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Abstract 
The traditional matching methods for the estimation of treatment parameters are often affected 
by selectivity bias due to the endogenous joint influence of latent factors on the assignment to 
treatment and on the outcome, especially in a cross-sectional framework. In this study, we show 
that the influence of unobserved factors involves a cross-correlation between the endogenous 
components of propensity scores and causal effects. A correction for the effects of this 
correlation on matching results leads to a reduction of bias. A Monte Carlo experiment and an 
empirical application using the LaLonde’s experimental data set support this finding.  
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1. Introduction 
The problems deriving from the use of observational data to infer the causal effects of a 
treatment are considerable (LaLonde 1986, Winship and Morgan 1999). In particular, by 
examining cross-sectional methods for estimating causal effects, we can observe how 
estimation methods such as instrumental variables, dummy endogenous variable models and 
regression discontinuity design, as well as techniques based on propensity score, have to take 
into account the endogeneity of the selection into treatment. The most frequent remedy 
adopted in this circumstance is to identify the decision of a subject to undergo treatment 
using observed covariates (e.g. Heckman et al. 1997; Heckman and Navarro-Lozano 2004). 
In this context, matching methods based on propensity score are often criticized for not 
sufficiently specifying the factors determining the assignment to treatment. As a 
consequence, a bias due to endogeneity occurs in the estimation of the causal effects. The 
aim of this study is to suggest how to improve the traditional matching procedure, based on 
propensity score, in order to reduce bias due to endogeneity of treatment.  
A typical assumption of models with endogenous treatment effects is based on the 
hypothesis that the decision of a subject to receive a certain treatment depends on the 
difference in the outcomes potentially gained by the subject under the two alternative 
regimes of treatment and control, respectively (see, e.g., Winship and Morgan 1999).  Starting 
from this assumption, the decision of a subject to undergo the treatment is endogenous with 
respect to the potential outcome. Fixing the notation, for a data set of n subjects, let yTi be 
the outcome for i-th subject, where T is an indicator assuming value 0 for untreated subjects 
and 1 for treated subjects; moreover Z denotes the set of k observed variables determining 
the choice of the treatment regime. The non-random selection of the units into the treatment 
regime, due to the endogeneity of treatment, means that unobserved covariates, not included 
in Z, influence both the propensity of a subject to undergo treatment and the outcomes. As a 
consequence, matching estimation of the treatment effect, based on the comparison of 
treated and untreated units with the same propensity score, is biased (e.g., Heckman and 
Navarro-Lozano 2004). 

A natural solution to reduce the bias, as the detection of new statistically significant 
covariates in the treatment choice equation, could fail; in fact Heckman and Navarro-Lozano 
(2004) show that this happens when these variables are not exogenous with respect to the 
outcome. As a consequence, the econometric distinction between exogeneity and 
endogeneity plays a crucial role in choosing the appropriate conditioning set in matching 
estimation problems. There are not standard (and simple) solutions for this problem, and in 
fact in applied frameworks we see greater success of estimation procedures based on 
Instrumental Variables or Control Functions (which explicitly model the omitted 
conditioning variables) than matching methods.  
In this study, we try to circumvent the problem of misspecification of the selection equation 
in matching methods based on propensity score, assuming that the potentially omitted 
endogenous factors can be represented by a stochastic component of the propensity score 
correlated with the causal effects of the treatment. This implies that the causal effect of each 
subject is correlated with the causal effect of another subject with a similar propensity score; 
moreover the stochastic component is autocorrelated, as causal effects relative to similar 
propensity scores will be more similar. In order to assess this endogenous relationship, we 
model the causal effects by adopting a sort of state-space model (see, for example, Harvey 
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1990), where common latent factors are detected in correspondence with the endogenous 
stochastic component of the propensity score sorted in an ascending (or descending) order. 
State-space models are generally adopted for time series; the extension to this framework can 
be obtained by substituting the ordering of the observations in terms of dating with the 
order in terms of increasing propensity score. The predictions of these components are used 
as correction terms in the matching procedure. The estimation method proposed, called 
State-Space Corrected Matching (SSCM), is based on the Kalman filter (see Harvey 1990) 
and possesses the attractive characteristic of not imposing identification conditions on the 
probability of undergoing the treatment as in randomized experiments. 
We verify the performance of this method comparing its bias with respect to the bias 
occurring with traditional propensity score matching (cf., among others, Rosenbaum and 
Rubin 1983) both by Monte Carlo experiments and an application on real data. In the Monte 
Carlo experiment we generate data in a cross-sectional context, adopting a two-regime model 
whose data generation process (DGP) is affected by endogeneity. In doing this, we set non-
null correlations between the errors of the selection equation and the stochastic component 
of the outcome in both regimes. Applying our correction method we obtain a marked 
reduction of bias in the estimated average treatment effect for the treated (ATT) in 
comparison with the traditional Propensity Score Matching estimator (PSME). The 
application is made using the LaLonde (1986) experimental data set on the effect of a 
training program1; in this experiment we obtain a markedly better performance of the 
balancing statistics by measuring the reduction of bias in covariates after matching. The 
results are particularly interesting if a one-to-one criterion without replacement (whatever the 
level of caliper) is adopted. Both the Monte Carlo experiments and the empirical application 
show that the reduction of bias using SSCM occurs even in the condition of misspecification 
of the set of covariates conditioning selection into treatment2. In addition, the simulation 
results show that our SSCM method reduces bias in the ATT estimation even if a markedly 
observed heterogeneity in covariates occurs.  
The paper is structured as follows. In the next section we briefly review the recent literature 
on the problem of endogeneity in the matching method as an evaluation estimator. In 
Section 3 we describe the new procedure and introduce the SSCM estimator. Section 4 
shows the results of the Monte Carlo experiments, while, in Section 5, we describe the 
empirical application based on the LaLonde experimental and non-experimental data set, 
comparing the performance of SSCM estimation method and traditional PSME in terms of 
balancing statistics. Section 6 concludes with some final remarks. 
 

2. Endogenous treatment in a matching estimation:  a brief review 
In this section, we briefly discuss how several evaluation methods face the problem of the 
empirical identification of the choice to undergo treatment in order to avoid the selectivity 
effect in estimating treatment parameters. A common characteristic of the conventional 
estimation methods which differ for matching is that an acceptable randomization of the 
                                                             
