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Improving the Forecasting of Dynamic Conditional
Correlation: a Volatility Dependent Approach

Edoardo Otranto
University of Sassari and CRENoS

Abstract

Forecasting volatility in a multivariate framework has received many contributions in
the recent literature, but problems in estimation are still frequently encountered
when dealing with a large set of time series. The Dynamic Conditional Correlation
(DCC) modeling is probably the most used approach; it has the advantage of
separating the estimation of the volatility of each time series (with great flexibility,
using single univariate models) and the correlation part (with the strong constraint
imposing the same dynamics to all the correlations). We propose a modification to
the DCC model, providing different dynamics for each correlation, simply hypothe-
sizing a dependence on the volatility structure of each time series. This new model
implies adding only two parameters with respect to the original DCC model. Its per-
formance is evaluated in terms of out-of-sample forecasts with respect to the DCC
models and other multivariate GARCH models. The results on four data sets seem
to favor the new model.

Keywords: dynamic conditional correlation, GARCH distance, Multivariate
GARCH, out-of-sample forecasts.
JEL Classification: C32, C53, G10.



1 Introduction

Forecasting volatility is an important issue with several financial applications, such as risk
estimation, asset allocation, derivative pricing. It is well known that financial volatilities
and correlations of different assets are subject to co-movements; moreover, not only the
conditional variance, but also the conditional correlation seems not to be constant through
time for many empirical applications. For these reasons a multivariate approach seems
more appropriate (see, for example, Audrino arithEBhann, 2004).

The large production of multivariate volatility models (for a review, see Bauwens et
al., 2006 and Silvennoinen and &swirta, 2009) has not had the same level of success
in practical applications because of the trade-off between flexibility and parsimony of the
models; in practice, the estimation of a multivariate model with a large set of assets is
possible only imposing strong restrictions on the number of parameters. For this reason a
popular model, such as the VEC model (Bollerslev et al. 1988), is frequently applied in
simple form such as the Scalar VEC or the Diagonal VEC, in which similar dynamics are
imposed on several assets.

The Dynamic Conditional Correlation (DCC) model of Engle (2002) could be con-
sidered an important turning point in the multivariate volatility modelling. In fact, due to
its ability to separate the estimation of the volatility and the correlation parts (Engle and
Sheppard, 2001), it is possible to estimate several univariate GARCH models (one for
each time series) to represent the volatility and a single GARCH model to represent the
correlation dynamics. In this way the model can be applied to a large set of time series
with a small computational effort. On the other hand, imposing the same dynamics on
all the correlations is a strong restriction. Greater flexibility could be obtained using the
approach of Billio et al. (2006), who consider different dynamics for groups of correla-
tions, but the choice of these groups is well subjective (see Bauwens et al., 2006). Otranto
(2010) proposed an algorithm to select these groups; anyway some constraint on the ma-
trices of the parameters driving the correlation dynamics of each group (matrices of rank
1) has to be imposed.

The idea proposed in this paper is very simple: time series with similar volatility
structure have similar correlation dynamics. This idea was already implicit in other ap-
proaches, such as the multivariate stochastic volatility models (Ghysels et al., 1996), in
which no dynamics was provided for correlations, but they depend on the dynamics of
the corresponding conditional variances (see Bauwens et al., 2006). For this purpose we
reparameterize the coefficients of the correlation dynamics imposing a dependence on a
measure of distance between pairs of GARCH models. Adding only two parameters to
the original DCC model, we can estimate a flexible model with different dynamics for
all the correlations. The information derived by the comparison between the volatility
structure of two series of returns can help to forecast their correlation. We compare the
forecasts of this model with those obtained by other Conditional Correlation (CC) mod-
els, using four sets of financial indices. The choice of the “best” model in this framework
is not easy because the asset returns do not contain sufficient information to identify such
a volatility model (Audrino and Barone-Adesi, 2006); moreover, comparing our model
with the other CC models, we see that they only differ in the correlation part, whereas
the volatility part is the same, so the differences can not be large. For this reasons we



provide several comparisons, preferably in terms of statistical tests, that Clements et al.
(2009) have shown to be more effective in forecasting with respect to the comparisons in
terms of portfolio allocation. Anyway, we show also some comparison using theoretical
portfolios, in which the expected returns are the same for all the models adopted. This
choice will provide a correct comparison among different correlation matrices (Engle and
Colacito, 2006). The results show a certain evidence in favor of the new approach.

