CONTRIBUTI DI RICERCA CRENOS
N\ T~C
|\ “'

CLASSIFICATION OF VOLATILITY IN PRESENCE OF
CHANGES IN MODEL PARAMETERS

Edoardo Otranto

WORKING PAPERS

2011/13



CENTRO RICERCHE EcoNoMICHE NORD SubD
(CRENOS)
UNIVERSITA DI CAGLIARI
UNIVERSITA DI SASSARI

CRENOS was set up in 1993 with the purpose of organising the joint research
effort of economists from the two Sardinian universities (Cagliari and Sassari)
investigating dualism at the international and regional level. CRENoS’ primary
aim is to improve knowledge on the economic gap between areas and to provide
useful information for policy intervention. Particular attention is paid to the
role of institutions, technological progress and diffusion of innovation in the
process of convergence or divergence between economic areas. To carry out its
research, CRENoS collaborates with research centres and universities at both
national and international level. The centre is also active in the field of
scientific dissemination, organizing conferences and workshops along with other
activities such as seminars and summer schools.

CRENoOS <creates and manages several databases of various socio-economic
variables on Italy and Sardinia. At the local level, CRENoS promotes and
participates to projects impacting on the most relevant issues in the Sardinian
economy, such as tourism, environment, transports and macroeconomic
forecasts.

www.crenos.it
info@crenos.it

CRENOS - CAGLIARI
VIA SAN GIORGIO 12, 1-09100 CAGLIARI, ITALIA
TEL. +39-070-6756406; FAX +39-070- 6756402

CRENOS - SASSARI
VIA TORRE TONDA 34, 1-07100 SASSARI, ITALIA
TEL. +39-079-2017301; FAX +39-079-2017312

Title: CLASSIFICATION OF VOLATILITY IN PRESENCE OF CHANGES IN MODEL PARAMETERS

First Edition: July 2011



Classification of Volatility in Presence of Changes
in Model Parameters*

Edoardo Otranto
Dipartimento di Scienze Cognitive e della Formazione and CRENoS,
University of Messina,
Via Concezione 6, 98121 Messina, Italy;
E-mail: eotranto@unime.it

Abstract

The classification of volatility of financial time series has recently received a
lot of contributions: in particular using model based clustering algorithms. Recent
works have evidenced how volatility structure can vary along time, with gradual or
abrupt changes in the coefficients of the model. We wonder if these changes can
affect the classification of series in terms of similar volatility structure. We propose
to classify the level of the unconditional volatility obtained from Multiplicative Er-
ror Models with the possibility of changes in the parameters of the model in terms
of regime switching or time varying smoothed coefficients. They provide different
unconditional volatility structures with a proper interpretation, useful to represent
different situations of interest. The different methodologies are coherent with each
other and provide a common synthetic pattern. The procedure is experimented on
fifteen stock indices volatilities.

Keywords: clustering, AMEM, Markov switching, smooth transition, unconditional
volatility
JEL Classification: C22, C38, C58

1 Introduction

The classification of time series assumes a particular importance in the financial analysis
because it is frequently linked to the volatility of financial indices or assets; the relevance
of this point is clear if we underline that volatility is a proxy of risk, so the detection of
assets with similar risk is an important tool for traders and for the creation of balanced
portfolios. Moreover, from a statistical point of view, the detection of similar volatility
patterns is fundamental, in a multivariate framework, to construct models with the same

*Financial support from Italian MIUR under Grant 20087Z4BMK_002 is gratefully acknowledged.



set of parameters driving many time series which possess a similar dynamics (see, for
example, Otranto, 2010).

Volatility is a time varying concept. The problem of its measurement seems to have
reached a mature stage: it is a diffused opinion that realized volatility is the best mea-
sure, being less subject to noise with respect to other measures, such as, for example, the
squared returns (Andersen et al., 2000, 2003). The real problem, in a clustering frame-
work, is to identify an indicator (or more) which characterizes the time series of volatility
(see, for example, Wang et al., 2006). In our case, a simple way to represent the volatility
level of a certain financial time series is the unconditional volatility, which is a measure
derived from the model fitted to represent the dynamics of the conditional volatility (such
as the family of GARCH model of Engle, 1982, and Bollerslev, 1986, or the most recent
Multiplicative Error Model of Engle, 2002b). For this reason, in spite of the existence
of several approaches in time series clustering (for a review see Liao, 2005), this kind of
problem has a natural solution in a model based framework.

The typical model based approach to clustering time series hypothesizes that the series
are generated by ARMA models and then a clustering algorithm, based on some distance
measure specific to this framework, is applied to group models with similar characteris-
tics. In time series analysis, distance measures were developed by Piccolo (1990), who
proposed a distance between invertible ARMA models (AR metrics), whereas Corduas
and Piccolo (2008) have studied the statistical properties of this distance, implementing
a clustering algorithm for time series; Maharaj (1999) and (2000) extends the AR met-
rics to the case of dependent time series; Planas and Depoutot (2002) propose a distance
between the filters used to extract the unobserved components of a time series; Caiado
et al. (2006) suggest a periodogram-based metrics; D’Urso and Maharaj (2009) propose
an autocorrelation-based fuzzy approach. In this framework, procedures based on tests
of equality of parameters characterizing the ARMA models are frequently used; for ex-
ample, Maharaj (1996, 1999, 2000) calculates the p-value of the statistic measuring the
equality of the coefficients of every pair of the series analyzed and uses these results in
an algorithm which follows the principles of hierarchical clustering. Otranto (2008) con-
siders a starting benchmark series and then applies an agglomerative algorithm based on
a test of the equality of some characteristics of the volatility with respect to a bench-
mark; an interesting property of this procedure is that the number of clusters is detected
automatically and it is not determined by the user.

