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1 Introduction

In this paper we introduce a weighted Z-estimator for moment condition models in the

presence of auxiliary information under weak dependence1. The weights are estimated by

means of generalized empirical likelihood (GEL) from the available auxiliary information

expressed in terms of moment functions. The proposed estimator is motivated by the fact

that in applied research it is often possible to retrieve some auxiliary information about

the otherwise unknown distribution of the data (the population mean, or the median, for

example, or other features related to the shape of the distribution) and incorporate it in

the estimation algorithm. One of the most appealing features of the proposed estimator is

that it is able to combine a theoretically appealing estimator (the GEL estimator) within

a simple estimation setting. In theory, our estimator may be very demanding as it requires

both the estimation of the weights and the optimization program associated to the Z-

estimator. However, as shown by Bravo (2008, see also Zhang, 1995), it is possible to

keep the two parts separated, where the �rst part is a maximization problem of a globally

concave function, and the second part is a standard optimization problem that could be

carried out by means of conventional software. In order to take into account the presence

of weak dependence we use a blockwise approach (see among others Kitamura, 1997).

The contribution of this paper is twofold. First, we show that the proposed estimator is
p
n-consistent and asymptotically normal, then we show that the weighted Z-estimator is

more e¢ cient than its unweighted counterpart. Second, we provide Monte Carlo evidence

on the performance of the weighted Z-estimator against an unweighted estimator; we also

show that in �nite samples the weighted estimator improves an asymptotically equivalent

GMM estimator. This paper is meant to be an extension to the weak dependence case

of some results of Bravo (2008) and it is related to an earlier paper of Qian and Schmidt

1Van der Vaart (2007, p. 41) de�nes a Z-estimator, for example, as the root of the �rst derivative of
a certain criterion function (Z stands for zero). Under this de�nition, the estimator that derives from the
�rst order conditions of a GMM criterion function could be thought as a Z-estimator.

2



(1999, QS hereafter) and to a more recent paper by Smith (2004). The latter proposes a

one-step estimator where both the initial moment conditions and the auxiliary information

are included into the GEL criterion function2. This type of approach has nice theoretical

properties but it requires in general the solution of a saddle point problem, which could be

computationally burdensome. The paper of QS suggests including the auxiliary information

into a GMM setting. As Smith�s estimator also QS�s is asymptotically equivalent to ours.

However, it is well known that GMM could perform very poorly in �nite samples (e.g.

Altonji and Segal, 1996), and it is reasonable to think that also QS�s estimator inherits

such �nite sample features. In our simulation study we show that the e¢ cient Z-estimator

tends to improve the GMM estimator in the majority of the cases we consider.

Before concluding this section let us brie�y mention some papers that are related to

what we propose here. First of all, it is interesting to notice that, at least to our knowledge,

most of the literature that deals with this type of problems has neglected the possibility

having weakly dependent data (to our knowledge only the paper by Smith (2004) assumes

strong mixing). A series of papers by Imbens and coauthors investigates the use of auxiliary

information in the case of microeconometric models (see Hellerstein and Imbens, 1999,

Imbens and Lancaster, 1994, Imbens, 1992). Hellerstein and Imbens (1999) for example

estimate a wage regression by means of weighted least squares. The set of weights they use

is based on Census data and estimated via empirical likelihood. The EL weights shift the

distribution of the primary sample towards the distribution of the Census data. When the

population values of the Census distribution are of greater interest such e¤ect is desirable

(Hellerstein and Imbens, 1999). Imbens and Lancaster (1994) use macro data as auxiliary

information in the context of a GMM estimator. As in the case of QS our estimator may

apply to rational expectation models, where the forecast error is correlated with another

observable variable, which embeds the auxiliary information. In the statistical literature,

2In Smith (2004), the weak dependence properties of the data are taken into account by means of
kernels.
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similar results are for example related to the work of Kuk and Mak (1989) in the context of

median estimation or to Chen and Qin (1993), who also exploit EL probabilities to carry

the auxiliary information.

The rest of the paper is organized as follows. In Sections 2 and 3 we outline the estima-

tor and the main asymptotic results. In Section 4 we describe the �nite sample properties

of three speci�cations of our Z-estimator against two competing estimators, namely an un-

weighted Z-estimator and an asymptotically equivalent GMM estimator. Section 5 contains

some concluding remarks. Proofs and �gures are relegated to the appendix.

2 Z-Estimation and Generalized Empirical Likelihood

Let fxtg be an RLx-valued stationary process from an unknown distribution F , such that

the following standard strong mixing conditions are satis�ed

�x (k)! 0; k !1

where �x (k) = supA;B jPr (A \B)� Pr (A) Pr (B)j, A 2 F0
�1, B 2 F1

k , and Fm00
m0 =

� (xi : m
0 � i � m00). We also assume

P1
k=1 �x (k)

1� 1
c < 1 for some constant c > 1.

