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Abstract 
The parametric model introduced by Lee and Carter in 1992 for projecting mortality 
rates in the US has been a seminal development and has been widely used since 
then. Different versions of the model, incorporating constraints on the data, and 
different adjustment methods have led to improvement. All of these changes have 
increased the complexity of the model with a corresponding improvement in 
goodness of fit, however, there is little change in the accuracy of forecasts of life 
expectancy in comparison with the original Lee-Carter model, according to some 
authors. 
To evaluate to what point the increments in the complexity and computational cost 
of the models are reflected in the forecast of such indices as life expectancy and 
modal age at death, among others, we have compared three different models: the 
original Lee-Carter with one parameter and the Lee-Carter model with two temporal 
parameters forecasted by means of two independent time series or by means of a 
bivariate one. The three sets of predictions so obtained are compared using a 
mixture of block-bootstrap techniques and functional data analysis. 
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1 Introduction

“Human senescence has been delayed by a decade. This finding, documented
in 1994 and bolstered since, is a fundamental discovery about the biology of
human ageing, and one with profound implications for individuals, society
and the economy. Remarkably, the rate of deterioration with age seems
to be constant across individuals and over time: it seems that death is
being delayed because people are reaching old age in better health. Research
by demographers, epidemiologists and other biomedical researchers suggests
that further progress is likely to be made in advancing the frontier of survival
— and healthy survival — to even greater ages” (Vaupel, 2010). In this
context of recent demographic changes, the development of new models for
building life tables and their projection is presented as a point of key research.
Life expectancy reflects these changes but its effects are diminished due to
its robustness. If, moreover, we bear in mind that life expectancy offers no
information as to whether this improvement is the same for different age
groups, it is important and necessary to turn to other mortality indicators
whose past and future evolution in Spain we are going to study.

An appropriate set of indicators for the study of all these phenomena
should include an indicator of infant mortality, life expectancy, the Gini
index, the modal age at death. These indicators were applied to Spanish
mortality data for the period 1981-2008 for the age range 0 to 99 in
Debón et al. (2011). The main conclusions obtained were:

• mortality in Spain improved in both the observed period, 1981-2008,
and the forecast period, 2009-2028,

• future improvement is expected to be more sustained than that
experienced during the period observed,

• the evolution of the modal age at death, the Lorenz curve and Gini
index also confirmed that Spanish mortality displays both expansion
and rectangularization,

• the mortality experience of women is better than men, meaning longer
life expectancy, higher modal age at death, and a lower Gini index.

All these indicators can be projected using the projections of qxt, ob-
tained from different methodologies, in our study Lee-Carter models
(Lee and Carter, 1992; Brouhns et al., 2002; Debón et al., 2008). The errors
associated with these estimations can be calculated by means of a block-
bootstrap methodology (Liu and Braun, 2010) and a confidence interval can
be provided.
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The aim of this paper is to evaluate whether different mortality models
produce significant differences in the projections of some of these mortality
indicators. The reason is that improvement in goodness-of-fit is achieved
by increasing the complexity of the models proposed in the literature at the
cost of a higher computational complexity. We consider the Lee-Carter model
with one or two terms, and in the latter case we consider two independent
univariate time series and the case of a bivariate time series.

We want to study if this improvement in goodness-of-fit will be reflected
in significant differences between the indicators that we are using, because
according to some authors such as Lazar and Denuit (2009) and Debón et al.
(2010) there is little change in the ability to forecast life expectancy in
comparison with the original Lee-Carter model. In addition, in so far as we
are aware, no studies have used formal model selection criteria to compare
models based on their projected mortality indicators.

Therefore, the study has a second aspect that we wish to point out:
the method used to assess these differences. On the one hand is the use
of block-sampling techniques to obtain bootstrap prediction intervals for
mortality indicators. Some authors have drawn attention to the narrow
intervals obtained by classical bootstrap techniques; however block-bootstrap
techniques produce prediction intervals which are more realistic. The second
methodological innovation is the use of functional analysis techniques to
detect possible differences between the projections of the indicators obtained
with the different models. The reasons for the use of functional data are two-
fold: firstly, because the projections of one indicator over time are correlated
values and proper analysis requires longitudinal data techniques or functional
data analysis, as we propose; secondly, because so far the comparison has
been carried out by comparing graphs informally, rather than by using
objective criteria.