The classification of financial time series is a topic developed only recently. For exam-
ple, Pattarin et al. (2004) combine different statistical techniques to develop an algorithm
to classify mutual funds; Otranto (2008) proposes an extension of the AR metrics of Pic-
colo (1990) to the GARCH case, and develops a clustering algorithm to classify financial
assets; Otranto (2010) defines the Dynamic Conditional Correlation (DCC) distance be-
tween the conditional correlation of a pair of series, to develop flexible and parsimonious
DCC models (Engle, 2002a).

The model-based approach has been developed under the assumption that the parame-
ters of the models are constant along the time. Such hypothesis is very strong, in particular
in the analysis of volatility (see, for example, Mikosch and Starica, 2004). The volatil-
ity of time series is frequently subject to changes in regime; for example in Figure 1 we
show the dynamics of the realized kernel volatility of the S&P500 index from January 3,



Figure 1: Realized kernel volatility of S&P500 index.
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1996 to February 27, 2009.! It is clear how the level of volatility changes along time with
particular events as the Russian crisis of August 1998, the dot-com bubble (which has its
peak on March 2000), the 2001 recession and, in particular, the long latest crisis which
began in July 2007, starting with the collapse of the subprime mortgage industry; these
events cause jumps in the dynamics of the series, implying data generating processes with
changes in the coefficients. Gallo and Otranto (2011) have analyzed the series illustrated
in Figure 1, proposing the Asymmetric Multiplicative Error Model with Markov Switch-
ing (AMEM-MYS), extending the Asymmetric MEM (AMEM) of Engle and Gallo (2006)
to the Markov Switching case. The AMEM-MS with three regimes fits the data better
than the classical AMEM and captures the autocorrelation present in the residuals of the
AMEM. The practical implications of capturing the changes in volatility are relevant: it is
an important task for investors and traders, because it will imply changes in the portfolio
composition along time, depending on the risk aversion of the financial operator (for a
statistical analysis of this case see Coretto et al., 2011).

Given this empirical evidence, does the volatility clustering change when the regime
is changed? More generally, if the model provides the possibility of changing parameters,
how can we classify the series and will the results be different with respect to a model
with fixed coefficients? To analyze these two perspectives, we propose the use of two
separate models, the AMEM-MS of Gallo and Otranto (2011) and a new Smooth Tran-
sition AMEM (ST-AMEM), which introduces the change in the constant of the AMEM

'Data are taken from the Oxford-Man Institute’s realised library version 0.1 (Heber et al., 2009).
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according to a smooth transition function. It is worth noting that the two models respond
to a different way to compare the volatilities of time series. The AMEM-MS provides
an inference on the regime which could differ when time series change; for example, the
period belonging to the regime interpreted as the one of high volatility for S&P500, could
not be identical to the high volatility periods of DAX. In this case we would be interested
in classifying the series in the presence of a certain regime (for example, following Gallo
and Otranto, 2011, during periods of low, high or very high volatility). It is important to
interpret the regime in a very precise way, so that the regime can be compared across the
series.

Using the ST-AMEM, we could compare the model for each time unit; for example, it
could be interesting to compare the models in correspondence of the day after a financial
shock or an important world event, such as the terroristic attack of September 11. More-
over, the use of parameters that change along time explicitly considers the dependence
on the particular time span, changing the estimation of the coefficients in correspondence
with particular periods or events, whereas a constant coefficient model would make a sort
of average of the coefficients, so that it is not robust to the time span considered for the
estimation, depending on the level and the frequency of quiet and turmoil periods.

We will apply a clustering procedure based on statistical tests, using the unconditional
volatilities derived by the AMEM, the AMEM-MS and the ST-AMEM. This approach
has some similarities with the first part of the clustering procedure proposed by Otranto
(2008), based on GARCH models. In our view the approach proposed here is simpler
and more suitable in terms of volatility classification. It is simpler because we use the
definition of unconditional volatility of an AMEM directly, whereas Otranto (2008) bases
his algorithm on the AR(co) representation of the squared returns, derived by the GARCH
representation, implying a lot of coefficients. It is more suitable because the GARCH
approach of Otranto (2008) is based on squared returns, which are a noisy estimator of
the squared volatility, whereas here we deal with some proxy of the volatility which is
robust to noise, as the realized kernel volatility (Barndorff-Nielsen et al., 2008).

The paper is organized as follows. In the next section we will describe briefly the
models that will be used, whereas in Section 3 we will develop the clustering algorithm
to obtain groups with similar volatility. The method will be applied in Section 4, us-
ing 15 series of realized kernel volatility relative to the main financial indices; the main
purpose of this section is to illustrate how to perform the clustering procedure and the
different information provided using different modelling approaches. Some final remarks
will conclude the paper.