1 This data set is available in the public domain by accessing to the link: 
http://users.nber.org/~rdehejia/data/nswdata2.html 
2 Incomplete specification of the set of covariates such as the non-experimental dataset compared 
with the LaLonde data (see for example Dehejia and Wahba, 1999 and 2002). 
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selection into treatment is only obtained through the imposition of limitations to the 
specification of the model and to the variables conditioning the choice. On the contrary, the 
matching procedures do not impose any exclusion restriction on covariates conditioning the 
selection, but suffer from the influence of latent variables correlated to both the selection 
and the outcome. 
In particular, in order to identify the selection equation, the conventional econometric 
evaluation models (e.g., Instrumental Variables and Control Functions), make a distinction 
between the set of covariates that explain the outcome equations, X, and the set of covariates 
that explain the selection equation, Z. The two sets are not necessarily mutually exclusive, 
but contain some different variables. In particular, in order to identify the selection into the 
treatment, variables explaining the choice to undergo the treatment, but not correlated with 
the outcomes, are included in Z, but not in X.  
Instead, matching procedure does not rely on exclusion restrictions. In general, matching 
methods do not distinguish between the variables in Z and in X. However, as a consequence 
of the absence of exclusion restrictions, the exposure to treatment, T, may be considered as 
not independent of the potential outcomes. A common assumption to circumvent this 
problem is that the variables included in Z can produce a randomization of T with respect to 
the outcomes (Rosenbaum and Rubin 1983). This assumption is also known as selection on 
observables, and requires that all variables relevant to the probability of receiving treatment 
may be observed and included in X. This allows the untreated units to be used to construct 
an unbiased counterfactual for the treatment group. 
Several critical observations have been directed towards this approach by analysts (cf., 
among others, Heckman and Navarro-Lozano 2004, Heckman 2008). In particular, 
Heckman and Navarro-Lozano (2004) showed that only a part of the variables that guarantee 
the conditional independence of the treatment are generally included in Z (only the observed 
covariates), and this circumstance may induce bias in the estimated treatment parameters.  
Smith and Todd (2005), in order to investigate the properties of PSME applied to 
nonexperimental data, replicate the well-known experiment of LaLonde (1986) and Dehejia 
and Wahba (1999, 2002) using experimental treated units of the US National Supported 
Work (NSW) with nonexperimental comparison units from the Current Population Survey 
(CPS) and the Population Survey of Income Dynamic (PSID), respectively. They found that, 
performing traditional PSME in a cross-sectional data set, an effective reduction of bias is 
obtained only if the comparison between treatment and control group should satisfy the 
following criteria: (i) both treatment and untreated units must come from the same data 
sources (i.e., the same surveys or the same type of administrative data) so that the sample 
characteristics are measured in an analogous way, (ii) treated and untreated subjects must 
reside in the same geographic area, and (iii) the data must contain a rich set of variables that 
affect both the selection into treatment and the outcomes. If the data fail to satisfy these 
criteria, the performance of the cross-sectional propensity matching estimators diminishes 
greatly. In addition, Smith and Todd found that the results obtained applying cross-sectional 
PSME are strongly affected by the different specification of the set of covariates and by the 
influence of time-invariant latent factors such as geographic mismatch and differences in the 
measurement of the dependent variable. In order to reduce bias due to time-invariant latent 
factors, they suggest adopting the Difference-in-Differences matching (DIDM) estimator 
introduced in Heckman et al. (1997) and Heckman et al. (1998) subordinately, however, to 
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the condition that the data set is characterized by a panel structure. The result obtained by 
Smith and Todd is that the difference in time-invariant latent variables affecting both 
matching and outcomes is better controlled adopting a DIDM estimator, based on the 
comparison of the difference in outcome over time (before and after the selection into 
treatment) between treated and untreated units.  
Applying estimation methods alternative to matching, analysts found that a condition close 
to the randomization of the selection may be achieved if the individuals belonging to the 
treatment and comparison group solely differ with respect to the variable determining the 
participation status (and to the variables correlated with it); while other variables determining 
heterogeneity between treated and untreated should be considered as confounder variables. 
However, methods adopted to control the selection for heterogeneity lead to impose 
limitations in the use of data and of covariates. This is the case of the approach suggested by 
Carneiro et al. (2003) and Aakvik et al. (2005), in which unobserved covariates are modeled, 
as in a factors model, such as latent components common to both outcome equations and 
selection equation. This approach implies that an across-correlation between the errors terms 
of the outcome equations is determined by latent factors, and the estimation procedure 
would apply factor analysis methods. However, since individuals cannot be observed jointly 
in both treatment-regimes, a distribution of ‘counterfactuals’ should be preliminarily 
provided to perform the factor analysis. This preliminary step should be generally supported 
by the introduction of exclusion restrictions to prevent pairwise comparisons between 
observed units and counterfactuals being affected by selectivity. 
Another example is given by the Local Average Treatment Effect (LATE) estimator (cf.  
Imbens and Angrist 1994, Angrist et al. 1996, among others). The LATE approach provides 
a consistent estimate of average treatment effect only for a subgroup of the population, the 
so-called compliers. It does not measure the effect of the treatment for everyone (ATE). In 
addition, the status of “complier” is determined using the instruments available. This implies 
that different instruments will give a different LATE, so a different set of subjects classified 
as compliers will provide a different LATE. 
The heterogeneity of the subjects belonging to both treatment and comparison group implies 
that treatment effects may be heterogeneous for different categories of subjects. The 
Marginal Treatment Effect (MTE) approach provides a strategy to isolate the effect of the 
treatment with respect to other confounding factors (e.g. Carneiro et al. 2011). The MTE 
detects how much the individual’s outcome increases when there is a small increase in the 
propensity score or, equivalently, how much higher the outcome of an individual, that is on 
the margin of treatment, can be expected to be by inducing him/her to undergo the 
treatment, via the instruments included in Z. The presence of instruments in the selection 
equation ensures that the reason for this increase is not due to the motivation of the choice. 
The rationale of this method is to compare marginal participants to marginal non-
participants. In this context, the term ‘marginal’ refers to those subjects (treated and 
untreated) falling in a small neighbor of the threshold for selection. This approach implies 
that the choice for Ti=1 or Ti=0 of the subjects located near the threshold for selection is 
purely random. 
Such as in the MTE estimation, also with the Regression Discontinuity approach (e.g. Hahn 
et al. 2001), the identification of treatment effects is made possible by comparing subjects 
arbitrarily close to the cut-off point z0 (the cut-off point is function of one or more 
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covariates, Z) in which they can receive or cannot receive the treatment. The LATE at z0 is 
identified for the subgroup of subjects for whom a treatment function (parametrically or 
nonparametrically specified) changes discontinuously at z0.  
From this brief review of the more frequently adopted evaluation methods, alternative to 
matching, we can observe that every attempt to obtain a randomization of the selection leads 
to a loss of generality of the significance of the estimated treatment parameters.  
Unlike the most commonly used approaches, based on the randomization of the selection, in 
this study we suggest that it is possible, with a propensity score matching approach in a 
cross-sectional framework, to reduce the bias due to endogeneity without imposing 
limitations on the sample or adopting exclusion restrictions. This purpose can be reached by 
providing a stochastic specification and a proper estimation of the relationship between the 
causal effects of treatment and probability to undergo the treatment, as illustrated in next 
section.  
 

3. Model specification 
The most innovative aspect of this analysis is the individuation of an autoregressive process 
that characterizes, jointly, individual propensity scores and causal effects. Another important 
novelty, strictly linked to the previous one, is given by the correction term derived as the 
state variable of a State-Space model that identifies the endogenous components of the 
causal effects.  
To better explain the endogenous relationship between causal effect and propensity to 
undergo treatment, we start to consider the potential outcome gained by choosing one of the 
two treatment statuses as a relevant (endogenous) determinant of the decision to undergo 
treatment. In particular, we specify the model assuming that the difference between the 
expected outcomes, y1i and y0i, obtainable, respectively, under the regimes Ti=1 (if the subject 
belongs to the treatment group) and Ti=0 (if the subject belongs to the comparison group), 
determines, at least in part, the choice of the regime.  
Let us consider a Probit (or Logit) model, where the (latent) propensity to undergo treatment 
of the i-th subject, !"

∗, depends linearly on the covariates in Z: 
 

!"
∗ = %"

&' + )"  (1) 
 
where  %"

& is the i-th row of the matrix Z, b is a vector of unknown coefficients and vi is a 
zero mean random disturbance with unit variance. If !"

∗ > 0, !" = 1 (the subject underwent 
treatment), otherwise !" = 0	(the subject did not undergo treatment).  
As a consequence of the endogeneity of !"

∗ with respect to the causal effects, Di = y1i – y0i, 
we can suppose that the propensities !"

∗, sorted in ascending or descending order, are 
autocorrelated, and the same holds for the causal effects Di. In practice, subjects i and i+1, 
with contiguous propensities !"