The paper is structured as follows. Section 2 is devoted to describing
Dynamic Life Tables and a brief summary of Lee-Carter models. Section 3
presents the definition and properties of the indicators of mortality used in
the analysis: life expectancy, the Gini index and modal age at death. Section
4 introduces the block-bootstrap techniques for building prediction intervals.
Functional data analysis techniques allowing the comparison of mortality
indicators are presented in Section 5. Section 6 devoted to the results of the
analysis of Spanish mortality data by means of the above indicators. Finally,
Section 7 establishes the conclusions to be drawn from the results in the
previous section.
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2 Dynamic Life Tables

We consider a set of crude mortality rates q̇xt, for age x ∈ [x1, xk] and calendar
year t ∈ [t1, tn], which we use to produce smoother estimates, q̂xt, of the true
but unknown mortality probabilities qxt. A crude rate at age x and time t is
typically based on the corresponding number of deaths recorded, dxt, relative
to those initially exposed to risk, Ext.

According to Arias (2010), there are two types of life tables: the cohort
(or generation) and the period (or current) tables. The cohort life table
presents the mortality experience of a particular birth cohort, it reflects the
mortality experience of an actual cohort from birth until no lives remain in
the group table. It therefore requires data over many years, so instead we
normally use the period life table. The period life table presents what would
happen to a hypothetical (or synthetic) cohort if it experienced the mortality
conditions of a particular time period throughout its entire life.

A dynamic life table is a rectangular mortality data array (qxt), where x
denotes age and t denotes calendar time. Each column in this array represents
the constituents of the period life table for year t.

2.1 Lee-Carter models

The Lee-Carter Model, developed in Lee and Carter (1992), consists in
adjusting the following function to the central mortality rates,

mxt = exp(ax + bxkt + ǫxt)

or, its equivalent
ln (mxt) = ax + bxkt + ǫxt. (1)

In the previous two expressions, the double subscript refers to the age, x,
and to the year or unit of time, t. ax and bx are age-dependent parameters
and kt is a specific mortality index for each year or unit of time. The errors
ǫxt, with 0 mean and variance σ2

ǫ , reflect the historical influences of each
specific age that are not captured by the model. There is no consensus
among the various authors about the measure of mortality to be modelled
in (1), with both mxt and µxt being used. We prefer to use qxt (with the
logit transformation-see later) on account of the good results obtained in
our previous work (Debón et al., 2005). Thus, this paper directly models
the probability of death, qxt which has the advantage that most actuarial
calculations involve life table, although the results can be extended to the
force of mortality, µxt or mxt central mortality rates at age x and time t.
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Problems with the estimation of qxt (Lee, 2000) can be avoided by
modelling the logit death rates. It is for this reason that we apply this
model to the logit transformation of the death probability qxt,

ln

(
qxt

1− qxt

)
= ax + bxkt + ǫxt. (2)

Booth et al. (2002) and Renshaw and Haberman (2003b) indicate that
the interaction between age and time can be captured better by adding terms
to (2), which would become

ln

(
qxt

1− qxt

)
= ax +

r∑

i=1

b(i)x k
(i)
t + ǫxt. (3)

In our application to the Spanish data of mortality we have used (3) with
r = 1 and r = 2, and consequently the corresponding models will be denoted
LC1 and LC2, respectively.

The model is well known and will not be considered further in this
presentation. A detailed description of the model and its adjustment by
different methods can be found in Debón et al. (2008).

Forecasts for qxt with the Lee-Carter model are generated by first
modelling k̂t as a time series by using the Box-Jenkins methodology. In many
of these applications, a good model for the kt is usually an ARIMA(0, 1, 0),

k̂t = c+ k̂t−1 + ut,

where c is a constant and ut is white noise. With this model, the prediction
of kt varies in a linear way and each death rate predicted varies at a constant
exponential rate.

Renshaw and Haberman (2003b) have applied separate univariate ARIMA
processes to the first two-period components, the underlying assumption be-
ing that the two time series corresponding to k1

t and k
(2)
t are independent.

