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Abstract

The empirical evidence behind the dynamics of high frequency based measures
of volatility is that they exhibit persistence and at times abrupt changes in the aver-
age level by subperiods. In the past ten years this pattern has a clear interpretation in
reference to the dot com bubble, the quiet period of expansion of credit and then the
harsh times after the burst of the subprime mortgage crisis. We conjecture that the
inadequacy of many econometric volatility models (a very high level of estimated
persistence, serially correlated residuals) can be solved with an adequate represen-
tation of such a pattern. We insert a Markovian dynamics in a Multiplicative Error
Model to represent the conditional expectation of the realized volatility, allowing us
to address the issues of a slow moving average level of volatility and of a different
dynamics across regime. We apply the model to realized volatility of the S&P500
index and we gauge the usefulness of such an approach by a more interpretable per-
sistence, better residual properties, and an increased goodness of fit.

Keywords: MEM models, regime switching, realized volatility, volatility persistence

JEL Codes: C22, C24, C58

1 Introduction

A consolidated literature in financial econometrics is devoted to measuring financial asset
volatility exploiting the information contained in asset price data collected at a very high
frequency. The volatility estimators, known as realized volatility measures, have allowed
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2010), ECTS 2011 (Monte Porzio Catone, 13-14 June 2011), SCO 2011 (Padova, 19-21 September 2011).
Financial support from Italian MIUR under Grant 20087Z4BMK_002 is gratefully acknowledged.



for further insights into the dynamics of volatility, traditionally analyzed in a modeling
and forecasting framework within the GARCH paradigm (Engle, 1982; Bollerslev, 1986;
and further extensions — for a review, see Terdsvirta, 2009). Starting from the plain real-
ized volatility, largely studied in Andersen et al. (2000, 2003), other measures have been
introduced to take into consideration the presence of jumps, and other market microstruc-
ture issues (for a review, see Andersen et al., 2010). The most recent addition in the family
of volatility estimators is the realized kernel volatility (developed by Barndoff-Nielsen et
al., 2008), designed to possess robustness to market microstructure noise.

While volatility measurement from an end-of-day perspective has reached a mature
stage, the question of volatility forecasting is still open, in the sense that there is still a
wide debate as of which model is appropriate to characterize volatility dynamics, based on
the information available today (cf. among others, Brownlees and Gallo, 2010; Shephard
and Sheppard, 2010; Hansen et al., 2011; Cipollini et al., 2011). As a matter of fact, the
visual inspection of the time series profile of high frequency based measures of volatility
reveals a high degree of persistence: this is the case, for example, of the behavior of the
kernel volatility of the S&P500 index, relative to the 500 most important US companies,
shown in Figure 1 on a period between January 3, 1996 and February 27, 2009." One
can conjecture the presence of changing levels of the prevailing average volatility by
subperiods: the series shows in fact alternating regimes which visually involve changes
in the level but may also correspond to differences in the dependence in the series. This
is particularly clear in the past ten years, with the turbulence leading to the burst of the
tech bubble, the 2001 recession, the low level of volatility in mid decade and then the
explosion of uncertainty following the subprime mortgage crisis.

The modeling effort which we will present in this paper aims at addressing the empir-
ical regularities that ensue from the analysis of kernel realized volatility, keeping model
diagnostics as a guideline for correct specification. The volatility series can be modeled as
the product of a time-varying scale factor evolving autoregressively and a random distur-
bance. This class of Multiplicative Error Models (MEMs) was developed by Engle (2002)
and expanded by Engle and Gallo (2006); as it is applied to non—negative values, it has
the advantage of capturing dynamics without resorting to logs thus producing forecasts of
volatility (and not of log—volatility).

For series such as the one at hand, the base MEM with an asymmetric response of
volatility to the sign of returns still suffers from residual autocorrelation, leaving the ques-
tion open as of which features in the series need to be accommodated with a modified
specification explicitly considering the existence of volatility regimes. With the introduc-
tion of a new member in the MEM family, where we blend in Markov Switching features
(Hamilton, 1989, 1990), we want to present the idea that the presence of different phases
of volatility, characterized by quiet periods, turmoil phases and brief abnormal peaks,
corresponds to changes in regimes in the MEM process generating the data. The consid-
eration of these characteristics of the time series, jointly with some kind of asymmetry
due to the information available on the returns, helps in improving the fitting of the model
and allows for more realistic interpretations.

'Data are expressed as percentage annualized volatility, i.e. the square root of the realized variance series
taken from the Oxford-Man Institute’s realised library version 0.1 (Heber et al., 2009), and multiplied by

V252 % 100.



Figure 1: Realized kernel volatility of S&P index.
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To this end, our contribution is to propose a MEM considering the presence of Marko-
vian regimes with different dynamics, inserting Markov Switching parameters. We try
several specifications, starting from the most general and then inserting some constraints
in the coefficients. Finally, the information deriving from the sign of returns can be in-
corporated in the model to change the Markov chain along the time, proposing a new
time-varying probability Markov Switching model. These models provide several inter-
esting interpretations deriving from the parameter estimation and a correct identification
of the turmoil periods, favoring a better fit relative to the base MEM.

Our work has several points of contact with various contributions in the literature:
Markov Switching models have had an increasing attention in financial econometrics,
starting from the SWARCH model, proposed by Hamilton and Susmel (1994), the MS
GARCH model of Dueker (1997) and Klaassen (2002), or the recent multivariate exten-
sions (Edward and Susmel, 2003, Higgs and Worthington, 2004, Gallo and Otranto, 2007,
2008). The issue of time varying underlying level of volatility is addressed by Engle and
Rangel (2008), who adapt a spline function to capture a low frequency component of
volatility (which they connect to macroeconomic factors). A different type of spline func-
tion, the P-Spline, is used by Brownlees and Gallo (2010) in a MEM context with the
same motivation.