∗ and !"/0
∗ , show similar causal effects, Δ"and Δ"/0. The 

hypothesis of autocorrelation of causal effects and propensity score is consistent with the 
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“Two-Regime” Roy Model (e.g., Heckman and Honoré 1990; Carneiro et al. 2003)3, and we 
specify our model according to it, adding to the selection equation (1) two further equations: 
 
 20" = 	 30" + 40" if !" = 1;  otherwise latent   (2a) 
 
   25" = 	 35" + 45" if !" = 0;  otherwise latent   (2b) 
 
In Equations (2a) and (2b), 30" and 35" are the outcomes obtained by treated and untreated 
subjects, respectively, depending on the decision to undergo treatment (T = 1) or not (T = 
0). The error terms 40" and 45" are normally distributed with zero mean and variances equal 
to 607 and 657	respectively. The covariances 608 and 658  of the disturbances of both outcome 
equations, u1i and u0i, with the disturbances of the selection equation (1), vi, are measurements 
of the endogeneity of the propensity to undergo treatment, !"

∗, with respect to the outcome 
gained under T = 1 and T = 0.  
Correlation between outcomes and propensity scores, as well as the autocorrelation of the 
causal effects, may be specified starting from the definition of causal effects, Δ" , obtained as: 
 

   	Δ9 = 	 20"	– 	25" 	= 	�30" − 	35" + 	(40"–	45")     (3) 
 

We suppose that 40" and 45" are both linearly related to )" , involving a certain degree of 
endogeneity. Formally we have: 
 

40"–	45" = 6)" + 	>"        (4) 
 

Putting 30" − 	35" = 	 3" , Eq. (3) can be written as a measurement equation of a State-Space 
Model, as follows (cf., among others, Harvey 1990): 
 

Δ"–	3" = 6)" + 	>"       (5) 
 

In Eq. (5), >" is a vector of n×1 disturbance terms uncorrelated across i. The variable vi can 
be considered as the state variable whose elements are not observable, but are assumed to be 
generated by a first-order Markov process (transition equation): 
 

)" = ?)"@0 + A"       (6) 
 

The dependent variable of Eq. (5), Δ"–	3" , represents the stochastic component of the causal 
effect Δ" , endogenous with respect to the decision to undergo treatment. Starting from this 
result, the selectivity effect due to the endogeneity of the decision to undergo treatment may 
be corrected by estimating 6)" in Equation (5), and using the corresponding predicted 
values, 6)" , as a correction term in the matching estimation of the causal effects. In doing 
                                                             
3 Moreover, as we will show below, this hypothesis is also supported by the empirical evidence of our 
Monte Carlo experiment. 
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this, a preliminary estimation of causal effects Δ" is obtained at a first stage by applying a 
traditional propensity score matching procedure. Then, at a second stage, matching is 
replicated using the corrected outcomes 20" − 6)" so as to obtain the corrected causal 
effects Δ" − 6)" = 	 3" . We call this estimator the State-Space Corrected Matching (SSCM) 
estimator. 

 
3.1 Interpretation of the Selection Equation  
The endogenous selection of the units into the treatment regime, as assumed in our model, 
means that the observed covariates do not fully determine a specification of the selection 
process. In particular, we assume that the choice of the regime of the subject should also 
depend on the potential outcome, 30" and 35" , through the influence of the error term of the 
selection equation, )" . In order to specify how )" is influenced by the outcome, let us start by 
solving the measurement equation (5) by )" : 
 

)" =
0
B
Δ" − 	 30" − 	35" + C"       (7)   

with C" = −>"  and 30" − 	35" = 3" . 
We assume that both the components of the outcomes, 30" and 35" , are determined in part 
by the observed covariates Z, and in part by unobserved factors, D0" and D5" . Then we can 
explain 30" and 35" by adopting the following linear specification:  
 

 30" = %"
&E0 + 	D0"          (8a) 

 
	35" = %"

&E5 + 	D5"       (8b) 
 

where E0 and E5 are coefficients measuring the partial effect of observed covariates on 
respectively, 30" and 35" , while D0" and D5" are latent components. 
Substituting Eqs. (8a) and (8b) into Eq. (7), we obtain: 
 

)" =
0
B
Δ" − %"

& E0 − 	E5 − D0" − D5" + C"     (9) 
 

Eq. (9) shows that the stochastic component of the propensity to undergo treatment, vi, 
includes an endogenous variable given by the difference between the unobserved factors, D0" 
and D5" , of each regime. However, since the cross-sectional nature of the analysis does not 
allow us to observe a subject under the two regimes simultaneously, the term %"

& E0 −
E5 and the difference D0" − D5"	cannot be identified. To this end we propose adopting a 
well known counterfactual procedure: the Blinder-Oaxaca decomposition (e.g. Blinder 1973; 
Oaxaca 1973).  
In practice, by introducing the Blinder-Oaxaca decomposition, we can detect three distinct 
effects on vi, and, consequently, on the probability to undergo treatment !"

∗: i) the effect of 
the “shift” in the coefficients, E0 and E5, on the outcome due to the choice of the regime; ii) 
the effect of “change” in covariates, %0" and %5" between the regimes; and iii) a component 
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that measures the interaction between the first two effects. Considering the average effects 
of these components, we have (e.g. Jann 2008): 
 
%& E0 − 	E5 + D0 − 	D5

&
= %0 − 	%5 &E0 + %5& E0 − 	E5 + %0 − %5 & E0 − 	E5 	       (10) 

 
Where, %, %0 and %5	are the mean values of the covariates of the full sample, and of the 
treated and untreated groups, respectively. The term %5& E0 − 	E5  measures the “shift” 
effect on the outcome as a consequence of choice of the regime of treatment (T = 1), 
assuming the values of the covariates, %" , fixed at T = 0.  The term %0 − 	%5 &E0 measures 
the extent to which the differential in outcome between treated and untreated is due to 
difference in covariates (the so-called "endowment” effect). Assuming that the difference in 
unobserved factors, D0" − D5" , accounts for the fact that differences in endowments and 
coefficients exist simultaneously between the two regimes, we replace the mean difference of 
D0" − D5" , with the “Interaction Term” %0 − 	%5 & E0 − 	E5 , such as in the “three-fold” 
version of the Blinder-Oaxaca decomposition (see Jann2008, among others).  
Extending the Blinder-Oaxaca decomposition to the i-th observation, we replace 	%"

& E0 −
	E5  in the Eq. (10) and obtain: 
 
)" =

0
B
Δ" − %0" − 	%5" &E0 − %5"

& 	 E0 − E5 − %0" − %5" & E0 − E5 + C"           (11) 
 

Then, substituting the Eq. (11) into the Eq. (1), the selection equation can be expressed as: 
 
!"
∗ = %"

&' + 0
B
Δ" − %0" − 	%5" &E0 − %5"

& 	 E0 − E5 − %0" − %5" & E0 − E5 + C"   (12) 
 
As a result, the estimation of the selection equation can be improved by introducing, as 
further explanatory variables, the terms, %5"

& 	 E0 − E5 , %0" − 	%5" &E0 and %0" −
%5" & E0 − E5  preliminarily obtained performing an Oaxaca-Blinder decomposition in the 
three-fold version. The coefficients, 	E0 and E5, can be estimated by running two Least 
Squares regressions on the equations (9a) and (9b), after replacing the latent dependent 
variables 30" and 35" with the observed 20" and 25" , respectively4.  
 