Applied to Spanish mortality data this assumption also made by Debón et al.
(2008) represents a potential weakness as Renshaw and Haberman (2003b)
recognize. An example of how the model can be expanded to include depen-
dence and co-integration effects is given in Renshaw and Haberman (2003a).
Lazar and Denuit (2009) have used multivariate time series techniques to
forecast age-specific death rates and life expectancies, specifically the dy-
namic factor analysis and the Johansen cointegration methodology. Futher-
more, a comparison with the classical Lee-Carter approach is performed.
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3 Mortality Indicators

3.1 Life expectancy

Life expectancy at different ages can be calculated from a dynamic life table.
For a year t, the hypothetical number of people alive at the beginning of each
age interval [x, x + 1) is given by the iterative formula l(x+1)t = lxt(1 − qxt),
with an arbitrary value l0t = 100000. This allows us to calculate the number
of deaths dxt = lxt − l(x+1)t, and the corresponding number of person-years
Lxt = l(x+1)t+axtdxt, where axt is the average time in years that people dying
at age x live in [x, x + 1) (Chiang, 1960, 1968, 1972). When micro-data of
mortality are not available, axt = 1/2. The total number of person-years
that would be lived after the beginning of the age interval x to x + 1 by
the synthetic life table cohort is Txt =

∑
i≥x Lit (Anderson, 1999). The life

expectancy for individuals with of x is given by

ext =
Txt

lxt
.

Life expectancy calculated in Section 6 refers to life expectancy at birth
and at 65, e0t and e65t, respectively.

3.2 Modal age at death

The modal age at death is the age associated with the maximum frequency
of death. In industrialized countries where infant mortality has decreased
dramatically, the modal age of the distribution of deaths is found at older
ages. This shift to the advanced ages has been denoted as expansion and has
a collateral effect on the survival curve, which adopts the form of a rectangle,
a phenomenon that has been denoted as rectangularization, and is related to
an increase in life expectancy.

Additionally, high and dispersed mortality rates are also present in young
and intermediate ages, particularly for men. This phenomenon is known as
the accident hump, as some authors associate it with traffic accidents.

The choice of this indicator is justified by two points outlined by
Canudas-Romo (2008),

1. the modal age at death is strongly dependent on the force of mortality
prevailing at older ages, and

2. changes in infant mortality are indirectly related to the modal age at
death, by having an effect on the modal number of deaths.
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It follows that modal age at death may be less robust than life expectancy
and therefore can reflect changes in the probability of death qxt, which are
not detected with life expectancy.

3.3 Gini index and Lorenz curve

The increase in life expectancy is a consequence of the improved living
conditions of individuals, perhaps being the most important improvement
achieved for health. However, life expectancy does not provide any
information about whether the improvement applies equally to different age
groups.

The Gini index is the most common statistical index used in social science
for measuring inequality or diversity. It has also been used to measure the
contribution of different ages to mortality over time (Llorca et al., 1998). The
Gini index is related to the Lorenz curve, which is the curve obtained when
we represent the cumulative proportion of a population on the x-axis and the
cumulative proportion of years lived by this population on the y-axis. The
curve is obtained by joining these points and it is always below the diagonal.
The Gini index is twice the area that lies between the diagonal and Lorenz
curve, and its value varies from 0 (perfect equality) to 1 (perfect inequality).
The value 0 is obtained when all individuals die at the same age, while the
value 1 is achieved if the entire population dies at 0 years and one individual
dies at an infinite age.

In practice, actuaries work with discrete data from a life table, thus
approximate expressions for the abscissas and ordinates of the Lorenz curve
can be obtained by means of

fxt =
l0t − lxt

l0t
= 1−

lxt
l0t

, (4)

and

gxt =
T0t − Txt − xlxt

T0t
, (5)

respectively. The situation of perfect equality arises if all individuals die
at the same age x0t. In this case, the line consists of only two end-points:
fxt = 0, gxt = 0, ∀x 6= x0t and fxt = 1, gxt = 1, for x = x0t.

One of the most widely used approaches for the Gini index is
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(Martín-Pliego, 1994),

IGt
=

(ω−1)∑

x=0

(gxt − fxt)

(ω−1)∑

x=0

fxt

,

where w is the last age observed.
The Gini index summarizes the degree of concentration collected by the

Lorenz curve in a single value. This feature is certainly an advantage, but
has the disadvantage that different concentration configurations, equivalent
to different Lorenz curves, can provide the same index value. Hence there is
the need to use both the Lorenz curve and Gini index to adequately describe
inequality in the length of life.

Other indices such as the Interquartile range (IQR), which also allow the
measurement of this unequal contribution, do not have the three desirable
basic properties for any measure of inequality (Shkolnikov et al., 2003):

1. population-size independence, the index does not change if the overall
number of individuals changes with no change in the proportions of
years lived,

2. mean and scale independence, the index does not change if everyone’s
years lived changes by the same proportion, and

3. the Pigou-Dalton condition, any transfer from an older to a younger
individual that does not reverse their relative ranks reduces the value
of the index.