The paper is organized as follows: in the next section we describe the new model pro-
posed, whereas in section 3 a comparison among four multivariate models is performed in
terms of out-of-sample forecasts, using a 20-variate Italian data set; moreover, synthetic
results relative to other three data sets, composed by 7, 10 and 30 time series respectively,
are also shown. Some final remarks will conclude the paper.

2 A \Volatility Dependent DCC Model

Letr; a(n x 1) vector of returns of: financial time seriest(= 1, ..., 7). Let us indicate
with p the mean andd; the conditional covariance matrix of.
Following Bollerslev (1990), the time-varying conditional covariance matrix can be
decomposed in:
H,=S,R,S,, (2.1)

where S, is a diagonal matrix containing the conditional standard deviations (modeled
by univariate GARCH models) anR; is a time-varying positive definite matrix of cor-
relations. A general multivariate class of CC models can be written in the following way
(Engle, 2002):

R, =Q;'QQ;", /
Qi=(nt,—A—B)OR+AGCuu, 1 +B0OQ:,

Q. - diag Q%) @2

where ® is the Hadamard product,, a n-vector of ones andd and B are (@ x n)
matrices of coefficientsR is the unconditional correlation matrix,, = S; 'r,. Note

that we need to rescale the mat€y, as in the first equation of (2.2), because it does not
directly provide a correlation matrix; in fact the elements on the diagon@;aire not
constrained to be equal to one. Note also that the presenggif— A — B) in the
second equation of (2.2) corresponds to the idea of variance targeting explained in Engle
and Mezrich (1996).

Of course this representation implies estimatingn — 1) coefficients and it is im-
practicable already for > 5; for this reason we need some simple re-parameterization
of matricesA andB.

The Conditional Constant Correlation (CCC) model (Bollerslev, 1990) is obtained by
(2.2) puttingA = B = 0. In other words, the correlation matrix is constant along time.

In the DCC model proposed by Engle (2002),and B are two non negative scalar
coefficients (call thema andb; a + b < 1).

A consistent estimation of the DCC model can be easily obtained because it is pos-
sible to separate the estimation of the variance equations and the one of the correlation
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matrix, and, under mild conditions, the covariance matrix is positive definite (see Engle
and Sheppard, 2001). In particular, using the two-step estimation procedure of Engle
and Sheppard (2001), the variance part can be obtained estimatimgariate GARCH
models (one for each time series).

Itis evident that, in spite of a large flexibility for the estimation of the volatility part (a
different GARCH is estimated for each series), the imposition of the same correlation dy-
namics is a strong constraint. A possibility could be to consider rank 1 matrices obtained
asA = aa’ and B = bb/, wherea andb are (@ x 1) vectors of coefficients. We can
call this model the vector diagonal (Rank 1) DCC (R1DCC) modet. if too large, it is
possible to consider only different elements im andb (Billio et al., 2006), using the
algorithm proposed in Otranto (2010) to detect the series following the same dynamics.

Our proposal is to hypothesize a form of dependence of the correlation dynamics on
the similarity of the volatility structures; it is logical to imagine that series with similar
volatility are more correlated compared to series with different volatility. Starting from
this hypothesis, we can re-parameterize the matutesd B in (2.2) in the following
way:

A ={galdy)}; B ={gs(dy)}

whereg4(d;;) andgp(d;;) are functions of a distance measdrebetween the volatilities
of the i-th andj-th series. An appropriate choice for the distance matrix could be the
GARCH distance proposed in Otranto (2008), which is an extension of the AR metrics
(Piccolo, 1990) to the GARCH case. For the simple case of GARCH(1,1), this distance
is given by (see Otranto, 2018):
o? Oé? 205005 12
dij = 1—ﬁ¢2+1—ﬁf 1= 36, (2.3)

where (o, 5;) and (o, 5;) are the GARCH coefficients of thieth and j-th series of
returns respectively.

In Table 1 we show the five number summary of the distributions of the correlations
between the columns of the distance matrié2s= {d;;} and the correlation matrix of
four data sets of daily financial returns (Yahoo finance source). The data set G7 includes
the returns of the financial general indices of the G-7 member countries from 4 November
2003 to 14 July 2009 (1484 observations for each series); the data set ASIA includes
the returns of 10 general indices of the main Asian markets from 5 January 2000 to 29
May 2009 (2452 observations for each series); the data set ITALY contains the 20 sector
indices of the Italian Mibtel general index from 4 January 2000 to 1 October 2008 (2251
observations for each series; this data set will be analyzed in more detail in section 3);
the data set DOW contains the series of returns of the 30 components of Dow Jones
index from 19 June 2001 to 16 July 2009 (2030 observations for each series). The table
clearly shows the inverse relationship between the GARCH distance of two series and
their correlation, in particular for ASIA and G7. Moreover, all the correlation coefficients
come out negative.