2 AMEM and Unconditional Volatilities

The MEM with asymmetric effects, called AMEM, is discussed in Engle and Gallo
(2006), who develop the basic MEM idea of Engle (2002b). The volatility z; of a certain
financial time series is hypothesized to be the product of a time varying scale factor i,
representing the conditional mean of z;, which follows a GARCH-type dynamics with



threshold (Zakoian, 1994), and a positive valued error ¢;:

Ty = €y, et| W1 ~ Gamma(a,1/a) foreacht =1,...,T
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where W, represents the information available at time ¢ and r is the corresponding return
observed at time ¢. The coefficient 7 is a parameter introduced to take into account the
different reactions of markets in the presence of negative returns, which, in general, imply
higher level of the expected volatility at the next time period. The Gamma distribution
is used because volatility is positive for each time; we hypothesize that this distribution
depends only on a single parameter a, providing a mean and a variance of the condi-
tional error equal to 1 and 1/a respectively. Correspondingly, the conditional mean and
variance of x; are y; and 2 /a respectively. For the sake of simplicity, in the second equa-
tion of (2.1) we have used an AMEM(1,1), which is the most used specification of the
AMEM, but it is possible to extend the results to a generical AMEM(p,q). In (2.1) w > 0,
(e, B,7) > 0 to ensure a sufficient condition for the positiveness of 1i;, and the constraint
(a+ B+ 7/2) < 1is imposed for stationarity. The unconditional volatility, analogously
to the GARCH case (Bollerslev, 1986) is given by:

. w
S l-a—-B-—17/2

We call u the long time unconditional volatility, in the sense that it is referred to the full
time span analyzed with the AMEM.

The recent success of this approach, an alternative to the GARCH methodology, is
due to the possibility to directly model non negative processes, common in finance, as the
processes representing the volatility. This fact allows to model the volatility (which is not
observable) using the proxies not affected by noise, as the realized volatility (Andersen
et al., 2000, 2003) or, following the most recent studies, proxies which consider the pres-
ence of microstructure, as the realized kernel volatility (Barndorff-Nielsen et al., 2008); a
review of parametric and nonparametric measures of volatility is given in Andersen et al.
(2010). This is an enormous advantage with respect to the GARCH methodology, which,
in general, deals with squared returns, not possessing the properties described above; at
the same time it is possible to use softwares for GARCH estimation to estimate an AMEM
(see Engle, 2002b).

The presence of a parameter of asymmetry in (2.1) is not sufficient to capture the dif-
ferent phases of volatility, which characterize a series such as the one shown in Figure 1.
Recently, Gallo and Otranto (2011), analyzing the same S&P500 series, have disputed the
idea that these phases, which, from a visual inspection, can be classified as quiet periods,
turmoil phases and brief abnormal peaks, correspond to changes in regimes in the AMEM
process generating the data. They introduce parameters that can change, according to a

(2.2)
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discrete Markov chain, along the lines of a Markov Switching (MS) model (Hamilton,
1990). The AMEM-MS we will use in this framework is defined as:

Ty = [t,5,ELs et| W1 ~ Gammal(as,,1/as,) foreacht
(2.3)
fis, =W+ Dy Kils, + @iy + Bp—,s,y + YD1
where s; is a discrete latent variable which ranges in [1, ..., n], representing the regime

at time ¢. It is hypothesized that s; follows a Markovian dynamics, represented by a
transition probability matrix with elements p,, = Pr[s; = t[s;—y = 7] and p,, = 1 —
S P (re=1,...,n).

Some considerations about the other coefficients could help to interpret the regimes.
Firstly, I, is an indicator equal to 1 when s; < ¢ and O otherwise; k; > 0 and k; = 0.
In this way the constant in regime 1 is given by w, in regime 2 by (w + k»), in regime
3 by (w+ ko + k3) and so on. A more general model would consider, in the second
equation of (2.3), also the coefficients a,  and 7 as regime dependent; anyway, if the
only switching coefficient is the constant, the reparameterization used ensures that the
level of the volatility (from low to high) increases with the label of the regime, and, as
a consequence, the same happens for the unconditional volatility within the regime ,

defined as: .
u%/[S _ w + Zi:l kl
l—a—8-—7v/2

Secondly, also the a coefficient is considered as switching because it includes a larger
range of values in the periods of high volatility with respect to the periods of lower volatil-
ity. For example, if we think that the several peaks present in the series can be considered
prevalently as periods of high volatility, we note that values between 30 and 120 can
belong to this regime, whereas the quiet periods show values contained in the range 0-
20. This consideration implies different variances within each regime, characterized by
smaller and higher values of a in high and low volatility periods respectively.

Thirdly, as observed in Gallo and Otranto (2011), it is useful to impose a particular
reparameterization for 3 in (2.3) to guarantee a degree of coherence between the regime
and the level of volatility. In practice, to avoid frequent and not realistic changes in
regime, they reparameterize § = * —a— /2, with (a++/2) < * < 1; so they suggest
to estimate 5* and then obtain 3 from it. We refer to Gallo and Otranto (2011) for details
about the derivation of this particular reparameterization.

The use of the AMEM-MS with the previous parameters specification is fundamental
to classify all the series analyzed in n regimes which can be interpreted in the same way
(from low to high volatility), even if different series are classified in different regimes at
the same time ¢. For example, a spillover effect which starts from a dominant market
would influence the other markets with some lags, so the change in regime will happen
at different dates. For this reason and for the purposes illustrated in the first section, we
need the regimes to be interpreted in a clear manner.