4 Block-bootstrap prediction intervals

Mortality predictions are not normally accompanied by measures of
sensitivity and uncertainty. Some authors, Pedroza (2006) among others,
argue that such measures are necessary and suggest the construction of
prediction intervals for the estimations obtained. One way to combine
all these sources of uncertainty is to use bootstrapping procedures as
Brouhns et al. (2005) and Koissi et al. (2006) do.

In the case of Spain this methodology was used by Debón et al.
(2008), who obtained prediction intervals for the predictions provided
by the Lee-Carter model with one or two terms. Parametric and
non-parametric bootstrap techniques are used, in both cases based on
the binomial distribution assumption, as distinct from the work by
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Brouhns et al. (2005), Koissi et al. (2006) and Renshaw and Haberman
(2008), who employ the Poisson distribution. Another difference to point
out is the residuals sampled in the non-parametric case, while Debón et al.
(2008) sample over the residuals given by expression (6), Koissi et al. (2006)
and Renshaw and Haberman (2008) sample over the deviance residuals.

The narrow prediction intervals obtained by classical bootstrap tech-
niques have attracted the attention of other researchers in this field,
Lee and Carter (1992), Lee (2000), Booth et al. (2002) and Koissi et al.
(2006), who provide different explanations.

In the case of spatial (two-dimensions: age, time) dependence of
residuals ordinary bootstrap is not valid Liu and Braun (2010). Therefore,
we aim at obtaining prediction intervals for the mortality indicator by
using a residual-based block-bootstrap, as Liu and Braun (2010) propose for
deviance residuals, because this technique partially retains the underlying
dependence structure in the residuals and generates more realistic resamples
(Efron and Tibshirani, 1993). In this paper, block-bootstrap prediction
intervals for the mortality indicator are going to be obtained using logit
residuals and binomial distribution.

The procedure used is the following. We start with the logit residuals, ǫ̂xt
which are obtained from the original data,

ǫ̂xt = logit(q̇xt)−
̂logit(qxt), (6)

ordered in a rectangular array (ǫ̂xt), where x denotes age and t denotes
calendar time. To set up a new artificial set of residuals ǫ̂nxt, we start with an
empty rectangular array which has the same dimensions as the original matrix
of residuals. The empty array is then partitioned into smaller rectangular
blocks. Each block is replaced by a block of the same size, which is randomly
selected from the original matrix. This block consists of all residuals in the
rectangle to the southeast of the randomly selected element from the original
matrix.

Estimated logit rates, ̂logit(qxt), are then set and the observed logit rates,
for the nth element of the sample, are obtained from the inverse expression

logit(q̇xt)
n = ̂logit(qxt) + ǫ̂nxt.

With these new sampled logit rates, a new adjustment of the model is
obtained which provides new estimations of the parameters. The process
is repeated for the N bootstrap samples, which in turn provide a sample of
size N for the set of model parameters, and the kt’s are then projected on the
basis of an ARIMA model, obtaining predictions for the mortality rates and
the corresponding life expectancy and mortality indicators for the desired
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future years. The prediction intervals are obtained from the percentiles,
IC95 = [p0.025, p0.975].

5 Functional data analysis

The experimental design we have carried out in order to test whether different
modeling mortality ratios produce significant differences in the projections
of mortality indicators is a two-way design, whose structure is shown in
Table 1. It is a balanced design with the same number of repetitions in
each cell, nB, which is equal to the number of block-bootstrap samples.
Each one of these repetitions is a set of 20 values, the projected mortality
indicator corresponding to the years 2011 to 2030. The factor model has three
categories, the Lee-Carter with one time parameter, LC1, and the Lee-Carter
with two time parameters forecasted by means of two independent time series
LC2ind or by means of bivariate one LC2bi. In turn, the factor residual also
has two categories reflecting the origin of the residuals used in the bootstrap
process, RLC1 and RLC2, according to whether they were obtained from
the adjustment of the original data with the LC1 or LC2 model.