The paper is organized as follows: in the next section we introduce the Markov
Switching extensions within the MEM framework. After discussing the data, in section 3
we show in detail the empirical results using the most popular stock index, the S&P500,



illustrating the different performance with respect to the classical MEM model. Some
final remarks will conclude the paper.

2 The Asymmetric Multiplicative Error Model with Markov
Switching

The basic MEM idea is introduced in Engle (2002) and successively developed in Engle
and Gallo (2006); Cipollini et al. (2007) suggest an extension to the multivariate case. The
volatility z; of a certain financial time series is modeled as the product of a time varying
scale factor i, representing the conditional mean of z;, which follows a GARCH-type
dynamics, and a positive valued error &;:

Ty = JEy, | W1 ~ Gamma(a, 1/a) for each t

pe =w+are g+ B+ yDi1xi
2.1
1 ifr, <0
D, =
0 ifr, >0

where W, represents the information available at time ¢. This base specification takes the
presence of asymmetric responses of volatility to the sign of the returns (Engle and Gallo,
2006), similarly to the TGARCH model (Zakoian, 1994) and the coefficient y captures
a stronger response to negative returns. We call this model Asymmetric MEM (AMEM);
setting ~y to zero gives us the simple MEM. Constraints can be imposed to ensure the
positiveness of p; (w > 0, « > 0, 8 > 0, v > 0) and the stationarity of the process
(persistence (o + (5 +/2) less than 1). The Gamma distribution depends only on a single
parameter a, providing a mean and a variance of the conditional error equal to 1 and 1/a
respectively. Correspondingly, the conditional mean and variance of x; are ; and p?/a
respectively. Further lags can be added to the specification.

In this context, the unconditional mean of the volatility common to the entire period

is given by:
w

l—a—8-—7v/2
As noted in the introduction, this feature may be too restrictive for series such as our
leading example, especially if we want to allow for sudden and persistent changes in the
level of the series. In order to extend the capabilities of the model to capture extreme
events which change market characteristics, we introduce switching parameters that fol-
low a discrete Markov chain. We define the Markov—Switching AMEM (MS-AMEM)
as:

= 2.2)

Ty = [t s,Ets et| Wiy ~ Gammal(as,, 1/as,) for each ¢
(2.3)
Ptsy =W+ Yooy kils, + s, im1 + Bsype—1.5, 1 + Vs, D11
where s, is a discrete latent variable which ranges in [1, ..., n|, representing the regime
at time ¢. I, is an indicator equal to 1 when s; < ¢ and O otherwise; k; > 0 and k; = 0.
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In other terms, the constant in regime j is given by (w + Zgzl k;). The changes in regime
are driven by a Markov chain, such that:

Pr(s; = jlsi-1 =1, S1-2,...) = Pr(s; = jls;_1 = 1) = py; 2.4)

Also in (2.3) the positiveness and stationary constraints given for (2.1) hold within each
regime.

It is useful to impose a particular reparameterization for [3,, to guarantee a certain
coherence between the regime and the level of volatility, ensuring that states of volatility
(from low to high) increase with the regime identifier. For example, let us assume two
regimes corresponding to low and high volatility, respectively, and that at time ¢ an abrupt
jump occurs in the volatility level; this would force a sizeable increase in the value of x;
and s, will switch to 2. Let us now think that at time ¢ 4 1 the level will stay in the same
regime with x; 1 ~ x; this event would not be captured by model (2.3), because the high
value of x;,; will correspond to a small value of the intercept w + k;, . ,, pushing s, to
revert to 1. To allow for a correct identification of the state (cf. in Hamilton (1990) in
the context of business cycle), it is more appropriate to subtract the mean of the expected
volatility from each z; in the second equation of (2.3):

/’Lt,St = W + Z ki]Sz + a:t (‘Tt—l - Mt—l,stfl) + /B:t/’bt_lyst—l + ’y:tDt_l(:Et_l — //Lt_17st71)
i=1

This model is equivalent to model (2.3), with unconditional expected value within state

j, j=1,...,n,equal to:

_ W+Zg:1ki
L—aj —7/2—(B; —af —7;/2)

so that, from (2.2), o; = «f, v; = 7}, B; = B; — a; — 7;/2. It is convenient to estimate
33, with the constraint (a; +7;/2) < B; < 1, and then obtain j3; from it. This con-
straint, together with the particular reparameterization of the constant in (2.3), achieves
the desired property that the constant term itself increases with the volatility level, so that
a higher regime corresponds to a higher level of volatility.

The estimation of model (2.3) does not present particular problems because it can be
performed along the lines of the Hamilton filter and smoother (Hamilton, 1994, ch.22).
The only computational problem is due to the dependence of i 5, on s,_1, its regime at
time ¢ — 1. This means that, evaluating the likelihood recursively, we need to keep track of
all possible paths taken by the regime between ¢ = 1 and ¢ = T, involving a non tractable
model. A typical solution adopted in this case is the one proposed by Kim (1994), dealing
with a similar problem with a state-space MS model (see the many examples shown in
Kim and Nelson, 1999). After each step of the Hamilton filter, at time ¢ we collapse the
n? possible values of 1, into n values, by an average over the probabilities at time ¢ — 1:

Hj

/AL _ Z?:l Pr[st—l = iv St = ].|\I/t]ﬂt,st,1,st
b5t PT’[St = ]|\Ijt}

(2.5)

where a hat indicates the estimate of the unknown variable and the probabilities present
in (2.5) are obtained by the Hamilton filter.