Another perspective is to consider that the unconditional volatility could change at
each instant in time. In practice, an alternative (more flexible) approach could be ob-
tained considering an AMEM in which the constant coefficient is time varying in each
period and not only within a certain regime. Of course, such hypothesis requires some

(2.4)
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reparameterization of w. A parsimonious and diffused idea considers smooth transitions
between regimes, introducing the smooth transition functions, along the lines of Chan and
Tong (1986) for the simpler autoregressive case. This kind of models has been adopted
in the financial framework extending it to the GARCH case (Gonzales-Rivera, 1998, An-
derson et al., 1999, Lanne and Saikkonen, 2005). We propose a similar extension to the
AMEM case, providing a smooth transition function depending on the lagged value of the
volatility. A simple form is given by:

Ty = Ey, et| W1 ~ Gamma(a,1/a) for each t
[y = Wi + wagy + axyq + Bpu—1 + D124 (2.5)

gt = (14 exp(=6(w1-1 — )~

where g; is the smoothed function and w1, ws, 9, ¢ are new unknown coefficients. We call
model (2.5) the Smooth Transition AMEM (ST-AMEM). Unlike the AMEM-MS case, in
this model we do not need to consider the a coefficient also as time-varying, because the
constant changes in each point in time, adapting to the current level of the volatility. The
unconditional volatility will change at each point in time and will be equal to:

_ w1 + WGy
l—a—-p3-7/2

We call the series ugr(t) the time-varying unconditional volatility.

The three models considered, the AMEM, the AMEM-MS and the ST-AMEM, can
be estimated by maximum likelihood, obtaining also the asymptotic covariance matrix
of the estimators. For the invariance property, the maximum likelihood estimators of the
unconditional volatility will be obtained substituting in (2.2), (2.4), (2.6), the maximum
likelihood estimators of the parameters on which the unconditional volatility depends.
Also, the standard errors of the unconditional volatilities can be obtained by:

UST(t)

(2.6)

d'xd 2.7

where X is the asymptotic sandwich covariance matrix of the maximum likelihood esti-
mator of the vector of parameters @ and d is the vector of the partial derivatives of the
unconditional volatility with respect to the elements of 6.

3 The Clustering Procedure

Let us suppose to have s financial time series; for each one we estimate an AMEM model
as (2.1), so that we obtain s estimated unconditional volatilities (2.2). Our purpose is to
obtain clusters of financial time series with similar unconditional volatility levels. The
procedure proposed is a test-based agglomerative algorithm, similar to that one proposed
in Otranto (2008), which has the advantage of automatically providing the number of
groups forming the clustering.



The procedure is based on a simple Wald test to verify the equality of » unconditional
volatilities; the null hypothesis is:

Hy:u® = u® = ... =0 3.1

where the superscript is referred to the time series. The null hypothesis (3.1) can be
rewritten as:
Au =0, (3.2)

where w is the vector containing the  unconditional volatilities and A is the (r — 1) x r
matrix:

1 -1 0 0 O

0o 1 -1 0 O
A—

0 0 o --- 1 -1

The Wald statistic to test the null hypothesis (3.2) is given by:
W = (A%)(ADHD'A') "' (AG). (3.3)

where H is a block diagonal matrix with blocks constituted by the estimated covariance
matrices of the vector of parameters and D is the matrix composed by the row vectors d(’
of the partial derivatives of each function w® (i =1,...,r) with respect to the full set
of parameters 8 = (w® oM gL ~O) ) o) B0~ T is asymptotically
distributed as a central chi-square random variable with (r — 1) degrees of freedom.

The clustering algorithm is composed by the following steps:

1. order the series by increasing unconditional volatility and choose the series with
lowest © as benchmark to form the first cluster;

2. verify if the successive series has an unconditional volatility not significantly dif-
ferent from the one of the benchmark, using the Wald test at a fixed size, based on
the statistic (3.3) with r = 2;

3. if the null hypothesis is accepted, add the successive series, put r = r + 1 and
verify the null hypothesis (3.2) using the Wald test; repeat the step 3 until the null
hypothesis is rejected, put the last series as the benchmark for the successive cluster
and go to step 2.;

4. continue until no series remain.

Notice that the number of clusters is selected automatically from the procedure, de-
pending on the number of times in which the null hypothesis (3.2) is rejected. Moreover
the interpretation of the clusters is quite simple: the first cluster obtained represents the
group of series with lowest (and similar) unconditional volatility and so on until the last
group, which is the one with highest unconditional volatility.

The choice of the test size is subjective; Otranto (2008), in a similar procedure, sug-
gests a size equal to 0.01, based on a set of simulation experiments. This choice is crucial



Table 1: Realized kernel volatility indices object of the analysis

Index Symbol Starting date # observations
Dow Jones Industrials DJ 3 Jan 1996 3261
CAC 40 CA 3 Jan 1996 3301
FTSE 100 FT 21 Oct 1997 2844
Spanish IBEX IB 3 Jan 1996 3270
NASDAQ 100 NA 3 Jan 1996 3262
Italian MIBTEL IM 4 Jul 2000 2176
S&P 400 Midcap SP4 3 Jan 1996 3258
Nikkei 250 NI 8 Jan 1996 3160
Russell 3000 R3 3 Jan 1996 3262
Russell 1000 R1 3 Jan 1996 3262
Russell 2000 R2 3 Jan 1996 3264
Milan MIB30 MM 3 Jan 1996 3289
German DAX DA 3 Jan 1996 3296
S&P TSE SPT 4 Jan 1999 2529
S&P 500 SP5 3 Jan 1996 3263

in the final clustering performance and could produce some puzzling cases; for this reason
we will base the choice of the test size on a quality clustering index, that will be described
in the next section, using an empirical example.