4. Monte Carlo experiment 
We propose a Monte Carlo experiment to compare the performance of the SSCM procedure 
with that of the PSME in terms of bias reduction under both the conditions of 
heterogeneous and homogeneous covariates between regimes.    
For this purpose, we generate 500 data sets of 2,000 units from the Two-Regime model 
above in Equations (1), (2a) and (2b). The exogenous covariates Z are generated in order to 
reproduce the very frequent condition of heterogeneity in observed covariates between 
                                                             
4 As we will show below, the terms %FG& 	 EH − EF , %0" − 	%5" &E0 and %0" − %5" & E0 − E5  can be 
included as further explanatory variables in the right side of the measurement equation (Eq.5), in 
order to better specify the endogenous effects of the choice of the regime on the causal effects. 
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treatment and comparison group, and the condition of homogeneity in the observed 
covariates between regimes.  
More in detail, we consider a 5x1 vector %" in equation (1), where the five variables are 
generated as follows:   

• the variable I0" is generated from a Uniform distribution ranging in [0,10] 
(U(0,10)); 

• I7" from a Normal distribution with mean 10 and variance 16 (N(10; 16)): 
• IJ" = I0"K −5; 16 ; 
• IO" = I0"I7" + K 0; 4 ; 
• IQ" = K −10; 16 + I7"

7 . 
The coefficients included in the vector b are: b1 = 10; b2 = -10; b3 = 10; b4 = 10; b5 = -10.  
The choice of the distributions and their parameters is well subjective, but it has the purpose 
of including in the explanatory variables both independent and dependent (also quasi-
collinear) variables. 
In order to simulate the effect of endogeneity on the estimates, we consider two different 
DGP, with and without endogeneity, so as to fix two distinct sets of population parameters 
under the condition of endogeneity and exogeneity, respectively. 
In order to embed endogeneity in the selection equation (Eq.1) and in the outcome 
equations (2a) and (2b), we generate the random variable R" = K 0; 1 + (40" − 45"), where 
40" and 45" are the error terms of the outcome equations (2a) and (2b), generated, 
respectively, as follows: 
 
40" = 608S" + >0" and   45" = 658S" + >5"     (14) 
 
where S" is a N(0;1) random variable, and >0" and >5" are independently generated by a 
N(0;36) and a N(0;16), respectively. Finally, we standardize R" and obtain the disturbance 
term of the selection equation, )" , following a N(0;1) distribution, as stated above 
specifying the selection equation (Eq.1).   
Note that we decide to fix different values of 608 and 658 in each experiment (reported, 
below, in Tables 1 and 2), in order to reproduce different conditions of endogeneity. In 
particular, if 608and 658 are both positive, we obtain an unobserved heterogeneity that 
positively influences both the propensity to undergo the treatment and the ability of the 
subject to gain the outcome. The opposite occurs if one of these covariances has a negative 
value5. 
To reproduce the probability to undergo treatment, we generate a cumulative Normal 
Standard distribution, as in a Probit function, given by Φ(U5 + U0I0"+. . . +UWIW" + )" . The 
response variable Ti of the selection equation (1) is found to be zero if the values randomly 
assumed by the Gaussian cdf  F(...)  are less than 0.5, while Ti is equal to 1, if Φ … ≥ 0.5  
. The simulated response variable Ti determines, in this experiment, the assignment of the 
                                                             
5 For example, considering a two-regime model of wage for unionized and non-unionized workers, 
latent cultural factors may induce a worker who gains a higher wage not to join the union, even 
though an unionized worker should have greater economic protection. 
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units to the regime of treated (outcome equation (Eq. 2a)) or untreated (outcome equation 
(Eq. 2b)). 
Regarding to the outcome equations, we include in the right-hand sides of the outcome 
equations (Eq. 2a and Eq. 2b) two components, 30" and 35" , exogenously generated by a 
N(15; 25) and a N(10; 16) random variables, respectively. Endogeneity in outcome equations 
(Eq. 2a and Eq. 2b) is given by the relationship between the disturbance terms 40" and 45"  
and the error term of the selection equation, )" , as above specified. 
The “Population” treatment parameter considered in our analysis is given by the Average 
Treatment on Treated (ATT): Z(20"	– 25"|	!") = 1. Applying Eq. (5), Population ATT is 
equal to Z[30"	– 	35" + (608	– 658))" 	+ 	(>0"	– >5")|	!"] = 1, and  converges on different 
limits depending on the pre-determined values of the covariances 60^ and 65^. As a 
consequence, setting both 60^ and 65^  equal to zero, we obtain the Population ATT in 
absence of endogeneity. 
Table 1 shows the Population ATT parameters generated under different values determined 
for 608  and 658  in order to reproduce endogeneity.  
 
Table1. Population ATT parameters derived from DGP 

DGP 608 ?08 ∗ 658 ?58 ∗ Population 
ATT 

Population ATT with 
observed heterogeneity 

Endogeneity (1) 5.4(0.9) 2.4(0.6) 6.12 6.15 
Endogeneity (2) 5.4(0.9) -2.4(-0.6) 9.80 9.80 
Endogeneity (3) 5.4(0.9) 0.8(0.2) 8.47 8.47 
Endogeneity (4) 5.4(0.9) -0.8(-0.2) 8.47 8.47 
No Endogeneity 0.0 (0.0) 0.0 (0.0) 5.00 5.00 
Note: * Taking into account the variances of 40 and 45, the corresponding correlation coefficients are 
approximately given by the values shown in brackets. 
 
Moreover, in order to consider heterogeneity in covariates, we replicate the experiment with 
some different specifications in the covariates Z with respect to the previous scheme. For 
!" = 1, the variable I0" is generated from a U(0;13) and the variable I7" from a N(13,4), 
while the variables IJ" , IO" and IQ" change according to the previous scheme. As a 
consequence of heterogeneity in covariates, negligible changes in the values of the 
population ATT occur, as reported in the last column of Table 1. 
The differences between the estimated ATT obtained under endogeneity and the “unbiased” 
population ATT value (equal to 5) quantify the effect of endogeneity simulated by the DGP. 
Hence we can evaluate the bias of the estimated ATT parameters, obtained by applying 
matching methods in different conditions of endogeneity.  
 
4.1 Comparison of Matching Estimators 
The proposed SSMC estimator is compared to the PSME on the simulated data. 
For the sake of clarification, we provide a brief description of the steps needed to apply the 
estimation methods. 
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i) SSCM:  
Step 1: let us start to run the Blinder-Oaxaca decomposition of the outcome, using the 
treatment dummy Ti in order to indicate the choice of regime. The outcomes, y1i and y0i, 
are pooled to form the dependent variable, as well as the covariates of the selection, in 
order to generate the five explanatory variables. The decomposition is replicated for the 
dummy 1- Ti (equal to 0 for treated, and equal to 1 for untreated).  
Step 2: two new variables, named “Split” and “Endowment”, are generated. The variable 
Split measures the “shift” effect on the outcome as a consequence of the choice of the 
regime given by %5"

& 	 E0 − E5 , while the variable Endowment measures the effect of 
difference in covariates between regimes, given by %0" − 	%5" &E0 (see, above, Section 
3.1).  
Step 3: the propensity score matching is performed using the estimated propensity scores 
in order to obtain a preliminary estimation of the causal effects ∆"= 20" − 	25` (where 
25` is the counterfactual of 20" belonging to the comparison group and characterized by 
the same propensity score of the i-th unit). The propensity to undergo the treatment is 
assumed to be conditional to the five above generated exogenous covariates and the 
variable Split.  
The estimated propensity scores are then sorted in ascending order, and the estimated 
causal effects are indexed and ordered accordingly to the estimated propensity scores.  
Step 4:  A Maximum Likelihood estimation of the State-Space model is performed 
adopting ∆"= 20" − 	2`" as a dependent variable and the variables Split and Endowment as 
covariates in the measurement equation; while the transition equation is specified as in 
equation (7).6 The predicted values,	Δ" , are the estimates of endogenous components of 
the causal effects, 6)" (cf., above, Sect. 3). 
Step 5: subtracting Δ" , from 20" , we obtain the corrected outcomes 2" . A matching 
procedure is then replicated to link the corrected outcomes 2" with the respective 
counterfactuals in order to obtain the causal effects and the treatment parameters. 

ii) PSME. 
A matching procedure is performed, using the propensity scores estimated by Probit7.  
The estimation of the causal effects is given by Δ" = 20" − 25` (where 25` indicates a 
counterfactual of  20"). The estimated propensity to undergo the treatment is assumed to 
be conditional to the five above generated exogenous covariates. The estimated causal 
effects allow us to compute the treatment parameters.  
 