model
LC1 LC2ind LC2bi

residual RLC1 nB nB nB

RLC2 nB nB nB

Table 1: Experimental design for comparison of functional indicators

As mentioned at the beginning, our aim is to check differences among the
projections obtained with different models and different residuals. A classic
ANOVA method could be applied with univariate observations, but this is not
the case. Each repetition can be considered as a discrete function evaluated in
each year of the forecast period. We have to deal with functional data and the
use of methods of functional data analysis is allowed. Several authors have
dealt with the development of ANOVA techniques for these kinds of data, but
not all of them can be used in a design with two fixed factors. Some of them
address a single factor (Cuevas et al., 2004; Martínez-Camblor and Corral,
2011) and others address mixed effects (Abramovich and Angelini, 2006;
Antoniadis and Sapatinas, 2007). Therefore, we will resort to the method
proposed by Cuesta-Albertos and Febrero-Bande (2010) which is based on
the analysis of randomly chosen one-dimensional projection of functional
data. This method can perform a two way ANOVA with interactions.
Following Cuesta-Albertos and Febrero-Bande (2010) we can write,
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Xmod,res
i (t) = m(t) + fmod(t) + gres(t) + hmod,res(t) + ǫmod,res

i (t), (7)

where m is non-random and describes the overall shape of the projections,
i = 1, . . . , nB, and the functions fmod, gres and hmod,res account for the main
effect and interaction of model and residual. Finally, ǫmod,res

i are independent
random trajectories centered on the mean.

6 Analysis of Mortality Data from Spain

The data used in this analysis come from the Spanish National Institute of
Statistics (INE) (see their official web site at http://www.ine.es). In partic-
ular, we have worked with published life tables. The crude estimates of qxt,
necessary for the models under study, were obtained with the new method-
ology recently proposed by Spanish National Institute of Statistics (INE)
(2009) based on Elandt-Johnson and Johnson (1980), who explain that given
complete, continuous-time observations of all births and deaths for all peo-
ple in a population exposed to the risk of mortality, it is possible to produce
direct estimates of the central mortality rates, mxt, by means of

ṁxt =
dxt

1/2Pxt + 1/2Px(t+1) +
∑

i δxti
, (8)

where dxt are deaths in the year t at age x, and Pxt and Px(t+1) are the
population that are x years old on December 31st of year t and year t + 1,
respectively. Finally, δxt is defined as the difference, in years, between the
date of death and the birthday in year t, of each individual i who dies in year
t with age x. We can obtain q̇xt from,

q̇xt =
ṁxt

1 + (1− axt)ṁxt

, (9)

where axt is the average number of years that people dying in year t have
lived between ages x and x+ 1,

axt =

dxt∑

i=1

axti

dxt
,

where axti is the time in years that individual i, dying in year t at age x,
lived between ages x and x+ 1.

The more recent Spanish data set such as the life tables from INE
(Spanish National Statistical Institute) are computed with the most suitable
methodology and are more accurate than data in the Human Mortality Data
base (Muriel et al., 2010).
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Figure 1: Behaviour of the logit of the crude mortality rates for age and time.

6.1 Model adjustment

The models described in Section 2.1 with the expression (3) for r = 1 and
r = 2 have been used to adjust mortality data in Spain for the period 1991-
2010 and a range of ages from 0 to 99. The estimation of the parameters is
carried out by means of maximum likelihood methods using the gnm library
published by Turner and Firth (2006) of R R Development Core Team
(2005), as Debón et al. (2010) propose. The adjustments have been made
separately for women and men. The findings for women are similar to those
obtained for men, and for the sake of brevity are not reproduced here. Figure
1 shows the behaviour of the logit of the crude mortality rates according to
age x and year t.

As the number of parameters estimated in the LC1 model is high,
100×2+20 = 220, we prefer to present them in the form of a graph in Figure
2. As a general comment, we must point out that the differences between the
ax estimations obtained for the LC1 and LC2 models are very small and are
not appreciable for most ages. More specifically, the comparison of parameter
ax for both models shows that mortality for men reveals an increase in the
age range from 20 to 40 that some authors (Guillen and Vidiella-i-Anguera,
2005) attribute to accident mortality. The hump in Figure 2(a) is slightly
more pronounced for model LC2 than model LC1.

The values of parameter bx are positive for all ages for both models LC1
and LC2, indicating that mortality rates in these age groups decrease over
time when the values of kt are negatives. The comparison of parameter bx for
both models for advanced ages indicates that mortality in these age groups is
corrected in LC2 with the second factor. For kt, differences are appreciable in
general but more specially for the calendar years in the middle of the fitting
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Figure 2: Estimated values for LC1 (solid line) and for LC2 (dotted line) for
men.

period.
Figure 3(a) shows the estimations obtained with the LC2 model

corresponding to the second term b(2)x , showing larger values for some low ages
(3, 4 and 7), middle ages (25-45) and old ages (over 97), which implies that
the effect of adding a second term acts more specifically on these age groups.
With regards to k

(2)
t Figure 3(b), values are low in general but specially higher

for years in the middle (around 1999), indicating that mortality in these years
is corrected in the LC2 model by the inclusion of the second factor.
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Figure 3: Estimated values men (dotted line) for the LC2 model.