Finally, the asymmetry deriving from the sign of the returns may affect not only the
average level within a certain regime, but also the transition probabilities. For this pur-
pose, we suggest an extension to the model, called Asymmetry in Probability MS—AMEM
(AsyP-MS—-AMEM), with the same expression (2.3) for the level of volatility, whereas
the transition probabilities are given by:

Py ifri_1 <0

py ifri1 >0 2.6

PT(St|3t—17rt—1) = Pijt = {

A possible reparameterization of the transition probabilities could be made using a multi-

nomial logit:
Diiy = exp(¢ij+39ijDi—1)
Wt 1+37 21 exp(¢in+9inDe—1)

Pint = 1— Z;L;ll Pijt (27)

1=1,...n, j=1,..n—1

with p;;, = p;; when D,y = 1 and p;;; = p;; when D;_; = 0. Expression (2.7) can
be considered a particular time-varying transition probability MS model, proposed in the
econometric literature by Filardo (1994) and Diebold et al. (1994). The advantage of this
reparameterization is that the MS—AMEM can be nested into the AsyP-MS—-AMEM, by
constraining all the coefficients 1J;; to be 0, and a comparison can be made via a likelihood
ratio test. Tests based on the likelihood function cannot be used to compare the MEM
and AMEM with respect to the corresponding MS models because of the presence of
nuisance parameters present only under the alternative hypothesis; in this case, with the
proper caution, a classical BIC and AIC could provide some information (see Psaradakis
and Spagnolo, 2003); in particular the AIC seems to choose the correct state dimension
more successfully than the BIC, provided that the parameter changes are not too small
and the hidden Markov chain is fairly persistent.

3 Regimes in the Volatility of the S&P500 Index

As a complement to the profile of the S&P500 volatility series shown in Figure 1 before,
the descriptive statistics in Table 1 confirm the compatibility with the presence of regimes,
especially a very large range (touching almost 120% at the maximum relative to a mean
of about 13%) with a thick right tail (high kurtosis). Time dependence is reflected in the
autocorrelation function, reported at lag 1 (one day), S(one week), 22 (one month), which
is characterized by slowly declining high values, a fact typically seen as evidence of the
presence of regimes (as an alternative to a long memory explanation, not discussed here).

3.1 Model Specification

We start from estimating the benchmark models MEM and AMEM, which will be used
as guidelines in what follows. The estimation results are reported in Table 2. We pinpoint



Table 1: Descriptive statistics for S&P500 realized kernel volatility (in annualized per-
centage terms). Sample: January 3, 1996 to February 27, 2009.

Mean 13.363
Median 11.392
Min 2.387
Max 118.75
St.Dev. 8.611

Skewness  3.415
Kurtosis 20.132
ACF(1) 0.821
ACF(5) 0.698
ACF((22) 0.525

Table 2: S&P500 realized kernel volatility (in annualized percentage terms). Coefficient
estimates for the two benchmark models MEM and AMEM (standard errors in parenthe-
ses), together with likelihood-based criteria and loss functions. Sample: January 3, 1996
to February 27, 2009.

w «Q 16 ~y a
MEM 0.721 0.412 0.532 13.444
(0.068) (0.028) (0.032) (0.427)

AMEM 0.690 0312 0591 0.083 13.842

(0.078) (0.031) (0.035) (0.008) (0.452)

log-lik AIC BIC RMSE MAE Theil-U
MEM | -8438.48  5.175 5.182 4591  2.873 0.390

AMEM | -8389.66  5.145 5.155 4490 22811 0.381

to a small but statistically significant threshold coefficient v. We calculated the infor-
mation criteria and some loss functions of interest, namely, the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE) (a comparison based on the levels of volatility)
and Theil’s U (the latter calculated using the first differences of observed and forecasted
data to detect the capability of the model to capture the turning points). On all accounts
the AMEM is favored, revealing that the presence of asymmetric effects to be taken into
account. The estimated persistence, measured as (a+ ) for the MEM, and (a+ 5 ++/2)
for the AMEM, is very high and around 0.94 for both models.

As with other MS models, it is crucial to avoid over—parameterization in order to
achieve a parsimonious representation with reliable parameter estimates: we start from the
most general specification (2.3)-(2.6) with 3 regimes, involving 27 coefficients.? In Table
3 we show the estimation results for the parameters present in equation (2.3), whereas
in Table 4 we report the estimated transition probabilities leaving to Section 3.2 some
comments about the dynamics and the interpretation of the regimes. The differences of
the transition probabilities p;‘; and p;; are not so large so as to suggest a formal Wald test

2For the sake of completeness, we have also considered the case of 2 regimes; the outcome is in favor
of the models with three regimes, based on the AIC and BIC.



Table 3: S&P500 realized kernel volatility (in annualized percentage terms). Coefficient
estimates for Markov Switching MEM specifications with three regimes and Gamma in-
novations: i. AsyP-MS-AMEM, ii. MS-AMEM and iii. MS-AMEM with parameters
on the volatility dynamics constrained to be the same across regimes 1 and 2 (standard
errors in parentheses). Likelihood-based criteria and in sample forecasting performance
are reported in the lower portion. Sample: January 3, 1996 to February 27, 2009.

AsyP-MS-AMEM MS-AMEM MS-AMEM(c)
w 1.858 1.872 1.731
(0.163) (0.229) (0.121)
ko 0.645 0.685 1.040
(1.128) (0.228) (0.038)
ks 5.103 5.188 5.005
(1.880) (1.326) (1.276)
a 0.200 0.199 0.180
(0.020) (0.028) (0.015)
v 0.158 0.161
(0.079) (0.029)
s 0.259 0.257 0.259
(0.058) (0.058) (0.051)
8 0.524 0.525 0.561
(0.040) (0.056) (0.028)
B 0.602 0.594
(0.155) (0.058)
B 0.345 0.343 0.339
(0.111) (0.108) (0.093)
v 0.075 0.076 0.080
(0.002) (0.007) (0.010)
Yo 0.082 0.083
(0.018) (0.014)
V3 0.137 0.143 0.143
0.019 0.018 0.018
a 15.919 15.808 15.818
(0.379) (0.632) (0.623)
as 19.006 18.742 18.613
(2.616) (1.452) (1.248)
as 10.831 10.946 11.013
(0.814) (0.751) (0.753)
log-lik “8326.58 ~8328.77 -8329.12
AIC 5.120 5.118 5.116
BIC 5.171 5.157 5.150
RMSE 4.452 4.428 4.433
MAE 2.635 2.632 2.635
Theil-U 0.367 0.367 0.368




Table 4: S&P500 realized kernel volatility (in annualized percentage terms). Markov
Switching MEM specifications with three regimes and Gamma innovations: estimates of
transition probabilities (standard errors in parentheses; p;3 (i = 1,2,3) is computed as
1 — pi1 — pi2). P-values associated with Wald test statistics for the equality of the rows of
the transition probability matrix in the AsyP-MS-AMEM.