4.2 Comparing Simulation Results of Matching Procedures 
We summarize in Tables 2 and Table 3 the estimated ATT values obtained by embedding 
different endogeneity conditions into the DGP. Note that, computing the bias with respect 
to the population ATT value (set to 5), the SSCM estimator performs better than the PSME 
procedure. The bias resulting from the application of SSCM is markedly smaller than of the 
                                                             
6 The different step of the estimator are performed using STATA 14 packages. 
7 The STATA 14 package used to perform matching is PSMATCH2 (Leuven and Sianesi 2003). 
Performing PSMATCH2, a “one to one” linkage without replacement with a caliper equal to 0.05 is 
imposed. In addition the “Common Support” condition is ensured. 
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one resulting from PSME. We can observe, in particular, that, if we reproduce the “more 
common” endogeneity conditions (characterized by covariances, s1v and s0v, with the same 
sign) in the DGP, the confidence intervals obtained by the SSCM estimates include the 
population ATT value. In the less frequent case, in which the propensity to undergo 
treatment is endogenously affected in the two regimes with opposite sign, confidence 
intervals of the SSCM estimates do not include the population parameter. However the 
percentage of bias of SSCM estimation does not exceed 15% in absolute value.  
While the mean of the estimated ATT using the SSCM procedure is not influenced by the 
presence of heterogeneity in covariates between the regimes, standard errors and confidence 
intervals are found to be markedly increased with respect to the case of no heterogeneity in 
covariates.   
 
Table 2. Estimated ATT parameters without heterogeneity in observed covariates. 
Population ATT value = 5 
 DGP SSCM PSME 
Endogeneity ATT  95% CI  ATT  95% CI 
s1v 5.4; s0v 2.4 4.974 4.93 5.018 7.996 7.97 8.022 
s1v 5.4; s0v -2.4 4.32 4.279 4.362 6.814 6.782 6.846 
s1v 5.4; s0v 0.8 4.983 4.939 5.027 7.571 7.534 7.607 
s1v 5.4; s0v -0.8 4.729 4.688 4.77 7.572 7.536 7.608 
         % BIAS* St.Dev.  t**  % BIAS*  St.Dev. t** 
s1v 5.4; s0v 2.4 -0.51% 0.022 222.16 59.92% 0.013 607.170 
s1v 5.4; s0v -2.4 -13.59% 0.021 205.72 36.28% 0.016 414.280 
s1v 5.4; s0v 0.8 -0.35% 0.022 222.48 51.41% 0.018 410.660 
s1v 5.4; s0v -0.8 -5.42% 0.021 225.71 51.45% 0.018 412.000 

Note: * =  % of Bias [(Est. ATT-5)/5]%; ** = t-ratio: ATT/St.Dev.) 
 
Table 3. Estimated ATT parameters with heterogeneity in observed covariates. Population 
ATT value = 5 
 DGP SSCM PSME 
Endogeneity ATT  95% CI  ATT  95% CI 
s1v 5.4; s0v 2.4 5.059 3.482 6.527 7.941 6.551 9.599 
s1v 5.4; s0v -2.4 4.246 2.879 5.681 6.888 5.548 8.339 
s1v 5.4; s0v 0.8 5.128 3.356 6.722 7.982 6.566 9.500 
s1v 5.4; s0v -0.8 4.757 3.433 6.083 7.599 5.993 9.045 
       
  % BIAS* St.Dev.  t**  % BIAS*  St.Dev. t** 
s1v 5.4; s0v 2.4 1.19% 0.529 9.56 58.82% 0.498 15.94 
s1v 5.4; s0v -2.4 -15.07% 0.512 8.29 37.76% 0.491 14.03 
s1v 5.4; s0v 0.8 2.53% 0.517 9.93 59.63% 0.479 16.66 
s1v 5.4; s0v -0.8 -4.86% 0.523 9.09 51.99% 0.484 15.71 

Note: * =  % of Bias [ATT-5)/5]%; ** = t-ratio: [ATT/St.Dev.) 
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Tables 2 and Table 3 report the statistics on ATT and Bias only, while in the Appendix, 
simulation results are reported in detail, including the statistics measuring balancing in 
covariates between treated and untreated cases after matching. These statistics allow us to 
evaluate the extent to which the adopted matching procedure reduces differences in 
covariates between treated and untreated units (cf. Rubin 2001; Haviland et al. 2007). In 
addition, we also report the mean of estimated coefficients measuring dependence between 
causal effects and propensity score values, and the mean of the coefficients measuring the 
autoregressive component of the causal effects, resulting by the estimation of the Transition 
Equation of the state space model (see, above, Eq. 7). In the following table (Table 4), we 
summarize the description of the coefficients and indicators provided by the Monte Carlo 
experiments. 
 
Table 4. Description of the coefficients and indicators provided by the Monte Carlo 
experiments 
RHO(T; D) Correlation coefficient between estimated propensity score 

and causal effects 
Estimated ATTSSCM  
(ATTPSME) 

Estimated ATT parameter obtained performing the 
matching Estimator 

Unbiased Pop. ATT  ATT generated by DGP without endogeneity 
Biased Pop. ATT  ATT generated by DGP under endogeneity 
Estim. Transition coeff Coefficient of the Transition equation measuring the 

autoregressive effect in ordered causal effects 
Shift coeff. Coefficient estimated in the “measurement equation”, 

corresponding to the explanatory variable “Split”  provided 
by the Blinder-Oaxaca decomposition  

Endowment coeff. Coefficient estimated in the “measurement equation”, with 
the introduction as regressor of the difference in covariates 
provided by the Blinder-Oaxaca decomposition  

Mean bias after matching Standardized mean difference between treatment and 
control units after matching 

Median bias after matching Median difference between treatment and control units 
after matching 

BAFT "Rubins' B" indicator: The absolute standardized difference 
of the means of the linear index of the propensity score in 
the treated and non-treated (matched). 

RAFT "Rubin's R" index: The ratio of variances of the propensity 
score index between treated and non-treated (matched). 

No. of units on the common 
support 

No. of observations belonging to the treatment group or to 
the comparison group who have an estimated propensity 
score equal to that of one or more observations belonging 
to the opposite group. 
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Analyzing the statistics, reported below in Appendix, obtained by the Monte Carlo 
experiments, we observe that the RHO(T; D) coefficient, measuring, in the SSCM procedure, 
the correlation between the estimated propensity score and the causal effects, is generally 
higher if heterogeneity in covariates has been embedded in DGP. We found that, with 
heterogeneous covariates, RHO(T; D) ranges between 14% and 15%. Instead RHO(T; D) 
ranges between 2% and 5% if covariates are not affected by heterogeneity. In addition, we 
generally observe significant estimated values of the coefficient of the transition equation, 
r, measuring the autoregressive effect in ordered causal effects. Estimated values are close to 
-0.44 in all the Monte Carlo experiments.  
The impact of the endogenous change of regime and of the difference in covariates across 
regimes in the measurement equation (Eq. 7), are measured by the “Shift” and the 
“Endowment" coefficient, respectively. Note that the Endowment coefficient is generally 
higher (ranging between 0.73 and 0.76) if covariates are not affected by heterogeneity. It 
ranges between 0.52 and 0.56 in the case of heterogeneous covariates across regimes. On the 
contrary, the “Shift” coefficient is higher if heterogeneity in covariates occurs (between 1.39 
and 1.59) than the opposite case of homogeneous covariates (between -0.06 and 0.15).  
The BAFT and RAFT indicators provide, in all the experiments, values compatible with a 
satisfactory balancing using both SSCM and PSME estimators8. In general, a better balancing 
is obtained setting the experiment with homogeneous covariates between regimes.    
 
