 0.19 0.25 0.06 0.04 0.08 0.04
(0.02) (0.01) (0.01) (0.01) (0.03) (0.06) (0.00) (0.01) (0.01) (0.00)

a 0.08 0.12 0.10 0.13 0.08 0.08 0.10 0.08 0.10 0.12
(0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01)

b 0.90 0.88 0.88 0.87 0.88 0.87 0.88 0.90 0.88 0.88
(0.01) (0.01) (0.01) (0.01) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01)
HD HPQ IBM INTC JNJ JPM KFT KO MCD MMM

µ 0.08 0.09 0.06 0.05 0.04 0.06 0.06 0.06 0.08 0.04
(0.02) (0.03) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02) (0.07)

c 0.06 0.17 0.06 0.05 0.05 0.03 0.10 0.03 0.03 0.11
(0.01) (0.05) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.00) (0.02)

a 0.09 0.09 0.12 0.05 0.15 0.10 0.14 0.11 0.07 0.09
(0.02) (0.03) (0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02)

b 0.89 0.88 0.86 0.94 0.82 0.90 0.82 0.88 0.92 0.86
(0.02) (0.04) (0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02)
MRK MSFT PFE PG T TRV UTX VZ WMT XOM

µ 0.00 0.03 -0.02 0.04 0.05 0.06 0.09 0.03 0.01 0.08
(0.00) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02)

c 0.29 0.05 0.11 0.07 0.06 0.07 0.04 0.03 0.05 0.07
(0.12) (0.02) (0.03) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

a 0.06 0.06 0.10 0.11 0.11 0.10 0.09 0.09 0.08 0.09
(0.03) (0.02) (0.04) (0.03) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

b 0.86 0.92 0.86 0.84 0.87 0.88 0.89 0.90 0.89 0.87
(0.06) (0.02) (0.04) (0.03) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01)

MS-AR parameters
VXD κ0 κ1 ϕ1 ϕ2 ση,0 ση,1 p00 p11

1.35 2.68 1.42 -0.50 0.92 3.60 0.98 0.94
(0.21) (0.43) (0.06) (0.04) (0.05) (0.47) (0.00) (0.02)

Robust standard errors in parentheses.
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in spite of the same formula, the interpretation is different. The marginal impact is defined
as the first derivative of the conditional correlation function at time t with respect to xt−1.

Smooth Transition VDCC models
The conditional correlation between series i and series j is given by

rij,t = rij,hft + rij,l(1− ft),
ft = (1 + exp(−γ(xt−1 − c)))−1.

The marginal impact is given by:

(rij,h − rij,l)
exp[−γ(xt−1 − c)]γ

{1 + exp[−γ(xt−1 − c)]}2
.

Notice that the marginal impact depends on the value of xt−1.

Markov Switching VDCC models
The conditional correlation between series i and j is given by

rij,t = rij,st ,

where st is the regime of the correlation, assuming the labels h and l. Since st is unob-
servable, we can use the expected value of the conditional correlation, given by

rij,hPr(st = h|ΨT ) + rij,l(1− Pr(st = h|ΨT )),

where the smoothed probability Pr(st = h|ΨT ) depends on xt. The computation of the
analytic derivative of the smoothed probabilities would be prohibitive, being based on
filtering and smoothing. A possible solution is to replace it with the ergodic probability

πh =
1− pll,t

2− phh,t − pll,t
,

where, using the TV-RSDC specification:

pii,t =
exp(θ0,i + θ1,ivt−1)

1 + exp(θ0,i + θ1,ivt−1)
i = h, l,

whereas, using DC-RSDC:

pii,t = pii|0(1− Pr(ζt = 1)) + pii|hPr(ζt = 1) i = h, l.

Let ∂pii,t the derivative of pii,t with respect to xt−1; then the marginal impact of xt−1 in a
MS VDCC model is given by

(rij,h − rij,l)
−∂pll,t − (−∂phh,t − ∂pll,t)(1− ∂pll,t)

(2− phh,t − pll,t)2
.
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In particular, when we are using a TV-RSDC model:

∂pii,t =
exp(θ0,i + θ1,ivt−1)

[1 + exp(θ0,i + θ1,ivt−1)]2
,

whereas if the model is DC-RSDC:

∂pii,t = pii|1 − pii|0.

Again the two marginal effects depend on the values of vt−1 and Pr(ζt = 1) respectively.
In the second case it is interesting to evaluate the marginal effect when Pr(ζt = 1) = 0
(in this case the derivative measures the marginal effect corresponding to a change of
Pr(ζt = 1) from 0 to 1) and Pr(ζt = 1) = 1 (the derivative, multiplied by -1, then
measures the marginal effect when Pr(ζt = 1) changes from 1 to 0).

Dynamic VDCC
In a DCC framework the conditional correlation at time t between series i and series j is
given by:

rij,t =
qij,t

q
1/2
ii,t q

1/2
jj,t

,

where qij,t is the element (i, j) of the Qt matrix.
The marginal effect of xt−1 on the conditional correlation is then

∂qij,t(1− 0.5q−1
ii,tqij,t − 0.5q−1

jj,tqij,t)

q
1/2
ii,t q

1/2
jj,t

where ∂qij,t is the derivative of qij,t with respect to xt−1. This is the only element that
changes using alternative dynamic VDCC models.

In the case of DCC-AVE and DCC-ARE:

∂qij,t = g

(
1− 1

T
rij

)
.

Notice that the marginal effect is constant along the time.
In the case of DCC-TVV and DCC-TVR:

∂qij,t = ∂atui,t−1uj,t−1qi,t−1qj,t−1 + ∂btqij,t−1,

where

∂at = a1
exp(θa,0 + θa,1xt−1)θa,1

[1 + exp(θa,0 + θa,1xt−1)]2
, ∂bt = b1

exp(θb,0 + θb,1xt−1)θb,1
[1 + exp(θb,0 + θb,1xt−1)]2

.

In this case there is a dependence on the value of xt−1.
The derivative depends also on the value of Qt−1 and, only in the time-varying pa-

rameter case, on the value of ut−1. We fix them to their average value in the sample
considered.
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