AsyP-MS-AMEM | MS-AMEM | MS-AMEM(c)
P pi;
pun | 0.980 0.995 0.989 0.989
(0.006)  (0.003) (0.002) (0.001)
pi2 | 0.017 0.000 0.007 0.007
(0.008)  (0.000) (0.001) (0.001)
piz | 0.003 0.005 0.004 0.004
p21 | 0.000 0.018 0.007 0.007
(0.000)  (0.007) (0.001) (0.001)
p22 | 0.994 0.956 0.977 0.977
(0.017)  (0.016) (0.002) (0.002)
p23 | 0.006 0.026 0.026 0.026
p31 | 0.012 0.000 0.006 0.004
(0.008)  (0.000) (0.002) (0.001)
p32 | 0.054 0.026 0.042 0.041
(0.023)  (0.012) (0.001) (0.006)
p3s | 0.934 0.974 0.952 0.955
AsyP-MS-AMEM

Null Hypothesis: p-value
pii = piy and piy = pyy 0.069
P31 = Pay and pyy = Py 0.017
P31 = pa; and pg, = psy 0.359




on the equality restrictions. The results are shown at the bottom of Table 4 in the form of
p—values associated with the null hypothesis reported. The only hypothesis that is rejected
is p3; = py; and p3, = py, at the significance level of 5%. With this in mind, the evidence
(cf. also how similar estimated parameters of MS—AMEM and the AsyP-MS—-AMEM are
from Table 3) points to no major asymmetry in the transition probabilities and thus favors
the MS—AMEM. With an eye to a simplification of the specification, we can calculate the
Wald test statistics for the joint hypotheses in the MS—AMEM:

Q; = Q5

Bi = B,

for each i, j = 1,2,3 and i # j. The corresponding p-values are 0.09 for (7, j) = (1,2)
and 0.00 for (4, j) = (1,3) and (2, 3). On this basis we suggest a new model constrained
to have the same MEM dynamics in regimes 1 and 2; the estimation results are shown
in the last column of Tables 3 and 4. We label this model as MS—AMEM(c¢), with ¢ as
a reference to constrained. LR test, AIC and BIC favor this last model relative to the
previous two models, with very similar values of the loss functions. As a further check,
we have also estimated a model with the same MEM dynamics in all the regimes, with
the constant term and the coefficient of the Gamma distribution as the only switching
parameters, but the LR and Wald tests again favor the MS—AMEM(c) which will be kept
as the MS model of reference to be compared with the MEM and the AMEM.

In terms of goodness of fit, the MS—AMEM(c) model seems to be clearly superior
relative to the MEM and the AMEM, with lowest AIC and BIC, in spite of the larger
number of estimated coefficients, and the lowest RMSE, MAE and Theil’s U. To verify if
the differences among the models synthesized by loss functions measures are significant,
we have applied a Diebold-Mariano test (Diebold and Mariano, 1995), with the correction
proposed by Harvey et al. (1997), to test the null hypothesis of no difference in the
accuracy of two competing forecasts. In practice we verify if the mean of the differences
of the squared forecast errors, absolute forecast errors and squared forecast errors in first
differences of each pair of models is zero. In Table 5 we show the Diebold-Mariano
statistics: a positive sign of the statistic in position (7, j) indicates that the model in the
j — th column has, on average, better performance than the model in the ¢ — th row.
Whether that performance is significant is gauged by the statistic’s value relative to a
Student’s t distribution.?

The fact that the MS-AMEM(c) is significantly better than the MEM and the AMEM
in terms of absolute errors (see MAE values in Table 3) and squared errors in the first
differences (see Theil’s U values) is confirmed. Since its corresponding column in Table 5
is always positive, the results of the Diebold Mariano test show that MS—AMEM(c) is
the best model. The analysis of squared errors is a puzzling case, because there is a
significant better performance of AMEM with respect to MEM, whereas MS—AMEM(c)

30ften the Diebold—Mariano test, or, more generally, the predictive ability tests, are applied with out-
of-sample forecasts, but Inoue and Kilian (2004) show, both analytically and via Monte Carlo simulations,
that out-of-sample tests have lower power than their in-sample counterparts. In our case, the out-of-sample
behavior could be misleading for the high volatility regime that characterizes the latest period of our time
series; in fact, the out-of-sample forecasts would evaluate just the behavior of the models in a particular
phase of volatility and not the global forecasting capability of the models across different regimes.
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Table 5: Diebold-Mariano statistics for comparison of in sample forecast errors.
MEM AMEM MS-AMEM(c)
Squared Errors

MEM 3.192 1.908
AMEM | -3.192 0.609
MS-AMEM(c) | -1.908 -0.609
Absolute Errors
MEM 5.070 7.880
AMEM | -5.070 6.130
MS-AMEM(c) | -7.880 -6.130
Squared Errors in first differences
MEM 5.139 6.017
AMEM | -5.139 5.521
MS-AMEM(c) | -6.017 -5.521

is not significantly better than the other two models. Maybe this is due to isolated large
errors in the MS model, which become even larger when squared.

One of the motivations to adopt a MS model to analyze volatility is the presence of
autocorrelated residuals in the MEM. In Table 6 we show the Ljung-Box statistics (Q)
and the corresponding p-value (p) for the three models to check how uncorrelated the
residuals are up to lag 20.* What we observe is that the model with three regimes are
able to capture the strong residual dependence structure still present in the MEM and the
AMEM.