The previous procedure is described for the AMEM case, in which a single uncondi-
tional volatility is estimated for each time series. In the AMEM-MS case we can calculate
n different unconditional volatilities, one for each state, and apply n distinct clustering
procedures as the previous one.> For example, having n = 3, as in the example of the
next section, the states can be interpreted as low, high and very high volatility, and we
will obtain three different classifications of the s time series, conditional on the regime.

Finally, it is possible to obtain a classification of the volatility for each point in time,
applying the clustering algorithm at a given time ¢ to the unconditional volatilities (2.6);
this information could be particularly useful to evaluate how the behavior of a single index
or asset changes in terms of volatility, in correspondence with particular events.

4 An Application to Realized Kernel Volatilities

In order to show how the classification of the volatility level changes considering the
different perspectives illustrated in section 2, we apply the clustering algorithm, with the
alternative three models, to a set of realized kernel volatilities relative to the 15 main stock
indices in the world, available at the Oxford-Man Institutes realised library. The original
data are relative to the daily realized kernel variance; we consider, as usual, the annualized
volatility, which is the squared root of the variance multiplied by 252 (and multiplying
the result by 100). The indices present similar patterns, showing an enormous jump in the

2Obviously, in the AMEM-MS case, the vector of coefficients @ contains also the constants kj(L) (g =
2,...,n;1=1,...,7) (see equation (2.4)).



Table 2: Descriptive Statistics for 15 realized kernel volatility indices

Index Mean Median Min Max st.dev. skewness Kkurtosis
DJ 12.90 11.15 292 123.14 7.80 3.82 30.20
CA 15381 13.62 291 95.81 9.33 2.47 13.58
FT 13.37 11.75 3.03 91.95 8.06 2.77 17.31
IB 14.31 12.73 291 82.61 8.35 2.26 12.65
NA 15.71 12.86 237 12471 10.27 2.35 13.36
IM 11.37 927 220 86.35 7.82 2.71 15.83
SP4  11.02 9.13 2.06 100.96 8.25 3.92 25.60
NI 15.01 13.85 3.70 85.69 6.98 2.65 18.30
R3 12.18 10.26 233 114.73 8.02 3.57 25.22
R1 12.52 10.61 2.18 115.86 8.17 3.47 24.17
R2 10.51 8.85 1.59 113.06 8.43 3.62 2491
MM 14.41 12.17 2.58 96.66 9.02 2.44 13.31
DA 18.17 1539 276 133.58 11.28 2.54 15.00
SPT 11.72 927 240 98.46 8.29 3.44 21.40
SP5 13.36 11.39 239 118.75 8.61 341 23.12

last part of the series, corresponding to the last world economic crises, as the S& P500
index depicted in Figure 1. The series considered are illustrated in Table 1; we show
the symbols that we will use hereafter, the period covered by the data set, the number of
observations considered for each one. All the series end on 27 February 2009, but the
starting date is different, so that also the number of observations is different. This fact
does not imply technical problems in our clustering algorithm because the classification
is based on the unconditional volatility of each time series, or, in other words, on the
parameters of the models used, which are estimated separately for each time series in a
univariate framework. The length of the series affects the degree of uncertainty in the
estimation of the variance of the unconditional volatility; anyway, the minimum length
available is 2176 (IM index), which is sufficiently large to guarantee the consistency of
the estimators. From another point of view, it is clear that the consideration of different
spans could imply a different parameter estimation in the AMEM case; for example,
if a series starts at the beginning of 2007, the period considered is one of turmoil and
the coefficients would highlight high unconditional volatility, whereas if the time span
includes the data from 1996, quiet and turmoil periods alternate and the unconditional
volatility would represent a sort of average of the different levels of volatility. This is not
the case of our data set, in which most of the series start at the beginning of 1996 and only
SPT and IM start three and three years and half after, respectively, so that they include
different levels of volatility.

The data set considered have similar characteristics, as shown in Table 2, where the
main descriptive statistics are illustrated. All the series show a clear positive asymmetry
with very high peaks, in particular the American indices (DJ, NA, SP4, R3, R1, R2 and
SP5) and the German DAX, with maximum values more than 100. The presence of a pos-
itive skewness is evidence in favour of the consideration of asymmetric models, whereas
the large differences between the minimum and the maximum, jointly with the very large
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Table 3: Unconditional volatilities estimated by the AMEM and corresponding standard
errors (in parentheses)
DJ CA FT IB NA M SP4 NI
unc. vol. | 12.24 1453 1237 1344 14.60 999 1030 14.50
(0.03) (0.06) (0.35) (0.07) (0.10) (0.05) (0.04) (0.04)
R3 R1 R2 MM DA SPT  SP5
unc. vol. | 11.31 11.66 9.73 13.39 16.64 10.62 12.56
(0.03) (0.03) (0.08) (0.10) (0.09) (0.03) (0.05)

kurtosis, justify the consideration of distinct regimes or time-varying coefficients.