Renshaw and Haberman (2006) suggest carrying out diagnostic checks on
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the fitted model by plotting residuals. These are done in Figures 4 and 5 with
the logit residuals for expression (6). Figure 6 is used to show the underlying
dependence structure in the logit residuals for both models.

The ordinary bootstrap is not valid in the case of spatial dependence of
residuals since it is based on simple random sampling, so we are going to use
block-bootstrap suggested by Liu and Braun (2010). Now our main problem
is how to select the block size. In the absence of firm theoretical guidance,
Liu and Braun (2010) plot a correlogram and a contour map of the original
raw residuals and compare these with the resampled residuals. If these plots
match reasonably well, this gives confidence in the choice of block size as it
supports the fact that they have a similar underlying dependence structure.

With respect to the block sizes, our initial guesses are based on the
dependence structure observed for the raw residuals in Figure 6. Firstly,
we begin with the raw residuals of model LC1 in Figure 6 (left), and as an
example we only show the results obtained for block choices 20 × 5, 5 × 4
and the ordinary bootstrap i.e. 1 × 1. Contour maps are plotted in Figures
7, 10 and 13. These plots show the occurrence of large patches of large-
positive and large-negative residuals, except for the last one corresponding
to the ordinary bootstrap. The other two are highly suggestive of spatial
dependence but the structure of the pattern for block size 5×4 is closer to the
raw residual pattern shown in Figure 6 (left). In addition, the corresponding
prediction intervals for estimated values for the parameters LC1 and LC2
models (Figures 11 and 12) contain the estimated values for the LC1 and
LC2 parameters from the original data, while the prediction intervals for
the remaining block-bootstrap choices in Figures 8, 9, 14 and 15 fail in the
estimation of the second terms of the LC2 model.

Secondly, we considered the raw residuals for the LC2 model in Figure
6 (right) and again, as an example we only show the results obtained for
choices 20 × 5, 5 × 4 and ordinary bootstrap i.e. 1 × 1. Contour maps are
plotted in Figures 16, 19 and 22. These plots show the occurrence of large
patches of large-positive and large-negative residuals, except for the last one
corresponding to the ordinary bootstrap. The other two are highly suggestive
of spatial dependence, but the structure of block size 5×4 is closer to the raw
residual pattern shown in Figure 6 (right). In addition, the corresponding
prediction intervals for the estimated values for the parameters for the LC1
and LC2 models (Figures 20 and 21) contain the estimated values for the
LC1 and LC2 parameters from the original data, while prediction intervals
for the remaining block-bootstrap in Figures 17, 18, 23 and 24 fail in the
estimation of the second terms of LC2 model. Our final choice is to use a
5× 4 block size.

Therefore, we have three independent 50 block (5×4)-bootstrap samples
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Figure 4: Residuals for the LC1 model for men.
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Figure 5: Residuals for the LC2 model for men.
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Figure 6: Residuals for age-period for LC1 (left) and LC2 (right) for men.

obtained from logit LC1 residuals and the same from logit LC2 residuals,
which we are going to call RLC1 and RLC2, reflecting the origin of the
residuals used in the bootstrap process and according to whether they were
obtained from the adjustment of original data with the LC1 or LC2 model as
we mentioned in Section 5. And we are going to predict mortality indicators
by the Lee-Carter with one time parameter, LC1, and the Lee-Carter with
two time parameters forecasted by means of two independent time series
LC2ind or by means of the bivariate model LC2bi.

6.2 Prediction intervals for mortality indicators on

block-bootstrap

Life expectancy remains the most familiar measure of longevity among
demographers, and although it reflects the changes in mortality over time, it
does so in a smooth way due to its robustness. This is the reason why other
indicators are studied in this paper: modal age at death and the Gini index.
The Gini index is a measure of compression or dispersion of the mortality
measure and the other two forecasted indicators are measures of the central
tendency of mortality, life expectancy and modal age of death. All these
indicators share the advantage of summarizing information about mortality
independently of the age structure. An indicator of the evolution of mortality
with time, widely used by actuaries, is the residual life expectancy at age 65
in year t, ex65. The importance of this indicator arises because 65 is the
normal retirement age.