1For the general GARCH(p,q) case see Otranto (2008). In our applications we will use the GARCH(1,1)
case, which, as noted by Bollerslev et al. (1992), fits in an excellent way a wide range of financial data.



Table 1: Five number summary of the distribution of the correlation between the columns

of the GARCH distance matrix and the correlation matrix of four data sets.
G7 ASIA ITALY DOW

Minimum -0.854 -0.861 -0.822 -0.722
First Quartile -0.770 -0.804 -0.423 -0.356
Median -0.756 -0.720 -0.389 -0.284
Third Quartile -0.738 -0.569 -0.369 -0.246
Maximum -0.621 -0.409 -0.314 -0.131

The functionsg4(-) and gz(-) have to respect the constrair(is; + b;;) < 1 for
eachi,j = 1,...,n, whereqg;; andb;; are the elements of matricesand B respectively.
Every specification that satisfies this constraint is a valid candidate. We choose the logistic

functional form:
exp(pat+badij)
1+exp(pa+0ad;j)+exp(dp+0pd;;)

CL,L'j =
(2.4)

b — exp(pp+0pd;;)
v 1+exp(pa+0adij)+erp(op+0pdij)

Note that the DCC model is a particular case of (2.4), witgre- 65 = 0, and that the
model proposed contains only 2 new parameters with respect to the DCC specification.
We call this model Volatility Dependent DCC (VDDCC).

The model proposed can be estimated with the two-step procedure proposed by Engle
and Sheppard (2001). In fact, the full likelihood function can be split into two parts, the
first one relative to the estimation of the volatility part (the GARCH coefficients) and the
second part relative to the estimation of the correlation part, conditional on the estimation
of the GARCH parameters. In this way the distance maliis estimated after the first
step and used in the second step.

3 Comparison of models

One of the main purposes, using financial volatility models, is the ability to forecast the
covariance matrix, because it will be used in the investment strategies, such as portfolio
allocation, evaluation of the risk, classification of time series with similar co-movements,
etc. In this section we concentrate on the ITALY data set, constituted by the following
20 sectorial indices of the Italian Mibtel general index: food, insurance, cars, banks,
paper, chemical, construction, distribution, media, electronics, finance misc., holding,
real estate, plant machine, industrial misc., mineral metals, finance services, public utility,
textile, transport tourism.

We have estimated four models belonging to the CC family: a DCC, a VDDCC, a
R1DCC and a CC€ For the R1DCC model, to avoid the heavy estimation of 40 parame-

2We have also estimated alternative multivariate GARCH models not belonging to the CC class: a scalar
VEC, a Diagonal VEC (Bollerslev et al., 1988), a Generalized Orthogonal GARCH (van der Weide, 2002).
They are less flexible with respect to the CC models because they modelize simultaneously the conditional
variances and the conditional covariances with constraints in the matrices of coefficients. Their results are
clearly worse than the other models for all the indicators and tests used for comparison, so we do not show



Table 2: Data set ITALY: Estimates of the GARCH coefficients of the 20 univariate time
series composing the data set.

Series 1 y o 16}

food 0.068 0.025 0.081 0.919

insurance 0.038 0.021 0.105 0.881
cars 0.036 0.090 0.132 0.843
banks 0.044 0.009 0.074 0.922
paper -0.157 1.491 0.623 0.136
chemical 0.009 0.015 0.097 0.899
construction 0.058 0.036 0.152 0.826
distribution -0.006 0.049 0.170 0.830

media -0.019 0.011 0.096 0.904

electronics 0.048 0.013 0.069 0.925
finance misc. -0.040 1.057 0.276 0.623
holding 0.077 0.032 0.149 0.837

real estate 0.053 0.054 0.203 0.789

plant machine 0.094 0.073 0.125 0.845
industrial misc. 0.018 0.088 0.164 0.809
mineral metals 0.052 0.034 0.080 0.901
finance services  0.083 0.077 0.155 0.837
public utility 0.019 0.015 0.099 0.890
textile 0.062 0.023 0.085 0.902
transport tourism 0.059 0.066 0.170 0.77

ters, we have applied the algorithm described in Otranto (2010) to identify the series fol-
lowing the same DCC dynamics. This procedure consists of an agglomerative algorithm
that inserts in the same clusters the series having a non-significant distance (in terms of
DCC parameters, analogous to the distance (2.3)) at a certain significance level (we use a
test size equal to 0.05). We have obtained the following 5 groups of series (in the order in
which they enter in the procedure):

Group 1: electronics, industrial misc.