4.1 Clustering the long time unconditional volatilities

The first experiment that we propose is relative to the clustering of the unconditional
volatilities of the 15 financial indices obtained with the estimation of 15 univariate AMEM’s.
To save space we do not show the estimation of the 5 parameters of model (2.1) for each
time series, but directly the estimation of the unconditional volatilities (Table 3) with the
corresponding standard errors.

The clustering procedure is based on a statistical test applied iteratively, so the choice
of the size of the test is crucial for the final clustering. In fact, in spite of the good
performance of the proposed Wald test in terms of power and respect of the nominal
size (as shown in the simulation experiments of Otranto, 2008), also when we verify the
equality of several unconditional volatilities simultaneously, the change of the nominal
size could change the assignment of a series to a group rather than another. For example,
considering the data in Table 3, let us perform the clustering algorithm with two different
size levels: 0.01 and 0.05. In Figure 2 we show the two different classifications (the y
axis represents the level of the unconditional volatility). The first classification (the one
with size equal to 0.01) provides six clusters, whereas the second one (with size equal to
0.05) implies seven groups. The differences consist only of the classification of SPT and
MM. SPT is included in the group of lowest volatility in the first classification, whereas
it constitutes the only element of the second group in the second clustering. MM belongs
to the group formed by DJ, FT and SPS5 in the first clustering, whereas it constitutes a
separate group with IB in the second clustering. At a simple visual inspection, the second
classification seems more plausible then the first one, in particular for the location of MM;
in fact its level of unconditional volatility is in line with the level of IB, but, in the first
clustering they belong to distinct groups, providing a leaning form of the cluster, whereas
in the second clustering the series belonging to the same group are sufficiently aligned.

From this empirical evidence we can deduce that a criterion for the choice of the best
size could be the quality of the clustering, so that we can choose the size which provides
the highest quality, based on some measure. For this purpose several quality indices have
been proposed in literature; see Theodoridis and Koutroumbas, 1998, or Jain et al., 1999,
for a review. We choose the C-index (Hubert and Schultz, 1976), which is largely diffused
in the clustering literature and possesses the nice characteristic to be limited to the interval
[0, 1] (the lower the index the higher the quality), so it can be easily interpreted. It is
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Figure 2: Clustering of the long time unconditional volatilities, based on the AMEM, with
two different levels of size.
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Let us indicate with v the number of all pairs belonging to series which are both included
in the same cluster; S is the sum of distances between series in the v pairs (we will use
the Euclidean distance); S,,;,, and S,,,, are the sum of the v smallest distances and the
sum of the v largest distances respectively, considering all possible pairs in the universe
of series.

Using the C-index (4.1) in the previous example, it is equal to 0.025 in the cluster-
ing with size 0.01 and 0.004 in the clustering with size 0.05 (reaching also a very high
quality). Moreover, performing the clustering with all the levels of size between 0.01
and 0.10 (with steps of 0.01), the lowest C-index is equal to 0.004, obtained for the size
levels included in the interval [0.02,0.10]. In practice, the criterion adopted selects the
clustering shown in the right part of Figure 2; we can notice as the series with lowest
unconditional volatility levels are IM, SP4 and R2; it is interesting to note that SP4 is
calculated on 400 companies of the mid-cap equities sector, whereas R2 are the last 2000
companies among the first 3000 companies with larger capitalization (considered in R3).
In practice, the indices with no blue chips companies are present in the group with low-
est volatility, whereas the most important European indices (DAX and CAC) show the
highest volatility.

These results are relative to the full spans illustrated in Table 1, so they include periods
characterized by regimes with different degree of conditional volatility (from low to high);
but what happens within each regime? Is there some peculiar behaviour of some index
that is hidden in the long time classification? We can answer this question by repeating
the clustering procedure within each regime.

4.2 Clustering the unconditional volatilities within each regime

In this second stage we estimate an AMEM-MS, as (2.3), for each time series, obtaining
different unconditional volatilities, one for each regime, as indicated in (2.4). The number
n of regimes is generally chosen a priori; it can be identified preliminarily (for example,
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Figure 3: Clustering of unconditional volatilities within each regime, based on the
AMEM-MS.
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using the nonparametric Bayesian procedure of Otranto and Gallo, 2002) or ex post (for
example, using loss functions, as in Psaradakis and Spagnolo, 2003). In our case, in order
to compare the unconditional volatilities within each regime, we need to select the same
number of regimes for each series; at a visual inspection (we recall that all the series have
a similar behaviour to the one illustrated in Figure 1), it is easy to notice the presence of
alternating periods of low and then higher volatility with fewer periods with very high
volatility. For this reason we put n = 3; this choice is also consistent with the results of
Gallo and Otranto (2011), who select the number of regimes for the series SP5 of Figure
1, using AIC and BIC.

After this, we apply the clustering algorithm for ul, s, u%,;¢ and u3,q respectively,
using, for each case, the criterion based on the C-index to select the best size of the test;
in particular the highest quality performance for regimes 1 and 2 is obtained in the size
interval [0.08-0.1] (C-index equal to 0.009 and 0.012 respectively) and for regime 3 in the
size interval [0.01-0.06] (C-index equal to 0.036). The results are illustrated in Figure 3.