5. Application using experimental vs. nonexperimental data sets on training 

programs 
In this section we report the results of the comparison of our SSCM method and the 
traditional Propensity Score Matching (PSME) both applied to the experimental treated units 
from the US National Support Work (NSW) paired with the nonexperimental untreated 
comparison units drawn from the Current Population Survey (CPS) and the Population 
Survey of Income Dynamic (PSID), respectively. 
The data we use, obtained from LaLonde (1986), are from the NSW labor market 
experiment in which participants were randomized between a treatment group (on-the-job 
training lasting between nine months and a year) and control groups. The outcomes are 
given by the annual earnings gained after the experiment by the participants belonging to the 
two groups. 
Following LaLonde (1986) and Dehejia and Wahba (1999, 2002), we use the experimental 
NSW data paired with the untreated units drawn from the PSID and the CPS dataset, 
respectively. In this way, we compare the difference in the propensity score distribution 
between treated units and nonexperimental counterfactuals applying, respectively, our SSCM 
method and the traditional PSME. Balancing score statistics are also adopted in order to 
evaluate the effectiveness of each estimator in reducing bias in covariates before and after 
matching.  
In Table 5 we report the sample characteristics of the treatment group and the two 
comparison groups. Marked differences characterize the comparison between NSW and CPS 
                                                             
8 Rubin (2001) recommends that BAFT be less than 25 and that RAFT be ranged between 0.5 and 2 
for the samples to be considered sufficiently balanced. 
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data and between NSW and PSID data. In particular, the age of the subject and the real 
earnings before treatment and proportion of no degree differ between treatment and 
comparison groups. Note that these differences may influence the decision of the 
participants to undergo the training program.   
Table 6 shows the estimated ATT obtained comparing experimental treated units with 
experimental and non-experimental control units, respectively. Matching results are obtained 
using both PSME and SSCM applying a different caliper (0.05, 0.01 and 0.005) without 
replacement and under three different matching criteria (number of matches equal to one, 
four and eight, respectively).  
 
Table 5. Description, sample means and Standard Errors of covariates for NSW, CPS and 
PSID participants 

 
NSW - treated PSID – untreated CPS – untreated 

Variable Description Mean Std. Err. Mean Std. Err. Mean Std. Err. 
Age 25.82 0.526 34.85 0.209 33.23 0.087 
 Years of schooling 10.35 0.148 12.12 0.062 12.03 0.023 
Proportion of Black 0.84 0.027 0.25 0.009 0.07 0.002 
Proportion of Hispanic 0.06 0.017 0.03 0.004 0.07 0.002 
Proportion of nodegree 0.71 0.034 0.31 0.009 0.30 0.004 
Proportion of Married 0.19 0.029 0.87 0.007 0.71 0.004 
Real Earnings in 1974 2096 359 19429 269 14017 76 
Table 5 - continued       
Real Earnings in 1975 1532 237 19063 272 13651 73 
Real Earnings in 1978 6349 578 21554 312 14847 76 
Proportion of individuals 
Black and Unemployed 
before training 

0.60 0.0361 0.01 0.002 0.01 0.001 

Sample size 185 2490 15992 
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Table 6. ATT estimation. Comparison between NSW treated units and CPS and PSID 
untreated units, respectively 

NSW treated  and  untreated (experimental) 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 2387 1964 2259 2093 2147 2241 
0.01 1524 1939 1853 2051 2122 2139 
0.05 1453 1590 1972 2059 2039 2313 

       NSW treated  and CPS untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 1255 855 1015 1594 983 1633 
0.01 2065 1027 1656 1611 1703 1626 
0.05 1410 1587 1189 1567 1422 1609 

       NSW treated  and PSID untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 2558 400 -106 515 70 319 
0.01 161 -96 -305 658 -530 470 
0.05 -1925 -214 1671 2517 1879 2337 

 
Table 7. Mean bias after matching. Comparison between NSW treated units and CPS and 
PSID untreated units, respectively 

NSW treated  and CPS untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 7.52 37.17 7.20 7.48 6.01 7.06 
0.01 8.09 41.69 6.32 7.77 5.84 6.73 
0.05 10.54 35.17 6.91 7.83 6.59 6.77 

       NSW treated  and PSID untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 13.76 27.32 6.69 4.54 6.64 4.02 
0.01 11.51 26.14 6.21 6.82 7.44 6.24 
0.05 10.48 23.27 10.01 7.22 8.97 6.25 
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Table 8. Rubin's RAFT index: The ratio of variances of the propensity score between 
treated and non-treated after matching. Comparison between NSW treated units and CPS 
and PSID untreated units, respectively 

NSW treated and CPS untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 0.74 2.71 0.80 0.80 0.66 0.772 
0.01 1.04 8.46 0.86 0.80 0.79 0.767 
0.05 0.75 9.68 0.81 0.79 0.79 0.770 

       NSW treated and PSID untreated 

 
No of matches=1 No of matches=4 No of matches=8 

Caliper SSCM PSME SSCM PSME SSCM PSME 
0.005 1.00 2.82 1.17 0.98 0.91 1.01 
0.01 0.79 1.91 0.90 0.95 1.06 0.98 
0.05 0.50 2.55 1.07 0.76 1.17 0.76 

 
Comparing balancing statistics between experimental treated units and non-experimental 
untreated units, we can observe how the application of the SSCM method leads to 
improving bias reduction with respect to the use of the PSME procedure, especially if the 
criterion “one-to-one” (number of matches equal to 1) without replacement is applied. In 
particular, the results reported in Tables 7 and 8 show how the standardized mean difference 
in covariates and the ratio between the variances of the propensity score between treated and 
untreated after matching are markedly smaller when the one-to-one criterion is adopted, 
whatever the caliper level.   
We compute also the differences in estimated propensity scores after matching between 
treated and untreated units. These results are reported below in the graphs of Figures 1, 2, 3 
and 4, where the treated units are ordered on the basis of the propensity scores in ascending 
order (horizontal axis), while on the vertical axis, the estimated propensity score of the 
treated is reported jointly with the estimated propensity score of the corresponding 
counterfactual. Figures 1 and 2 report the propensity scores linked using the one-to-one 
criterion without replacement, while in Figures 3 and 4 the treated and untreated units are 
linked adopting replacement.  
Explaining in Figure 1 the results obtained applying SSCM and PSME, respectively, we 
found that the SSCM estimated propensity scores of both treated and untreated are paired at 
a higher level of propensity scores than using PSME. This implies that, performing SSCM, 
matching results are supported by a higher conditional probability to undergo the treatment 
than the traditional method. We can explain this result because, unlike traditional matching 
methods, the SSCM procedure, introducing a correction term for endogenous latent factors, 
increases the components explaining propensity score with respect to the traditional PSME. 
In addition, as showed by both Figures 1 and 2, propensity scores of treated and untreated 
are closer when performing SSCM.  
On the contrary, if we replicate the matching estimation by introducing replacement, no 
significant differences are found between the SSCM and PSME estimated propensity score 
(Figures 3 and 4). Other comparisons not reported here for the sake of brevity, show how 
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SSCM and PSME generally lead to similar results in propensity score estimation if the 
number of matches increases (for example, one-to-four or one-to-eight). In addition, we 
observe that, by increasing the number of matches, no marked differences in propensity 
score estimates occur by adopting replacement or not.  