Group 2: media, finance misc., paper

Group 3: construction, real estate

Group 4: insurance, finance service, banks, distribution, plant machine, cars, mineral
metals, holding, transport tourism, food.

Group 5: chemical, textile, public utility

The first step of the estimation procedure consists of estimating the 20 univariate
GARCH(1,1) models, which are equal for each approach:

Tit = M + €t
_ 2
hiy =i + i€l q + Bihig—

The GARCH coefficients are shown in Table 2 (to save space we do not show the

them.



standard errors); from them it will be possible to derive the distance matrby (2.3)
and the correspondind and B matrices for the VDDCC model.

The estimates of the correlation part are shown in Table 3; the standard errors are
calculated using theandwichcovariance matrix illustrated in Engle and Sheppard (2001)
and Engle (2002).

We verify the goodness of fit of each model analyzing the standardized restduals
H{m(rt — w), using two criteria (see Engle and Sheppard, 2001, and Audrino and
Barone-Adesi, 2006). A first criterion calculates the percentage of the 20 series belonging
to the data set having variance in a confidence interval of one (we use a confidence level of
95%); a second criterion calculates the percentage of the 400 series, obtained by the cross-
productsz; z;, for which the Ljung-Box test accepts the null hypothesis of no correlation
(we use a significance level 6f4). The results of such tests are shown in Table 3. All
models provide standardized residuals having unit variance; the Ljung-Box test rejects
the null hypothesis in8% (20% for CCC) of cases. Anyway, in practical cases, this
percentage failing is always more than the nominal size of the test and it is consistent
with the results obtained by Engle and Sheppard (2001) and Audrino and Barone-Adesi
(2006).

The VDDCC model outperforms the other models in terms of likelihood function and
AIC and BIC criteria. Moreover, being the DCC model nested in VDDCC, the likelihood
ratio test rejects the null of equal models at the conventional significance levels.

We can not compare directly the VDDCC and R1DCC models via a likelihood ratio
test because they are not nested; anyway it is possible to verify if each paramétef in
VDDCC is equal to the corresponding parameteadri in RLDCC, and each parameter
in B of VDDCC is equal to the corresponding parametebbhin R1DCC. In practice
we derive the covariance matrix of the estimated parameters present in the lower trian-
gular matricesA and B using the delta methotl. The Wald test is performed using the
following statistic:

W = md' (mQm/) 'mé (3.1)

whered is a2 x 1 vector containing an element & (B) and the corresponding element
in aa’ (bb'); m = [1,—1]; Qis a 2 x 2) diagonal matrix containing the variance of
the parameters i. The statistic (3.1) follows a chi-square distribution witdegree of
freedom.

Comparing thex(n — 1) = 380 pairs of coefficients, we obtain that only 37 of them
(19 in matrix A and 18 in matrixB) can be considered different at>& significance
level. In practice, the two models provide matrices that H#/& of similar elements,
but for the VDDCC model we have used 4 coefficients, whereas for R1IDCC we used 10
coefficients. Moreover, the log-likelihood function and the information criteria favor the
more parsimonious model.

3The elements on the diagonal are excluded because, rescliagin the first equation of (2.2), they
provide always the value 1 in the conditional correlation.



Table 3: Data set ITALY: Estimates of the correlation part of alternative models belonging
to the CC family (standard errors in parentheses) and goodness-of-fit criteria.
DCC

a b
0.016 0.938
(0.002)  (0.008)
% of series with variance 1 % Ljung-Box accepted
100(20/20) 82.50(330/400)
log-lik AIC  BIC
-84555.25 75.164 75.271

vDDCC
¢A 9A ¢B QB
-0.867  -0.974 3.093 0.940

(0.042)  (0.037) (0.149) (0.262)
% of series with variance 1~ % Ljung-Box accepted
100(20/20) 82.25(329/400)
log-lik AIC BIC
-84532.05 75.145 75.257