The details of the behaviour of the series in each regime provides new information,
which is able to distinguish the characteristics of time series classified in the same group in
terms of long time unconditional volatility. Let us fix the attention on the series previously
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considered, the least and the most volatile respectively. We have noted that IM, SP4 and
R2 belong to the group with the lowest long time unconditional volatility; in terms of
unconditional volatility within the regimes we notice that they are classified in groups
with medium unconditional volatility in regime 1, whereas, increasing the regime, IM
seems to stay in groups of medium unconditional volatility, whereas SP4 and R2 are
among the less volatile series. In practice, recalling the composition of SP4 and R2,
the role of mid capitalization indices is evident in the regimes of high and very high
conditional volatilities, when the turmoil spreads across the markets, differently from IM,
which shows a more volatile pattern, especially in regime 3, where it belongs to the same
group as NA.

Considering the four series with the highest long time unconditional volatility (CA,
NA, NI, DA), it is possible to notice that the two European indices behave the opposite
way to the other two. CA and DA belong to the group with the lowest unconditional
volatility in regime 1, but their volatility increases dramatically in the other two regimes
(in particular DA in regime 3). NA and NI are more volatile in the regime of low con-
ditional volatility, whereas NA is classified in the lowest unconditional volatility group
during regime 2 and NI shows a similar behaviour during regime 3.

Another interesting aspect that stems from this analysis is that DJ, R1 and SPS, which
consider different companies but with similar characteristics, always belong to the same
group in each regime.

We recall that, when clustering within the regimes, we do not compare the series in
the same subperiods, because they do not necessarily belong to the same regime at time
t. The regime characterizes each financial series, in the sense that the change in regime
happens in different days for different series. For example, the dominant markets, like
the US market, change regimes before the other markets, which follow its behaviour with
a spillover effect (see, for example, Theodossiou and Lee, 1993, and Gallo and Otranto,
2008). If we are interested to know how to classify the series at a certain date, we need to
use the idea of time varying unconditional volatility.

4.3 Clustering the time varying unconditional volatilities

As said, the purpose of this third kind of classification is to evidence how the uncon-
ditional volatility classification changes along time, especially during some periods of
particular interest, such as periods of economic crises and financial turmoil. The esti-
mation of the ST-AMEM implies that at each time we have a different estimation of the
unconditional volatility (2.6), so potentially it is possible to obtain 7' classifications, one
for each date. Anyway, what is interesting is the dynamics of the clustering at particu-
lar time intervals, for example starting at the beginning of a crises, to evaluate how the
different markets react to financial shocks and if there is a different timing in this reaction.

We focus on the period relative to the shock of September 11, which only impacted
for a few days in the financial markets but with strong effects. We have selected the clas-
sifications relative to 7 September 2001, the last day in which the American markets were
open before the terroristic attack of September 11, and 18 September 2001, the day after
the date in which the financial markets were reopened.® In Figure 4 we show the levels

3We have used the day after to consider the spillover behavior of the first day in which the American
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of unconditional volatilities, derived by ST-AMEM, in the two days, marking with white
circles the data relative to September 7 and with black circles the data relative to Septem-
ber 18. It is evident that all the series show an increase in volatility, except NA and NI,
which start from a high level already before September 11. The only index that does not
change its volatility level is R2 (white and black circles are superposed). The lines join
the series belonging to the same cluster (the thin lines are referred to September 7 and the
bold lines to September 18). It is interesting to note that the series with low volatility on
September 7, when R2 and SPT belonged to the same cluster, in September 18 are clearly
separated, with large increase in volatility of SP4 and SPT. The series characterized by
medium-high volatility in September 7 belong to two separate clusters: they contain se-
ries with an average unconditional volatility equal to 22.36 and 26.39 respectively. On
September 18 they increase their volatility (except NI) and collapse in one cluster with
average unconditional volatility level equal to 25. The only exception, on September 7,
is CA, which increases its volatility and reaches the higher level of volatility of NA. On
September 18, DA, which belonged to the highest level of volatility, as NA, further in-
creases its unconditional volatility, which is very significantly different with respect to the
other indices. In practice, this kind of analysis evidences not only the obvious increase
of the volatility of almost all the indices, but also the size of these movements, which can
be compared, and the changes in classification of the volatility indices after an abrupt and
unexpected event.

4.4 Consistency of the classifications

Given the three alternative ways to classify the time series in terms of unconditional
volatilities, a natural question is if the different criteria are consistent, or, in other words,
if the use of different models to estimate the unconditional volatility provides informa-
tion which is coherent in the three different frameworks or not. We have interpreted the
global unconditional volatility as a sort of average of unconditional volatilities within the
regimes or the average of all the time varying volatilities; if this aspect is confirmed, we
can conclude that the different criteria work coherently.

To reach this purpose, we simply compare each long time unconditional volatility with
the corresponding average of unconditional volatilities within the three regimes and with
the average of the 7" unconditional time varying volatilities. Whereas the last one could be
calculated as a simple average of the 7" unconditional volatilities usr(t) in (2.6), the aver-
age of the three unconditional volatilities within the regimes is more complicated because
the duration and the frequency of each regime changes in the time interval considered. It
is preferable to consider a weighted mean of the unconditional volatilities for each time
t with weights given by the probabilities of each regime at time ¢. For this purpose, us-
ing the Hamilton (1990) filter and smoothing, we can obtain the smoothed probabilities
Pr(s;|®r) for each time ¢; the weighted average at time ¢ of the unconditional volatilities
within each regime is given by:

ins(t) =Y Pr(s, = i[®r)uys(i) (4.2)

=1

markets were re-open on the European countries, for effect of the different time zone.
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Figure 4: Clustering time varying unconditional volatilities, based on ST-AMEM, on 7
September 2001 (white circles) and 18 September 2001 (black circles). The thin line
joins the series belonging to the same cluster in the first date, the bold line joins the series
belonging to the same cluster in the second date.
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An average of the T unconditional volatilities wyss(t) will provide an (alternative) esti-
mation of the long time unconditional volatility of a certain series.