 

 
Figure 1. SSCM and PSME propensity scores comparison. No of matches=1 without 
replacement. Caliper: 0.05. NSW-CPS  
 

 
Figure 2. SSCM and PSME Propensity scores comparison. No of matches =1 without 
replacement. Caliper: 0.05. NSW-PSID  
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Figure 3. – SSCM and PSME Propensity scores comparison. No of matches =1 with 

replacement. Caliper: 0.05. NSW-CPS 
 

 
Figure 4. SSCM and PSME Propensity scores comparison. No of matches =1 with 

replacement. Caliper: 0.05. NSW-PSID  
 
 

6. Concluding remarks 
The aim of this study is to improve the propensity-score matching approach so that 
estimation results do not overly suffer from the influence of the endogeneity of treatment. In 
doing this, the main innovation introduced here is given by the specification of the 
endogenous relationship between the individual propensity score (individual probability to 
undergo the treatment) and the individual causal effect of treatment. In practice, we start by 
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assuming that the probability that a subject undergoes treatment endogenously depends, at 
least in part, on the potential effect of the treatment. This implies that two subjects with the 
same (or similar) propensity score should expect similar results in terms of causal effects. 
This allows us to consider the causal effect of treatment on each subject such as correlated 
with the causal effect of another subject with similar propensity score.  
A consequence of this assumption is that the causal effects, ordered by their correspondent 
propensity scores, are autocorrelated via their endogenous component. As an empirical 
verification of this assumption, we apply a state-space model to estimate the autocorrelated 
endogenous component of the causal effects, so as to use the result of this estimate as a 
correction term. In particular, the results of the Monte Carlo experiments here reported 
confirm that, simulating endogeneity of the selection into treatment in a Two-Regime model, 
the predicted components of causal effects can be successfully used, at a second stage of the 
estimation procedure, to correct the matches outcomes.  
As the results of our empirical analysis show, this method allows us to reduce the selectivity 
bias in matching without imposing, to the data or the model, any restriction usually adopted 
to reproduce a condition comparable to randomization. 
At this stage of our research, we have deepened the characteristics of the SSCM estimator 
only by means of Monte Carlo experiments and empirical tests. However the inferential 
properties must still be investigated. This will be the next aim of this research.  
Considering our study at an early stage, the field of application currently investigated is 
limited to the comparison of propensity-score based methods between treated and untreated 
units in a cross-sectional context. For this reason, we assume as a basic model a Two-Regime 
model with endogenous treatment in which the outcome value of each unit can be observed 
only under one of the two regimes (treatment or control). Possible extensions could deal 
with a broader evaluation of the application of the SSCM method compared to other cross-
sectional matching methods not based on the propensity score estimation such as Nearest 
Neighbor, and Bias Corrected matching (cf. Abadie and Imbens 2011). In addition, we plan 
to apply the SSCM procedure also in a longitudinal or panel context so as to compare the 
results with those obtained from the application of the Difference-in Differences Propensity 
Score matching.  
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APPENDIX  
 Reducing Bias in a Matching Estimation of Endogenous Treatment Effect. 

Results of the Monte Carlo Experiments 
Simulated data without heterogeneity in observed covariates   
 
Table A1.  No heterogeneity in covariates. No. of Reps.=500. Simulated endogeneity: s1v 

=5.4; s0v = 2.4 
  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0266 0.0012 0.0243 0.0289 
Estimated ATTSSCM 4.9744 0.0224 4.9304 5.0184 
Unbiased Pop. ATT  4.9903 0.0091 4.9725 5.0081 
Biased Pop. ATT 6.1230 0.0137 6.0960 6.1499 
Estim. Transition coeff. -0.4426 0.0009 -0.4443 -0.4409 
Shift coeff. -0.0061 0.0185 -0.0425 0.0304 
"Endownment" coeff. 0.7529 0.0018 0.7492 0.7565 
Mean bias after matching 2.6819 0.0583 2.5673 2.7965 
Median bias after matching 2.5889 0.0681 2.4550 2.7228 
BAFT 8.7095 0.1517 8.4114 9.0076 
RAFT 1.0047 0.0073 0.9904 1.0191 
No. of units on common support 1882 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0602 0.0007 0.0588 0.0615 
Estimated ATTPSME 7.9958 0.0132 7.9700 8.0217 
Unbiased Pop. ATT  4.9988 0.0064 4.9862 5.0113 
Biased Pop. ATT 6.1460 0.0098 6.1267 6.1653 
Mean bias after matching 2.0514 0.0347 1.9833 2.1194 
Median bias after matching 

    BAFT 7.4477 0.0873 7.2763 7.6191 
RAFT 1.0288 0.0048 1.0193 1.0383 
No. of units on common support 1995 
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Table A2. No heterogeneity in covariates. No. of Reps.=500. Simulated endogeneity: s1v 

=5.4; s0v = 0.8 
  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0245 0.0011 0.0223 0.0267 
Estimated ATTSSCM 4.9825 0.0224 4.9385 5.0265 
Unbiased Pop. ATT  5.0073 0.0084 4.9908 5.0238 
Biased Pop. ATT 7.2388 0.0140 7.2114 7.2663 
Estim. Transition coeff. -0.4419 0.0008 -0.4436 -0.4403 
Shift coeff. 0.0287 0.0170 -0.0047 0.0620 
" Endownment " coeff. 0.7594 0.0017 0.7560 0.7628 
Mean bias after matching 2.4950 0.0565 2.3841 2.6060 
Median bias after matching 2.3444 0.0642 2.2182 2.4705 
BAFT 8.4844 0.1457 8.1983 8.7705 
RAFT 1.0012 0.0068 0.9879 1.0146 
No. of units on common support 1891 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0502 0.0009 0.0483 0.0520 
Estimated ATTPSME 7.5705 0.0184 7.5342 7.6067 
Unbiased Pop. ATT  5.0070 0.0088 4.9898 5.0242 
Biased Pop. ATT 8.4698 0.0154 8.4395 8.5002 
Mean bias after matching 2.1077 0.0488 2.0118 2.2036 
Median bias after matching 1.9453 0.0550 1.8373 2.0533 
BAFT 7.6179 0.1249 7.3725 7.8633 
RAFT 1.0128 0.0062 1.0007 1.0249 
No. of units on common support 1995 
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Table A3. No heterogeneity in covariates. No. of Reps.=500. Simulated endogeneity: s1v 
=5.4; s0v = -2.4 

  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0208 0.0011 0.0187 0.0229 
Estimated ATTSSCM 4.3204 0.0210 4.2791 4.3616 
Unbiased Pop. ATT  4.9968 0.0083 4.9805 5.0132 
Biased Pop. ATT 9.7883 0.0179 9.7532 9.8234 
Estim. Transition coeff. -0.4427 0.0008 -0.4443 -0.4411 
Shift coeff. 0.1542 0.0176 0.1196 0.1888 
" Endownment " coeff. 0.7332 0.0018 0.7296 0.7367 
Mean bias after matching 2.7085 0.0691 2.5728 2.8442 
Median bias after matching 2.5320 0.0701 2.3942 2.6698 
BAFT 9.0678 0.1807 8.7127 9.4229 
RAFT 1.0058 0.0072 0.9916 1.0200 
No. of units on common support 1901 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0441 0.0008 0.0425 0.0457 
Estimated ATTPSME 6.8141 0.0164 6.7818 6.8464 
Unbiased Pop. ATT  4.9971 0.0079 4.9816 5.0126 
Biased Pop. ATT 9.7787 0.0145 9.7502 9.8072 
Mean bias after matching 2.0963 0.0454 2.0071 2.1856 
Median bias after matching 1.9439 0.0504 1.8449 2.0429 
BAFT 7.3877 0.1087 7.1742 7.6011 
RAFT 1.0223 0.0057 1.0110 1.0336 
No. of units on common support 1995       
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Table A4. No heterogeneity in observed covariates. No. of Reps.=500. Simulated 
endogeneity: s1v =5.4; s0v = -0.8 