R1DCC
(451 (¢5) as Gy as
0.118 0.119 0.123 0.128 0.132
(0.006)  (0.011) (0.009) (0.006) (0.009)
by by bs by bs
0.979 0.965 0.964 0.968 0.970

(0.002) (0.006) (0.006) (0.004) (0.004)
% of series with variance 1 % Ljung-Box accepted
100(20/20) 82.50(330/400)

log-lik AlC BIC
-84543.21 75.161 75.288

CCC
% of series with variance 1 % Ljung-Box accepted
100(20/20) 80.25(321/400)

log-lik AlC BIC

-85104.85 75.651 75.752




Table 4. Data set ITALY: Out-of-sample MSE.
DCC VDDCC Ri1DCC CcCC
12,218 12.203 12.252 12.302

Table 5: Data set ITALY: p-values of the Diebold-Mariano test to verify the equality of
means of pairs of the out-of-sample squared forecast errors.
VDDCC RI1DCC CCC
DCC  4.98E-08 6.86E-13 1.40E-16
vVDDCC 3.87E-21 5.29E-30
R1DCC 6.13E-09

3.1 Forecasting Performance in terms of statistical tests

The VDDCC model seems better with respect to the other CC models in terms of likeli-
hood functions. But what about its forecasting performance? As said, the main purpose
of this representation is to use the information derived from the first step estimation (the
volatility part) to improve the estimation of the correlation part, hypothesizing a depen-
dence of the correlation dynamics on the similarity of the volatility structure. For this
reason we have selected an out-of-sample forecast data set, using he-1a80 obser-
vations of the original data. We have re-estimated the models adding a new observation
and obtaining the one-step ahead forecast for the successive trading day. A first simple
comparison can be made in terms of Mean Squared Error (MSE), which, in this multi-
variate framework, assumes the form:

f
n(n j 1)/2% Z[UeCh(ﬂT*+t) —vech(rpeyy — o) (rrs e — 1)) (3.2)

wherevech(-) is the operator that stacks the lower triangular portion ofan matrix as
an(n+1)/2 x 1 vector;T* = T — f; thehatindicates the estimated elements in (3.2).
The results are shown in Table 4. We can note that the VDDCC model has the lowest
MSE, whereas DCC seems to have better performance with respect to R1DCC and CCC.

To verify if these results are significantly different, we use the Diebold and Mariano
(1995) statistic to test the null hypothesis of no difference in the accuracy of two com-
peting forecasts (Harvey et al., 1997). In practice we verify if the mean of gwuared
forecast errors is zero. In Table 5 we show the results for each pair of models. We can
note that all the pairs of mean squared forecast errors are significantly different at each
size level, so we can conclude that the ranking obtained in terms of MSE can be consid-
ered valid and VDDCC presents the best performance.

As noted by Audrino and Barone-Adesi (2006), in a volatility framework, it is difficult
to judge the best model in terms of forecasts when the differences of MSE are small. In
fact, in (3.2) we compare the forecast of the covariance matrix with a noisy estimate
based on returns values. In other words, the MSE criterion allows to discriminate among
forecasts whose performance is different by orders of magnitude. For this reason, we use
also other methods to evaluate the forecasting performance of the alternative models in
terms of statistical tests.



Clements et al. (2009) make a comparison between techniques for evaluating multi-
variate volatility forecasts based on statistical methods and techniques based on economic
applications (such as portfolio allocation). Their simulation results show that the statis-
tical methods are more effective and, in particular, indicate the Model Confidence Set
(MCS) approach of Hansen et al. (2003) as a useful tool to discriminate among different
forecasting methods. This approach compares directly each pair of forecasts, so it does
not require a benchmark forecast.

Briefly, the MCS approach consists in trimming the set of candidate models. First, all
the sequences of all loss differentials between modeal;j are computed:

lijo = Liy — Lj4 t=1,....f; i#]

where L, ; is a loss function. Clements et al. (2009) suggest the use of the Quasi-
Likelihood loss function:

qllije = [log|Hiy|+ (riy — pa) H; [ (75— )] — [log| Hjo| + (v — ) H g — )]

(3.3)
Moreover, Audrino and Bhimann (2003) and Audrino and Barone-Adesi (2006) con-
sider also the direction of the Quasi-Likelihood differences, defining a dichotomic loss

differential: f
dlw7t N { —1 if qllij,t >0 (34)

At each step the null hypothesis of equal predictive ability:
E(li;+) =0 foreach i#j (3.5)
is tested for a set of models!. This is made using the range statistic:

[l
Tr = max ———————=
R i,jEM UaT’(lZ'j)l/Q

or the semi-quadratic statistic (less conservative):
72

Tso = _
o Zmzm

1,jEM

Wherel_ij is the mean of;;;, whereas its variance is obtained from a block-bootstrap
procedure (see Hansen et al., 2003, and Becker and Clements, 2008, for details). The first
test s for the full set of candidate models; if the null (3.5) is rejected, the worst performing
model is eliminated by the set of candidate models. This is identified as the sz

that:

i =max————-
ieMvar(l;.)/?

where _
> lij
l_ . JEM

P

m—1
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Table 6: Data set ITALY: MCS results for individual forecasts. The first row represents
the first model removed, down to the best performing model in the last row.
qllij,t dlij,t
Tr Tsq Tr Tsq
Model p-value Model p-value Model p-value Model p-value
DCC 0.0000 DcCC 0.0000 DcCC 0.0000 DcCC 0.0000
CCC 0.0000 CcCC 0.0000 R1DCC 0.0000 R1DCC 0.0000
R1DCC 0.0003 R1DCC 0.0003 cCcCC 0.0000 cCcCC 0.0000
VDDCC 1 vVDDCC 1 vVDDCC 1 VDDCC 1

andm is the number of models iM. Also the variance of;. is evaluated via block-
bootstrap.

In Table 6 the results of the MCS procedure are shown (we use 3000 bootstrap samples
to estimate the variance @; and/;). We can note that, in despite of the MSE results,
in all the cases (testy and testl’sq; differential loss function (3.3) or (3.4)), the DCC
model is the first model excluded by the procedure, whereas the VDDCC is considered
the best one.

3.2 Forecasting performance in terms of portfolio allocation

We mentioned that the evaluation of forecasts in terms of portfolio allocation has some
drawbacks in terms of efficacy (Clements et al., 2009). Moreover the results depend on
the weights of the portfolio assets, more related to the mean of returns than their variances
and correlations (Chopra and Ziemba, 1993). Engle and Colacito (2006) propose to con-
sider a set of theoretical expected returns equal for all the competitive models, so that the
comparisons will depend only on the differences in correlation matrices. The problem, in
this case, is that the four competitive models we are analyzing have the same conditional
variance and differ only for correlations; in other words, we can not expect significant dif-
ferences among the forecasting performances in an asset allocation framework. Anyway,
this approach can provide some tool to confirm (or contradict) the results obtained in the
previous subsection. We follow the approach of Engle and Colacito (2006); they show
that the realized volatility is smallest for the correctly specified covariance matrix for any
vector of expected returns. They suggest to select arbitrary vectors of expected returns,
then construct optimal portfolio weights with the alternative covariance models and to
calculate the sample variance of each portfolio. The strategy with the smallest covariance
for each vector of expected returns will be the best strategy. The key problem here is the
choice of the vectors of expected returns; the main experiments of Engle and Colacito
(2006) only regard two assets and many alternatives can be used. In the case of high order
asset allocation, the choice of an appropriate vector of expected returns is not easy. For
example, Engle and Colacito (2006), considering a portfolio composed by 21 stocks and
13 bonds, select only hedging portfolios, obtained by setting one entry equal to 1 and the
others equal to zero; in this way the asset with 1 is hedged against all other assets. We
follow this idea and create 20 hedging portfolios with the same weights used by Engle
and Colacito (2006), obtained by a classical variance minimization problem subject to a

11



Table 7: Data set ITALY: Comparison of volatilities for each theoretical portfolio

Portfolio DCC VDDCC RI1IDCC cCcCC
food 100.67 100.00 102.12 104.06
insurance 102.09 101.43 100.00 101.28
cars 100.24 100.10 100.00 102.00
banks 100.00 100.03 100.15 101.33
paper 101.10 100.00 100.76 100.05
chemical 100.11 100.00 101.23 103.81
construction 100.00 100.11 100.28 104.64
distribution 100.39 100.09 101.66 100.00
media 100.93 101.21 100.00 101.43
. electronics 100.08 100.00 100.60 100.80
finance misc 100.30 100.00 100.59 100.50
holding 100.00 100.13 100.49 104.46
real estate 100.00 100.33 100.79 103.39

plant machine 100.56 100.00 101.35 102.72
industrial misc 100.00 100.11 100.91 101.86
mineral metals 100.48 100.00 100.43 100.32
finance services 100.31 100.00 100.55 100.35
public utility 100.04 100.00 100.22 102.25
textile 100.15 100.00 100.98 101.44
transport tourism 100.31 100.00 101.62 103.57

Table 8: Data set ITALYt-values of the joint Diebold-Mariano test to compare squared
returns of theoretical portfolios.