3.2 Inference on the regimes

Going back to Table 4 we are now in a position to comment on the transition probabilities
in the light of the discussion on the model specification above. The probabilities to stay
in the same regime allow for estimating the duration in a certain regime ¢ as —p While
such probabilities are high across all MS models, in reference to our favored model, the
MS-AMEM(c), the estimates imply, on average, a 91 days permanence in the state of low
volatility, which decreases to 43 days for the intermediate volatility state, and to 22 days
for the high volatility state. This result is consistent with the empirical evidence that the
turmoil periods have a lower duration with respect to quieter spells.

Some further insights are gained by looking at the off-diagonal elements of the tran-
sition probability matrix. Being in regime 1 there is a very low probability to switch
to either of the other two regimes. From the regime of intermediate volatility there is a
higher probability to move to the high volatility regime than to revert to a low volatility
regime. By the same token, note that the downward transition from the high volatility
states occurs preferably with a move to the intermediate state: joint with the considera-
tions above, there seems to be a strong interaction between regimes two and three while

4For MS—AMEM(c) we have used the generalized residuals, introduced by Gourieroux et al. (1987) for
latent variable models, defined as E(£;|¥;_1) = Zle €s, 4tPr(s; = i|¥,_1), where &, , are the residuals
at time ¢ derived from the parameters of the model in state s;.
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Table 6: Ljung-Box () statistics and corresponding p-value.

MEM AMEM MS-AMEM(c)

lag Q p-value Q p-value Q p-value
1]16.22 0.00 | 18.55 0.00 | 2.27 0.13
2 |20.39 0.00 | 22.43 0.00 | 2.90 0.23
313540 0.00 | 35.26 0.00 | 545 0.14
4 | 35.89 0.00 | 35.54 0.00 | 9.18 0.06
5136.71 0.00 | 36.02 0.00 | 12.82 0.03
6 | 36.90 0.00 | 36.23 0.00 | 12.99 0.04
7| 36.92 0.00 | 36.23 0.00 | 13.08 0.07
8 | 36.98 0.00 | 36.24 0.00 | 13.15 0.11
9139.72 0.00 | 38.30 0.00 | 15.13 0.09
10 | 41.04 0.00 | 39.17 0.00 | 16.32 0.09
11 | 41.55 0.00 | 39.23 0.00 | 16.53 0.12
12 | 43.91 0.00 | 40.81 0.00 | 17.03 0.15
13 | 46.26 0.00 | 42.70 0.00 | 18.45 0.14
14 | 48.23 0.00 | 44.26 0.00 | 19.16 0.16
15 | 53.19 0.00 | 49.69 0.00 | 22.49 0.10
16 | 55.80 0.00 | 51.43 0.00 | 23.07 0.11
17 | 56.21 0.00 | 52.47 0.00 | 23.69 0.13
18 | 57.21 0.00 | 53.22 0.00 | 24.01 0.15
19 | 63.01 0.00 | 59.06 0.00 | 27.20 0.10
20 | 69.37 0.00 | 66.43 0.00 | 33.06 0.03
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the period of low volatility is a sort of self standing regime.

These comments are further validated by calculating the smoothed probabilities Pr(s;|Wr)
to obtain an inference on the regime. Each period is assigned to a regime based on the
mode of the probabilities of being in one of the three states for each ¢; to be true, these
probabilities are, in general, near zero or one, denoting a clear—cut association of each
period with either regime.

Each state corresponds to a different average level of volatility, namely

J
ji = Wt 2z Fi j=1,2,3. G.1)
1—a; —fj —;/2

From our estimates of the MS—AMEM(c), we derive the corresponding levels of volatility
by regime which are 7.89% in regime 1, 12.62% in regime 2 and 23.53% in regime 3.
We can superimpose such average volatility levels to the observed series as done in the
Panel A. of Figure 2. Bursts of volatilities, as well as sudden reductions in their values
correspond to a discrete change in the average value around which volatility follows its
dynamics. Moreover, the estimated persistence is clearly different than the one in the
MEM and AMEM (0.94 for both models, cf. Table 2) and also within each regime: it
is equal to 0.78 during the low and medium volatility, and it reduces to 0.67 in the high
volatility regime (from values in Table 3). These results are consistent with the intuitive
notion that turmoil periods have a lower persistence when compared to the quiet periods.
Moreover, the regime of high volatility (regime 3) depends mainly on the most recent
observation and on the sign of returns (the values of a3 and 5 are higher and the value of
B3 1s lower, relative to corresponding coefficients of regime 1 and 2). It is interesting to
note also that y3 ~ 2+, showing that bad news has a bursting effect in turmoil periods.
Finally, values of the shape parameter a,, across regimes are also of interest. Larger
values of a correspond to a density approaching the Normal distribution, whereas smaller
values polarize the random variable to take on either small or large values. In our case,
the estimated values are the largest for the state of medium volatility and the smallest for
the state of high volatility, in keeping with the interpretation of the regimes.

Further insights on the value added in considering our Markov Switching AMEM can
be gained by dividing the original data by the regime specific average volatility as done in
Panel B. of Figure 2. It is apparent that the model manages to remove the underlying slow—
moving trend in the evolution of volatility: now the series oscillates around 1, with the
exception of the episode started in September 2008 with the collapse of Lehman Brothers
which lasted for a relatively short period.