  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0225 0.0012 0.0202 0.0248 
Estimated ATTSSCM 4.7288 0.0210 4.6876 4.7700 
Unbiased Pop. ATT  5.0020 0.0093 4.9838 5.0203 
Biased Pop. ATT 8.4783 0.0152 8.4485 8.5081 
Estim. Transition coeff. -0.4419 0.0008 -0.4435 -0.4402 
Shift coeff. 0.1168 0.0164 0.0846 0.1491 
Endownment  coeff. 0.7482 0.0017 0.7449 0.7516 
Mean bias after matching 2.6499 0.0601 2.5317 2.7680 
Median bias after matching 2.5703 0.0677 2.4374 2.7033 
BAFT 8.7016 0.1570 8.3931 9.0100 
RAFT 0.9952 0.0066 0.9822 1.0081 
No. of units on common support 1895 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.0502 0.0009 0.0484 0.0520 
Estimated ATTPSME 7.5723 0.0184 7.5362 7.6084 
Unbiased Pop. ATT  5.0074 0.0088 4.9902 5.0247 
Biased Pop. ATT 8.4712 0.0154 8.4409 8.5015 
Mean bias after matching 2.1056 0.0489 2.0095 2.2016 
Median bias after matching 1.9435 0.0550 1.8353 2.0516 
BAFT 7.6145 0.1251 7.3687 7.8603 
RAFT 1.0120 0.0061 1.0000 1.0241 
No. of units on common support 1995       
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Simulated data introducing heterogeneity in observed covariates 
 
Table A5. Heterogeneity in observed covariates. No. of Reps.=500. Simulated endogeneity: 

s1v =5.4; s0v = 2.4 
  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.1567 0.0370 0.0608 0.2684 
Estimated ATTSSCM 5.0594 0.5291 3.4824 6.5270 
Unbiased Pop. ATT  5.0105 0.2105 4.3976 5.5818 
Biased Pop. ATT 6.1694 0.3100 5.3431 7.0190 
Estim. Transition coeff. -0.4614 0.0236 -0.5444 -0.3922 
Shift coeff. 1.4269 0.3220 0.6882 2.8712 
Endownment  coeff. 0.5249 0.0387 0.4261 0.6429 
Mean bias after matching 4.9963 1.7333 0.8394 12.3551 
Median bias after matching 4.8836 2.3745 0.5446 14.7685 
BAFT 21.3282 4.4243 8.8634 35.3954 
RAFT 1.1155 0.2168 0.4998 1.7896 
No. of units on common support 1934 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.2113 0.0285 0.1208 0.2990 
Estimated ATTPSME 7.9409 0.4981 6.5505 9.5988 
Unbiased Pop. ATT  5.0153 0.1974 4.4988 5.6266 
Biased Pop. ATT 6.1529 0.3106 5.1768 7.0055 
Mean bias after matching 5.7745 1.9577 1.1594 13.2100 
Median bias after matching 6.1974 2.4247 0.2901 14.9395 
BAFT 22.1471 4.1054 5.7511 37.5376 
RAFT 1.1680 0.1905 0.6644 1.7616 
No. of units on common support 1968       
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Table A6. Heterogeneity in observed covariates. No. of Reps.=500. Simulated endogeneity: 
s1v =5.4; s0v = 0.8 

  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.1677 0.0386 0.0459 0.2816 
Estimated ATTSSCM 5.1267 0.5165 3.3563 6.7218 
Unbiased Pop. ATT  5.0107 0.2081 4.3993 5.5940 
Biased Pop. ATT 7.2626 0.3269 6.2737 8.0730 
Estim. Transition coeff. -0.4589 0.0226 -0.5227 -0.3942 
Shift coeff. 1.3980 0.3116 0.7341 2.7256 
Endownment coeff. 0.5202 0.0382 0.4229 0.6226 
Mean bias after matching 4.8514 1.6374 1.3317 10.4524 
Median bias after matching 4.7744 2.4592 0.5058 14.6848 
BAFT 21.0182 4.3332 10.0042 36.3935 
RAFT 1.1165 0.2172 0.4042 1.6645 
No. of units on common support 1927 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.2162 0.0268 0.1464 0.2988 
Estimated ATTPSME 7.9816 0.4790 6.5655 9.4996 
Unbiased Pop. ATT  5.0035 0.2056 4.3844 5.5943 
Biased Pop. ATT 7.2141 0.3304 6.2855 8.0881 
Mean bias after matching 5.8488 2.0170 0.7382 13.0318 
Median bias after matching 6.1902 2.4461 0.5725 14.2794 
BAFT 21.6758 4.1721 10.4950 36.4430 
RAFT 1.1946 0.2042 0.6493 1.7908 
No. of units on common support 1969       
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Table A7. Heterogeneity in observed covariates. No. of Reps.=500. Simulated endogeneity: 
s1v =5.4; s0v = -2.4 

  SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.1390 0.0375 -0.0020 0.2672 
Estimated ATTSSCM 4.2464 0.5121 2.8788 5.6813 
Unbiased Pop. ATT  5.0051 0.2042 4.3985 5.6521 
Biased Pop. ATT 9.8091 0.3589 8.7284 11.0152 
Estim. Transition coeff. -0.4572 0.0240 -0.5364 -0.3768 
Shift coeff. 1.5859 0.3853 0.7016 3.3063 
Endownment coeff. 0.5619 0.0379 0.4526 0.7021 
Mean bias after matching 5.0343 1.8335 0.7780 12.2944 
Median bias after matching 4.9884 2.4593 0.3312 13.2262 
BAFT 20.5180 4.4625 7.2853 36.2346 
RAFT 1.1321 0.2230 0.4343 1.9061 
No. of units on common support 1943 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.2001 0.0281 0.1293 0.2913 
Estimated ATTPSME 6.8882 0.4908 5.5479 8.3394 
Unbiased Pop. ATT  5.0095 0.2065 4.4344 5.6268 
Biased Pop. ATT 9.7874 0.3633 8.7151 10.7534 
Mean bias after matching 5.8729 2.0717 1.0809 13.0339 
Median bias after matching 6.2542 2.4963 0.7634 13.8850 
BAFT 21.2310 4.4589 10.5499 34.9559 
RAFT 1.1906 0.1927 0.6864 1.8085 
No. of units on common support 1971       
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Table A8. Heterogeneity in observed covariates. No. of Reps.=500. Simulated  endogeneity: 
s1v =5.4; s0v = -0.8 

 
SSCM 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.1602 0.0385 0.0562 0.2763 
Estimated ATT -SSCM 4.7568 0.5233 3.4332 6.0831 
Unbiased Pop. ATT  5.0122 0.2050 4.4301 5.6090 
Biased Pop. ATT 8.4813 0.3355 7.3660 9.5244 
Estim. Transition coeff. -0.4573 0.0234 -0.5320 -0.3910 
Shift coeff. 1.4295 0.3139 0.6726 2.4584 
Endownment coeff. 0.5350 0.0408 0.4236 0.6628 
Mean bias after matching 4.9532 1.7404 1.3584 10.1984 
Median bias after matching 4.8650 2.3882 0.3790 11.9008 
BAFT 20.7891 4.6601 8.6572 37.0917 
RAFT 1.1283 0.2153 0.5115 1.7224 
No. of units on common support 1931 

   
 

PSME 

 
Mean Std. Dev. Confidence Interval 95% 

RHO(T; D) 0.2122 0.0273 0.1462 0.3230 
Estimated ATTPSME 7.5994 0.4838 5.9927 9.0451 
Unbiased Pop. ATT  5.0102 0.2049 4.4301 5.6047 
Biased Pop. ATT 8.4679 0.3483 7.3660 9.3284 
Mean bias after matching 5.9958 2.1700 1.1903 15.7593 
Median bias after matching 6.4759 2.6393 0.7870 18.5810 
BAFT 21.4835 4.6189 8.5545 38.2082 
RAFT 1.1834 0.1941 0.5498 1.8284 
No. of units on common support 1969       
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