DCC VDDCC R1DCC CCC

DCC 2.542 -2.190 -1.655
VDDCC -2.542 -2.841 -2.235
R1DCC 2.190 2.841 -0.783

CCC 1.655 2.235 0.783

required return equal to 1:

H'r
r'H 'r

w; = t=T"+1,.... T "+ f
wherer is the vector of expected returns.

In Table 7 we show the sample standard deviations of each portfolio for the 20 cases
(the hedged asset is indicated in the first column), setting the lowest standard deviation
equal to 100; in this way a number likg€00 + =) means that, knowing the true covariance
matrix, anx% higher return could be required. We can note that in 5 cases the best
covariance is shown by DCC, in 11 cases by VDDCC, in 3 cases by R1DCC and in 1 case
by CCC. Anyway, in many cases the differences are small.

To understand if the differences are significant and to resume the 20 different results,
we can use a Diebold and Mariano (1995) procedure to test differences jointly for the
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20 expected returns. In practice, we compare the squared returns of two theoretical port-
folios, dividing their difference by the geometric mean of the two variance estimators
(weighted version of the test; see Engle and Colacito, 2006):-Vaties of the Diebold-
Mariano statistics are shown in Table 8.

It is useful to consider the sign of thievalue when the null is rejected; in fact, the
statistic in position4, j) (i,7 = 1,...,4) is constructed as the difference of the squared
realized returns of the methods indicated in roand columnj: a positive number is
evidence in favor of the method in the column. From Table 8 it is possible to note that,
in despite of the equality of the variances, the forecasting performance of the VDDCC
model is significantly better with respect to the other models; in other terms, the better
forecasting of conditional correlations seems to contribute to a significant better allocation
of assets in the portfolio.

3.3 Other data sets

We have performed the same experiments, illustrated for the data set ITALY, for the other
three data sets. In Tables 9-11 we have synthesized these results. For the data sets G7
and ASIA we have estimated a full RIDCC model, whereas for data set DOW we have
selected the series with similar correlation dynanide number of out-of-sample fore-

casts is 400 for G7 and ASIA and 100 for DOW, which cont&ioi0 x 30 data, implying

a certain computational effort.

The VDDCC model outperforms the other models in terms of information criteria
(and also in terms of likelihood ratio test, where it can be applied) for the three data sets.
Also in terms of MSE the better performance of the VDCC model seems clear; only in
the ASIA data set the MSE of DCC is lower, but the corresponding Diebold-Mariano test
accepts the null of equal mean forecasting error.

The MCS approach favors the VDDCC model, which is always the model belonging
to the best set; only thé test, using the quasi-likelihood loss function, in some cases
shows a not significant difference with respect to the other models, whereas, fi3f;the
differential loss function, we observe the same result for all the data sets (VDDCC the
best model, DCC the worst).

The analysis of theoretical portfolios in general shows small and not significant dif-
ferences among the four models, but, as said previously, it is difficult to detect significant
differences in the performance. Anyway, the sign of the Diebold and Mariano statistic fa-
vors the VDDCC model (a part in the data set G7, where only the elements in the column
relative to DCC are all positive).

4 Final remarks

In this work we have developed a new model, belonging to the class of conditional correla-
tion models. The idea is that the structure of volatility of each series contains information
to forecast the correlation dynamics. The analysis of four data sets seems to support this

4The Otranto (2010) procedure has detected 2 groups with similar correlation dynamics; the first one
containing the assets United Tech and Exxon Mobile CP, the second all the rest.
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Table 9: Data set G7: Synthesis of experiments to evaluate the forecasting performance
of CC models.