From the Panel A. of Figure 2 it seems that, after a first year (1996), in which the
volatility is low with an abrupt, but brief, peak in July, we have a period of medium
volatility until the middle of 1998, which includes the Asian crisis; from July 1998 until
the beginning of 2003 there are many peaks of high volatility, consistent with the Russian
crisis of August 1998, the dot-com bubble (which has its peak on March 2000), the 2001
recession. After this long period, there is a quiet period between October 2003 and July
2007, with only one sudden passage to the regime of high volatility on July 24, 2007. On
such a day, the value of the index dropped by 2% and started a short-lived bearish rally
around the first measures taken by the Fed in response to the first signs of the liquidity
crisis later exploded in August 2007.
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Figure 2: S&P500 realized kernel volatility series. Features of the regimes identified by

the MS—AMEM(c).
A. Original series with regime—specific average volatilities in bold line.
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B. Volatility divided by the regime—specific average volatilities.

0 L | | | | | | | | | | | | | | | | | |
jan 96 jan 97 jan 98 jan 00 jan 01 jan 02 jan

| | |
06 jan 07 jan 08 jan 09

| | | | |
99 jan 03 jan 04 jan 05 jan

14



Table 7: Average widths and standard deviations of the 95% confidence intervals of the

conditional expected volatility for the whole period and within each regime identified by
MS-AMEM(c).

Whole Regime 1 Regime 2 Regime 3
Mean st.dev. Mean st.dev. Mean st.dev. Mean st.dev.
MEM | 14.09 7.38 9.22 1.86 14.05 3.02 2468 10.79
AMEM | 13.89 7.35  9.09 1.94 13.84 3.08 2438 10.77
MS-AMEM(c) | 13.32 799 7.94 141 12.26 2.59 27.62 8.50

Low volatility is fairly persistent and experienced at the beginning of the sample pe-
riod, a brief bout in 1998, and then from 2003 to 2007. The worsening of the financial
crisis is marked by a permanent change to regime 3 until the end of the sample period.

The Panel B. of Figure 2 shows a fairly regular behavior of the transformed series
with some signs of autocorrelation (captured by the multiplicative structure of the model)
with much less pronounced peaks relative to the original series. The fact that the observed
series is well above the average level in the last portion of the sample may be an indication
that the height of the crisis may be marked by an even higher average level of volatility,
and a fourth (very short lived) regime would in principle accommodate that. In results
not reported here this is indeed the case, but it implies a worsening of the inference in the
other regimes. We opt not to fit an extra regime given the exceptional nature of the market
volatility dynamics following the demise of Lehman Brothers. By the same token, the
Ljung—Box autocorrelation statistics of Table 6 are fairly reassuring as of the little impact
that the burst of volatility at the end of 2008 has on the overall picture.

3.3 Estimation accuracy

In order to evaluate the properties of our volatility estimates, we resort to the calculation
of 95% confidence intervals for the expected volatility values, using the three models.
Given that F(x;|¥; ) = u; and Var(z¢|V,_1) = fi? /a, we compute the lower and upper
values of the intervals, respectively, as the 2.5 and the 97.5 percentiles for the Gamma
distribution with parameters a and fi;/a. For the MS—~AMEM(c), paralleling the way
[1; is computed, we derive the intervals’ bounds as the weighted average of the relevant
percentiles from a distribution Gamma(as,, fis, /as,) in each regime, with weights equal
to the corresponding smoothed probabilities.

In Table 7 we show the mean width of the intervals (together with their standard de-
viation) as values computed across the 7" intervals and then the corresponding values by
each regime identified by the MS—AMEM(c). For the full period, we can note that the
MS-AMEM(c) provides on average smaller intervals (more precise), with a larger stan-
dard deviation which we interpret as a capability of being more flexible in adapting to the
variability of volatility. In turn, this feature is consistent with the mean values by regime:
in regime 1 and 2 the average width of intervals calculated under MS—AMEM(c) is sub-
stantially low relative to the others, whereas in the third regime of very high volatility we
get a larger average width with an overall smaller dispersion (lower standard deviations).

Note that conditional expected volatilities obtained by the MS-—AMEM(c) explicitly
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Table 8: Percentage of errors, distinguished by overprediction and underprediction. Per-
centage shares of the overprediction and underprediction errors by regimes.

Overall Overprediction Underprediction
% by Regime % by Regime
total over under 1 2 3 1 2 3

MEM | 55 19 36444 381 175|178 33.0 49.2
AMEM | 54 2.1 331485 324 19.1 | 1677 36.1 47.2
MS-AMEM(c) | 4.7 2.1 26| 44.1 47.1 8.8 (349 40.7 244

consider a different underlying regime—specific average volatility. Relative to other mod-
els, this should imply fewer observed volatilities falling outside the interval bounds. For
a nominal confidence interval of 95% and for each model, we show the percentage of
out—of—bound observations in the left part of Table 8, distinguishing conditional over-
prediction (i.e. the observed data falls below the lower bound of the interval) from un-
derprediction (the observed data falls over the upper bound of the interval). The relative
incidence of such occurrences is lower for the MS—AMEM(c) (4.7% against more than
5.4% for the other models) and it is equally spread between overprediction and under-
prediction. By the same token, the MEM and the AMEM underpredict more frequently.
We find it instructive to further decompose the incidence of overprediction, respectively,
underprediction obtaining the share in each regime (central and right part of the Table 8).
It is clear that the MEM and the AMEM, in general, have a decreasing pattern of overpre-
diction as the volatility regime increases while they have higher shares of underprediction
with higher volatility regimes. By contrast, the MS—AMEM(c) has patterns balanced be-
tween over— and underprediction, concentrating the out—of—bound observations in the first
and (more so) in the second regime.

4 Concluding Remarks

Judging upon the results of the analysis of the leading case of the S&P500 index, the
introduction of regimes and the inclusion of asymmetric effects in a MEM does improve
the fitting performance of the model and increases the possibility of interpreting and cap-
turing crucial events in the volatility dynamics. The presence of residual autocorrelation
which is fairly strong in the base MEM is substantially reduced when adopting a regime
switching specification. This seems to be reassuring for the series at hand which presents
enormous peaks very often, especially in the last part of the series analyzed.