In Table 4 the three unconditional volatilities provided by each model and for each
series are shown. It is possible to note the similar pattern, confirmed by a very high linear
correlation (shown at the bottom of the table), more than 0.99 for each pair of models. The
three models provide very similar values for the unconditional volatilities, as it is possible
to note, in the last two columns of the table, the mean of the three values and the small
standard deviation. In general, the AMEM-MS model provides an intermediate value
of volatility between the one of the AMEM (the lowest) and the one of the ST-AMEM
(the highest). Moreover, calculating a simple Wald statistics to evaluate the equality of
a pair of unconditional volatilities, estimated by two different models, we notice that the
AMEM-MS provides often the same unconditional volatility of the AMEM (pointed out
by the superscript a) and/or the ST-AMEM (superscript c). The differences between the
unconditional volatilities provided from the AMEM and the ST-AMEM (superscript b)
are not significant only in five cases. It is also interesting to note that for each series the
near equality of two unconditional volatilities provided by different models is verified.

This simple exercise supports the idea that the three models provide coherent informa-
tion in terms of unconditional volatility, so the differences in the alternative clustering are
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Table 4: Comparison of the long time unconditional volatilities obtained from three
models.*

Model
Index AMEM AMEM-MS AMEM-ST | Mean St.dev.
DJ 12.244 12.55¢4¢ 12.74% 12.51 0.20
CA 14.53¢ 15.03¢ 15.55 15.04 0.41
FT 12.379 12.78% 13.20% 12.78 0.34
IB 13.44¢ 13.88¢ 14.18 13.83 0.31
NA 14.60° 15.30¢4¢ 15.56¢ 15.15 041
IM 9.99 10.77¢ 11.07¢ 10.61 0.46
SP4 10.30¢ 10.77%¢ 10.90°¢ 10.66  0.26
NI 14.502° 14.69% 14.86% 14.68 0.15
R3 11.31¢ 11.68% 11.91¢ 11.63  0.25
R1 11.66° 12.04¢4¢ 12.27¢ 11.99 0.25
R2 9.732b 10.12¢4¢ 9.73b¢ 9.86 0.18
MM 13.39¢ 14.03¢4¢ 14.25¢ 13.89 0.36
DA 16.64 17.68¢ 17.98¢ 17.43  0.57
SPT 10.62 11.38¢ 11.60°¢ 11.20 0.42
SP5 12.56%0 12.93¢4¢ 13.11% 12.86  0.23
Correlation coefficient between:

AMEM AMEM-MS 0.994

AMEM ST-AMEM 0.991

AMEM-MS ST-AMEM 0.997

*The superscripts a, b, ¢ indicate that the difference between the long time unconditional volatility
derived from AMEM and AMEM-MS, AMEM and ST-AMEM, AMEM-MS and ST-AMEM,
respectively, is not significant using a Wald statistics at a nominal size equal to 0.01.

due to the different points of view and the different time spans: the full period; the periods
of low, high and very high volatility; specific dates. Coherence is an important property
if the three analyses are conducted in the same framework to guarantee the comparability
of the results.

S Concluding Remarks

The main purpose of this paper was to show how classifications could change, consider-
ing time series subject to changes in regime or, more in general, changes in the value of
the parameters characterizing the data generating models. For this purpose we have used
a model-based approach involving a clustering procedure based on a test statistic. The
choice of the model could be considered subjective; in this framework we have adopted
the AMEM class because of its recent success in the literature on volatility. In fact, it
seems common opinion that models dealing directly with realized volatility are preferred
to models which use the log-transformation to deal with data without constraints on the
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sign of the variable studied. Anyway the approach proposed could be easily adapted to
other families of models, such as the GARCH one, with its extensions to the Markov
Switching (see, for example, Dueker, 1997, and Klaassen, 2002) and the Smooth Transi-
tion (Gonzales-Rivera, 1998, Anderson et al., 1999, Lanne and Saikkonen, 2005) cases.

Similarly, this kind of approach could be used also in non financial applications, em-
ploying other popular models, belonging, for example, to the ARMA family. The reason
why we have developed this idea in a financial framework is the basic role of the classifi-
cation of assets in a certain time interval for financial traders; the support of statistics in
this framework is fundamental and its importance in financial operations is increasing.

The clustering algorithm is performed estimating s univariate AMEM’s (or AMEM-
MS’s or ST-AMEM’s) and then comparing their coefficients. Maybe the multivariate
modelling would be a more suitable and elegant framework for this kind of analysis, but
at the cost of unfeasible models due to the large number of parameters to be estimated.
This kind of problem is typical in the multivariate modelling for financial time series and
remains an open problem; the solutions proposed are often based on hypotheses which are
too strong (see Bauwens et al., 2006). For this reason and to provide a simple instrument
for practical purposes we have preferred to deal with univariate models.

Future works could be devoted to identifying other characteristics of financial time
series, together with unconditional volatility, to perform a characteristic-based clustering,
in a similar way to the methodology proposed by Wang et al. (2006).
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