Likelihood functions

DCC VDDCC R1DCC CCC
log-lik -15642.37 -15618.93 -15619.78 -15735.97
AIC 21.122 21.093 21.108 21.245
BIC 21.229 21.207 21.258 21.345
MSE
DCC VDDCC R1DCC CCC
104.07 103.64 104.24 104.30
Diebold-Mariano p-value to test equal MSE
VDDCC Ri1DCC CCC
DCC 3.43E-08 0.0613 0.0567
VDDCC 0 0.0001 0.0004
R1DCC 0 0 0.2558
MCS results usingl/;;, as differential loss function
Model removed T% p-value Model removed T(s p-value
DCC 0.0000 DCC 0.0000
CCC 0.0000 CCC 0.0000
Ri1DCC 0.0633 R1DCC 0.0633
VDDCC 1 VDDCC 1
MCS results usingl;; , as differential loss function
Model removed T p-value Model removed T(s p-value
DCC 0.00000 DCC 0.0000
Ri1DCC 0.0000 R1DCC 0.0000
CCcC 0.0000 CCC 0.0000
VDDCC 1 VDDCC 1

Joint Diebold-Mariano statistic to test
equal squared returns of theoretical portfolios

DCC VDDCC R1DCC CCC
DCC -0.130 -1.307 -1.125
VDDCC 0.130 -1.061 -0.953
Ri1DCC 1.307 1.061 0.013
CCC 1.125 0.953 -0.013
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Table 10: Data set ASIA: Synthesis of experiments to evaluate the forecasting perfor-
mance of CC models.

Likelihood functions

DCC VDDCC R1DCC CCC
log-lik -50436.14 -50401.24 -50404.80 -50568.67
AIC 41.173 41.146 41.157 41.280
BIC 41.272 41.250 41.285 41.374
MSE
DCC VDDCC R1DCC CCC
79.835 79.838 80.117 80.532
Diebold-Mariano p-value to test equal MSE
VDDCC Ri1DCC CCC
DCC 0.471 3.90E-06 4. 76E-07
VDDCC 9.29E-05 1.88E-05
R1DCC 0.002
MCS results usingl/;;, as differential loss function
Model removed T% p-value Model removed T(s p-value
DCC 0.0253 DCC 0.0027
Ri1DCC 0.0253 R1DCC 0.0040
CCC 0.0253 CCC 0.0043
VDDCC 1 VDDCC 1
MCS results usingl;; , as differential loss function
Model removed T p-value Model removed T(s p-value
DCC 0.0000 DCC 0.0000
Ri1DCC 0.0000 R1DCC 0.0000
CCcC 0.0000 CCC 0.0000
VDDCC 1 VDDCC 1

Joint Diebold-Mariano statistic to test
equal squared returns of theoretical portfolios

DCC VDDCC R1DCC CCC
DCC 0.231 -1.002 -3.378
VDDCC -0.231 0.001 -2.194
Ri1DCC 1.002 -0.001 -4.558
CCC 3.378 2.194 4.558
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Table 11: Data set DOW: Synthesis of experiments to evaluate the forecasting perfor-
mance of CC models.

Likelihood functions

DCC VDDCC R1DCC CCC
log-lik -132487.06 -132429.53 -132487.03 -132542.82
AIC 130.649 130.595 130.651 130.702
BIC 130.987 130.938 130.994 131.034
MSE
DCC VDDCC R1DCC CCC
360.549 360.192 361.898 361.596
Diebold-Mariano p-value to test equal MSE
VDDCC R1DCC CCC
DCC 4.43E-12 0.123 0.178
VDDCC 0.070 0.107
R1DCC 0.000 0.019
MCS results usingl/;;, as differential loss function
Model removed T p-value Model removed Ti,s p-value
DCC 0.0150 DCC 0.0000
CCC 0.0150 CCC 0.0003
R1DCC 0.0150 R1DCC 0.0043
VDDCC 1 VDDCC 1
MCS results usingl;; ; as differential loss function
Model removed T p-value Model removed Ti,s p-value
DCC 0.0000 DCC 0.0000
R1DCC 0.0000 Ri1DCC 0.0000
CCC 0.0000 CCcC 0.0000
VDDCC 1 VDDCC 1

Joint Diebold-Mariano statistic to test
equal squared returns of theoretical portfolios

DCC VDDCC R1DCC CCC
DCC 0.447 -0.717 -0.860
VDDCC -0.447 -0.699 -0.849
R1DCC 0.717 0.699 -1.224
CCC 0.860 0.849 1.224
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idea. The main advantage of the VDDCC model is in the possibility to re-parameterize
the correlation matrix using only 4 parameters (2 more than the DCC model).

Of course the success of the model depends on the data set utilized; in some cases
the dependence of correlation on the distance matrix with elements (2.3) is stronger with
respect to others. Moreover, the logit function (2.4) could be more appropriate in some
case with respect to others. Future works could be addressed to experiment alternative
distance measures and alternative functions that link distance and correlation.
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