The model proposed presents several possible specifications: with or without thresh-
old parameters, with or without a threshold change in the transition probabilities, with all
the parameters switching or just a part of them. The advantage is that we can nest the
resulting models, so it is possible to choose the best model simply using Wald tests or
information criteria. Further extensions such as the introduction of a fourth regime are
encumbered by the difficulty of reaching convergence: results not reported here show that
while a better fit is obtained on the more extreme episodes, there is a general worsening
of the fit and of the prediction capabilities for the other regimes.
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Briefly put, this good performance can be replicated also for other time series; we
have experimented this new model for other American stock indices, differing by degrees
of capitalization: the Dow Jones industrial index, which is based on the main 30 stocks
evaluated in Wall Street Market; the S&P400 Midcap index, relative to 400 companies of
the mid-cap equities sector; Russell 3000, which deals with the first 3000 companies with
larger capitalization; Russell 1000 (the first 1000 companies considered in Russell 3000);
Russell 2000 (the last 2000 companies considered in Russell 3000). We have obtained
a performance similar to that one of S&P500 for the Dow Jones index. For S&P400
Midcap index and the Russell indices we obtain a better performance in terms of fitting
and in sample forecasting performance with respect to classical MEM and AMEM, but
not the residual uncorrelation. An interesting fact is that, for these four series, we can
capture large part of residual autocorrelation providing a time-varying smooth transition
variance, not dependent on regimes, but with a proper dynamics. The idea is that the
dynamics of the coefficient of the Gamma distribution is driven by the following model
(see Terasvirta, 2009):

a; = ag + ar (1 + exp(—8[ri_y — )"

where ag > 0, a; > 0, 9 > 0 and ¢ are unknown parameters. In terms of inference on the
regime, the results show a behavior of Russell 1000 and Russell 3000 very similar to the
one of S&P500 and Dow Jones, and a proper behavior of S&P400 Midcap and Russell
2000, similar between them. In practice the subdivision in regimes seems linked to the
degree of liquidity behind the indices.

A detailed analysis and the comparison of several indices goes beyond the scope of
this paper. The lesson we learn is that the increasing flexibility of the distribution hypoth-
esized for the error terms favors the possibility to respect the statistical hypothesis of the
model; in practice the correct hypothesis about the error distribution seems to be a crucial
task to increase the quality of the model estimation.

References

[1] Andersen, T.G., Bollerslev, T.,Diebold, F.X., Labys, P. (2000). Great realizations,
Risk 13, 105-108.

[2] Andersen, T.G., Bollerslev, T.,Diebold, F.X., Labys, P. (2003). Modeling and fore-
casting realized volatility, Econometrica 71, 579-625.

[3] Andersen, T.G., Bollerslev, T.,Diebold, F.X. (2010). Parametric and nonparametric
volatility measurement, in Ait-Sahalia, Y., Hansen, L.P. (eds.): Handbook of Finan-
cial Econometrics, pages 67-138, North-Holland. Amsterdam.

[4] Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A,m Shephard, N. (2008). Designing
realised kernels to measure the ex-post variation of equity prices in the presence of
noise, Econometrica 76, 1481-1536.

[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity,
Journal of Econometrics, 31, 307-321.

17



[6] Bollerslev, T., Wooldridge, J.M. (1992). Quasi-maximum likelihood estimation and
inference in dynamic models with time varying covariances, Econometric Reviews,
11, 143-172.

[7] Brownlees, C.T., Gallo, G.M. (2010). Comparison of Volatility Measures: a Risk
Management Perspective, Journal of Financial Econometrics, 8, 29-56.

[8] Cipollini, F.,, Engle, R.F., Gallo, G.M. (2007). A model for multivariate non-negative
valued processes in financial econometrics, Working Paper, Stern School of Busi-
ness, New York University.

[9] Diebold FX., Lee, J.H., Weinbach, G.C. (1994). Regime switching with time-
varying transition probabilities, in Hargreaves, P. (ed.): Nonstationary Time Series
Analysis and Cointegration. Oxford: Oxford University Press, 283-302.

[10] Diebold, F.X., Mariano, R.S. (1995). Comparing predictive accuracy, Journal of
Business and Economic Statistics, 13, 253-263.

[11] Dueker, M.J. (1997). Markov switching in GARCH processes and mean-reverting
stock-market volatility, Journal of Business and Economic Statistics, 15, 26-34.

[12] Edwards, S., Susmel, R. (2003). Interest-rate volatility in emerging markets, The
Review of Economics and Statistics, 85, 328-348.

[13] Engle, R.F. (1982). Autoregressive conditional heteroskedasticity with estimates of
the variance of U.K. inflation, Econometrica 50, 987-1008.

[14] Engle, R.F. (2002). New frontiers for ARCH models, Journal of Applied Economet-
rics 17, 425-446.

[15] Engle, R.F, Rangel, J.G. (2008). The Spline-GARCH model for low-frequency
volatility and its global macroeconomic causes, Review of Financial Studies, 21,
1187-1222.

[16] Filardo, A.J. (1994). Business-cycle phases and their transitional dynamics, Journal
of Business and Economic Statistics, 12, 299-308.

[17] Engle, R.F.,, Gallo, G.M. (2006). A multiple indicators model for volatility using
intra-daily data, Journal of Econometrics 131, 3-27.

[18] Gallo, G.M., Otranto, E. (2007): Volatility transmission across markets: a Multi-
chain Markov Switching model, Applied Financial Economics, 17, 659-670.

[19] Gallo, G.M., Otranto, E. (2008): Volatility spillovers, interdependence and comove-

ments: A Markov Switching approach, Computational Statistics and Data Analysis
52,3011-3026.

[20] Gourieroux, C., Monfort, A. and Trognon, E. R. A. (1987): Generalized residuals.
Journal of Econometrics 34, 532.

18



[21] Hamilton, J.D., 1989. A new approach to the economic analysis of nonstationary
time series and the business cycle. Econometrica, 57 357-384.