Forecasted mortality indicators for the period 2011-2030 were calculated
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Figure 7: Contour map of block-bootstrap (20×5) residuals from LC1 model
for men.
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Figure 8: Estimated values for LC1 parameters for block-bootstrap (20× 5)
from LC1 model for men.
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Figure 9: Estimated values for LC2 parameters for block-bootstrap (20× 5)
from LC1 model for men.
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Figure 10: Contour map of block-bootstrap (5×4) residuals from LC1 model
for men.
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Figure 11: Estimated values for LC1 parameters for block-bootstrap (5× 4)
from LC1 model for men.
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Figure 12: Estimated values for LC2 parameters for block-bootstrap (5× 4)
from LC1 model for men.
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Figure 13: Contour map of ordinary bootstrap (1 × 1) residuals from LC1
model for men.
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Figure 14: Estimated values for LC1 parameters for ordinary bootstrap
(1× 1) from LC1 model for men.
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Figure 15: Estimated values for LC2 parameters for ordinary bootstrap
(1× 1) from LC1 model for men.
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Figure 16: Contour map of block-bootstrap (20× 5) residuals from the LC2
model for men.
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Figure 17: Estimated values for LC1 parameters for block-bootstrap (20×5)
from the LC2 model for men.
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Figure 18: Estimated values for LC2 parameters for block-bootstrap (20×5)
from LC2 model for men.
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Figure 19: Contour map of block-bootstrap (5 × 4) residuals from the LC2
model for men.
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Figure 20: Estimated values for LC1 parameters for block-bootstrap (5× 4)
from the LC2 model for men.
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Figure 21: Estimated values for LC2 parameters for block-bootstrap (5× 4)
from the LC2 model for men.
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Figure 22: Contour map of ordinary bootstrap (1 × 1) residuals from the
LC2 model for men.

0 20 40 60 80 100

−
8

−
6

−
4

−
2

age

ax

(a) ax

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

age

bx

(b) bx

1995 2000 2005 2010
−

70
−

60
−

50
−

40
−

30
−

20
−

10
0

In
de

x 
kt

(c) kt

Figure 23: Estimated values for LC1 parameters for ordinary bootstrap
(1× 1) from the LC2 model for men.
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Figure 24: Estimated values for LC2 parameters for ordinary bootstrap
(1× 1) from the LC2 model for men.
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using the block-bootstrap technique described in Section 4. Figures 25, 26,
27 and 28 summarize their behavior for all models (LC1, LC2ind and LC2bi)
and six independent samples for each one (three from RLC1 and three from
RLC2 ). As seen in Figures 25, 26, 27 and 28, all the predicted measurements
and prediction intervals for all the models and samples behave in a similar
way, which makes choosing one model over others difficult. Figures 25, 26, 27
and 28 show the estimated values and the corresponding prediction intervals
for the corresponding mortality indicators. Life expectancy, residual life
expectancy at age 65 and the modal age at death continue to increase, and
the forecast Gini index continues to decrease.

With regard to the width and symmetry of the prediction intervals for life
expectancy (Figure 25), the first feature to highlight is the extended width
but greater symmetry for the combination LC1 model and RLC1 (Figure
25 left) and for LC2ind and RLC2 (Figure 25 middle), and narrowness
for LC2bi and RLC2 (Figure 25 right), the explanations for it being the
interaction between them. This comment is valid for residual life expectancy
at age 65 in Figure 26 and we expect this comment to be valid for the other
three indicators also. But the intervals obtained for modal age at death
show wider and more irregular intervals (Figure 28), which are narrower
and more symmetric for the combination LC1 model and RLC2 (Figure 28
left), LC2ind and RLC2 (Figure 28 middle) or LC2bi and RLC2 (Figure 28
right). In the case of the Gini index, we note (Figure 27) the narrowness and
symmetry of the prediction intervals for the combination LC1 model and
RLC1 (Figure 27 left), for LC2ind and RLC2 and for LC2[bi and RLC2.

6.3 ANOVA for functional data analysis

Figure 29 (left) shows the graphs for the forecasted life expectancy at birth
obtained by block-bootstrap for the six combinations of models and residuals.
Some possible outliers can be detected, for example LC2bi × RCL1 and
LC2bi × RCL2. The ANOVA method used to contrast the effects in model
(7) is sensitive to the presence of outliers and can produce erroneous results.
It is therefore desirable to detect and suppress them, which is we have done
in the graphs on the right. This cleaning process was also carried out with
the forecasting of other indicators.