[22] Hamilton, J.D. (1990). Analysis of time series subject to changes in regime. Journal
of Econometrics, 45, 39-70.

[23] Hamilton, J.D. (1994). Time series Analysis. Princeton University Press: Princeton.

[24] Hamilton, J.D., Susmel, R. (1994). Autoregressive conditional hetero-skedasticity
and changes in regime. Journal of Econometrics, 64, 307-333.

[25] Hansen, R.P.,, Huang, Z., Shek, H.H. (2011). Realized GARCH: a joint model of re-
turns and realized measures of volatility. Journal of Applied Econometrics, in press,
DOI: 10.1002/jae.1234

[26] Harvey, D., Leybourne, S., Newbold, P. (1997). Testing the equality of prediction
mean squared errors. International Journal of Forecasting, 13, 281-291.

[27] Heber, G., Lunde, A., Shephard, N., Sheppard, K. (2009). OMI’s realised library,
version 0.1. Oxford-Man Institute. University of Oxford.

[28] Higgs, H., Worthington, A.C. (2004). Transmission of returns and volatility in art
markets: a multivariate GARCH analysis, Applied Economics Letters, 11, 217-222.

[29] Inoue, A., Kilian, L. (2004). In-sample or out-of-sample tests of predictability?
Which one should we use? Econometric Reviews, 23, 371-402.

[30] Kim, C.J. (1994). Dynamic linear models with Markov-switching, Journal of Econo-
metrics, 60, 1-22.

[31] Kim, C.J., Nelson, C.R. (1999). State-Space Models with Regime Switching. MIT
Press, Cambridge, Massachusetts.

[32] Klaassen, F. (2002). Improving GARCH Volatility Forecasts with Regime-
Switching GARCH, Empirical Economics, 27, 363-394.

[33] Psaradakis, Z., Spagnolo, F. (2003). On the determination of the number of regimes
in Markov-Switching autoregressive models, Journal of Time Series Analysis, 24,
237-252.

[34] Shephard, N., Sheppard, K. (2010). Realising the future: forecasting with high-
frequency-based volatility (HEAVY) models, Journal of Applied Econometrics 25,
197-231.

[35] Terasvirta, T. (2009). An Introduction to univariate GARCH models, in Andersen,
T.G., Davis, R.A., Kreiss, J.-P., Mikosch, T. (eds.): Handbook of Financial Time
Series, pages 17-42, Springer. Berlin-Heidelberg.

[36] Zakoian, J.M. (1994). Threshold Heteroskedastic Models, Journal of Economic Dy-
namic and Control, 18, 931-955.

19



Ultimi Contributi di Ricerca CRENoS

I Paper sono disponibili in: http://www.crenos.it

12/04
12/03
12/02

12/01

11/23

11/22

11/21

11/20

11/19

11/18

11/17

11/16

11/15

11/14

11/13
11/12

11/11

11/10

11/09

11/08

11/07

Oliviero Carboni, “A Spatial Analysis of R&D: the Role
of Industry Proximity”

Juan Gabriel Brida, Nicolas Garrido, Francesco Mureddu,
“Club performance dynamics at Italian regional level”
Emanuela Marrocun, Raffaele Paci, “Regional Development
and Creativity”

Bianca Biagi, Maria Giovanna Brandano, Clandio Detotto,
“The effect of tourism on crime in Italy: a dynamic
panel approach”

Rinaldo Braw, Anna Maria Pinna, Movements of People
for Movements of Goods?”

Giorgio Garan, Giovanni Mandras, Lucia Schirru, “A
Statistical Information System supporting
Environmental Policies”

Emannela Marrocu, Raffaele Paci, Stefano Usai, “The
complementary effects of proximity dimensions on
knowledge spillovers”

Giuseppe  Pulina, “Tax Evasion and Presumptive
Taxation Methods. A Case Study in Italy: Sector
Studies”

Juan Gabriel Brida, Giacomo Del Chiappa, Marta Meleddu,
Manwuela  Pulina, “The perceptions of an island
community towards cruise tourism: A factor analysis”
Fabio Cerina, Francesco Mureddu, “Structural Change and
Growth in 2a NEG model”

Juan Gabriel Brida, Mannela Deidda, Nicolds Garrido,
Manuela Pulina “Exploring the dynamics of the
efficiency in the Italian hospitality sector. A regional
case study”

Juan Gabriel Brida, Nicolas Garrido, Francesco Mureddu,
“Italian economic dualism and convergence clubs at
regional level”

Adriana Di Liberto, Marco Sideri, ‘Past dominations,
current institutions and Italian regional economic
performance”

Juan Gabriel Brida, Marta Meleddu, Manunela Pulina,
“Museum visitors can be regarded as specific cultural
tourists? A length of stay analysis”

Edoardo  Otranto, “Classification of Volatility in
Presence of Changes in Model Parameters”

Alessandro Fiori Maccioni, “The risk neutral valuation
paradox”

Leonardo Becchetti, Vittorio Pelligra, “Don’t Be Ashamed
to Say You Didn’t Get Much: Redistributive Effects of
Information Disclosure in Donations and Inequity-
Aversion in Charitable Giving”

Alessandra Colombelli, Marta Foddi, Raffaele Paci, “The
knowledge regions in the enlarged Europe”

Emanuela  Marrocu, Raffaele  Paci, Stefano Usai,
“Proximity, Networks and Knowledge Production in
Europe”

Vittorio  Pelligra, “Empathy, Guilt-Aversion and
Patterns of Reciprocity”

Claudio Detotto, Edoardo Otranto, “Cycles in Crime and
Economy Revised”



Finito di stampare nel mese di Maggio 2012
Presso Copy...Right! studio grafico & stampa digitale
Via Turritana 3/B — Tel. 079.200395 — Fax 079.4360444
07100 Sassari



www.crenos.it

|SBN 378-88-84-67-730-3

7888841677303



	copertina 12-05
	wpcrenos
	contributi 12-05