Table 2 summarizes the results for the functional ANOVA. According to

23



2015 2020 2025 2030

78
80

82
84

86
88

year

E
xp

ec
ta

cy
 a

t b
ir

th

RLC2
RLC1

2015 2020 2025 2030

78
80

82
84

86
88

year

E
xp

ec
ta

cy
 a

t b
ir

th

RLC2
RLC1

2015 2020 2025 2030

78
80

82
84

86
88

year

E
xp

ec
ta

cy
 a

t b
ir

th

RLC2
RLC1

Figure 25: Predicted values for life expectancy at birth for LC1 (left),
LC2ind (middle) and LC2bi (right) for men
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Figure 26: Predicted values for life expectancy at 65 for LC1 (left), LC2ind
(middle) and LC2bi (right) for men

model 7 the following null hypotheses have been tested,

Hmod
0 : fLC1 = fLC2ind = fLC2bi = 0

Hres
0 : gRLC1 = gRLC2 = 0

Hmod,res
0 : hLC1,RCL1 = hLC2in,RCL1 = hLC2bi,RCL1 = 0

hLC1,RCL2 = hLC2in,RCL2 = hLC2bi,RCL2 = 0.

Indicator Model Residual Model×Residual
e0t R A A
e65t R A A
Gini A A A
Modal age R A A

Table 2: Rejection (R) or acceptation (A) of null hypothesis with functional
ANOVA.

From Table 2 we conclude that only the main effect of the model is
significant, and there is a model effect for all indicators except Gini index.
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Figure 27: Predicted values for the Gini index for LC1 (left), LC2ind
(middle) and LC2bi (right) for men.
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Figure 28: Predicted values for modal age at death for LC1 (left), LC2ind
(middle) and LC2bi (right) for men.

The results of a multiple comparison between the three models is shown in
Table 3. This results are best understood when we look at Figure 30 when
the average forecasting functions are shown. Bonferroni correction have been
taking into account when obtaining p-values for the multiple comparisons.

7 Conclusions

Predictions for e0t and e65t with Spanish mortality data are larger than those
obtained in previous works by the authors (Debón et al., 2008; Debón et al.,
2010, 2011). The only reference for comparing the other indicators is
Debón et al. (2011) because, as we have pointed out in the Introduction,
we found no similar studies in the literature. Larger predictions may be
more realistic than those obtained previously and show a better response to
the financial challenge that “longevity risk” implies, as noted by the IMF in
a recent report (International Monetary Fund, 2012).

One of the aims of this work has been to test the effect of the projection
model when forecasting indicators. We have tried to objectify this assessment

25



1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC1−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC1−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC2ind−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83
84

LC2ind−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

80
85

90
95

LC2bi−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

80
82

84
86

LC2bi−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC1−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC1−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC2ind−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83

LC2ind−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83
84

LC2bi−RLC1

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

1 3 5 7 9 11 13 15 17 19

79
80

81
82

83
84

LC2bi−RLC2

year+2010

lif
e 

ex
pe

ct
an

cy
 a

t b
ir

th

Figure 29: Expected life at birth forecasting with (left) and without (right)
outliers.

Indicator LC1 = LC2ind LC1 = LC2bi LC2ind = LC2bi
e0t A R R
e65t A R R
Modal age A R A

Table 3: Rejection (R) or acceptation (A) of null hypothesis with functional
ANOVA.

by using techniques associated with functional data analysis combined with a
simulation based on block-bootstrap. Specifically, we have used a functional
ANOVA to test a two-factor model with interactions (Sections 4 and 5).
The result shows that there is only a model effect and subsequent multiple
comparisons conclude that the LC2bi model provides higher projections than
the others, which would make it more convenient according to the IMF report
mentioned above.

In relation to the work of other authors, we should highlight one
distinctive feature of the methodology presented here, which is the possibility
of comparing the projections of different models with an objective criterion.
In short, we propose statistical tools which provide a clear framework for
supporting decisions in mortality modelling.

Finally, we follow Gaille (2012) in pointing out that techniques used in
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Figure 30: Average forecasting functions for indicators by models.

practice often differ from tools developed in academia. Practitioners tend to
simplify models and the presentation of results. Such an approach, according
to this author and our results may lead to an underestimation in projected life
expectancies which may have important implications for insurance companies
and pension funds.
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