Consider now set of di¤erentiable functions,

m (�) = E (m (xt; �))

such that m : RLx � RL� ! RLm ; and m (�0) = 0. Moreover, �0 2 int fBg and B � RL� ,

and L� is assumed to equal Lm. A Z-estimator for �0, say �̂, satis�es the relationship




m̂��̂�


 = inf
�2B

km̂ (�)k = 0; (1)
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where m̂ (�) = 1
n

Pn
t=1mt (�), mt (�) = m (xt; �), and k�k is the Euclidean norm of �. Fur-

thermore, we take into account the presence of weak dependence by means of a blockwise

approach. Let us assume thatM and L are integers andM !1 as n!1, M = o (
p
n),

L = O (M), and L � M . The estimator we propose treats the estimation of the proba-

bilities and of the parameter of interest separately, in order to reduce the computational

complexity and exploit the desirable small sample features of the blockwise GEL (BGEL)

estimator. Thus, the blockwise counterpart of (1) is




ĥ��̂�


 = inf
�2B




ĥ (�)


 = 0 (2)

and ĥ (�) = 1
b

Pb
i=1 hi (�), hi (�) = h (zi; �), and h (zi; �) =

1
M

PM
j=1m

�
x(i�1)L+j; �

�
, where

i = 1; :::; b and b =
�
n�M
L

�
+ 1. Notice that b is the blockwise sample size, M indicates

how many observations are included in a block (i.e. the blocklength), and L denotes the

distance between the �rst observation of block i and the �rst observation of block i + 13.

This blockwise approach is a simple method to take into account the time series properties

of the data and it simply reduces to rearranging the data (or the associated moment

functions) in an appropriate way4.

Let us assume now that there exists some auxiliary information about the unknown

distribution of the data, shaped into a certain function f : RLx ! RLf that we can de�ne

in terms of a moment condition model, independent of the unknown parameter

E (ft) = 0

3As Kitamura (1997) pointed out, treating the data as if they were independent would cause the
estimator to be ine¢ cient.

4The use of blocks does not require postulating a weighting function as in the case of kernel smoothing.
In addition, Kitamura (1997) pointed out that for L = 1 (the fully overlapping case) the blockwise
structure corresponds asymptotically to the Bartlett kernel and for other choices of L we have di¤erent
kernel structures (see also Politis and Romano, 1993).
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for ft = f (xt) : As for equation (2), we can de�ne its blockwise counterpart as

g (zi) =
1

M

MX
j=1

f
�
x(i�1)L+j

�
: (3)

At this stage, our problem is to �nd a suitable way to incorporate the auxiliary information

described in (3). In order to do that we follow Bravo (2008, see also Zhang, 1995). This

is, we estimate a set of probabilities by means of GEL, using the moment functions in (3).

The resulting probabilities are used to weight our initial Z-estimator (2), in order to obtain

a BGEL weighted Z-estimator.

The subsequent BGEL function is

R̂ (�) =
1

b

bX
i=1

� (�0gi) ;

where gi = g (zi) and � (v) is the so-called carrier function, concave in its domain, and nor-

malized to be �1 (0) = �2 (0) = �1, given that �j (v), j = 1; 2 is the jth derivative (Newey

and Smith, 2004). For � (v) = log (1� v), � (v) = � exp (v), and � (v) = � (1 + v)2 =2 we

have the empirical likelihood case, the exponential tilting case, and the Euclidean likelihood

case respectively. They can be considered as special cases of the empirical Cressie-Read

family of discrepancies � (v) = � (1 + v)(1+
) = (1 + 
) where 
 is a real number. Let

�̂ = argmax
�2�n

R̂ (�) (4)

then the estimated probabilities are de�ned as

�̂i =
�1

�
�̂
0
gi

�
Pb

j=1 �1

�
�̂
0
gj

� :
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The resulting BGEL-weighted estimation functions are then de�ned as

ĥ� (�) =
bX
i=1

�̂ihi (�)

where �̂i is the BGEL estimator for the probability density function as described above.

Thus, the corresponding Z-estimator with auxiliary information, �̂�, implies




ĥ� ��̂��


 = inf
�2B




ĥ� (�)


 = 0:
In Section 3 it will be shown that the estimator �̂� is consistent and asymptotically Normal,

with asymptotic variance V�:

V� =
�
M (�0)

0��1 �S (�0)�B (�0) ��1B (�0)0� (M (�0))
�1 ;

where M (�) = E (@mt (�) =@�
0), B (�) = E

P1
s=�1 (mt�s (�0) f

0
t) ; and S (�0) and �

�1

are de�ned in Theorem 2 and Lemma 1. From the above expression it follows that the

estimator we propose is asymptotically more e¢ cient than an estimator that does not

exploit the available auxiliary information, as its variance is
�
M (�0)

0��1 S (�0) (M (�0))
�1.

Clearly, the e¢ ciency of the weighted estimator depends on the relevance of the auxiliary

information and, therefore, on the covariance between the original moment function m and

the vector of auxiliary moments f , B (�): thus, the larger the covariance B (�), the smaller

the resulting asymptotic variance V�. It is also quite obvious that if the covariance is zero

�̂ and �̂� share the same variance.

An alternative approach is due to QS, and it consists of constructing a moment vector
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that includes the extra moments

m̂f (�) =
1

n

nX
t=1

0B@ mt (�)

ft

1CA : (5)

The above model is overidenti�ed, since Lm+Lf > L�, where Lf is the length of ft (notice

that we consider Lm = L�) and the associated parameter vector may be estimated by

GMM. The resulting estimator is asymptotically equivalent to our weighted Z-estimator.

The standard asymptotic variance for the GMM estimator is
�
G (�0)

0
 (�0)
�1G (�0)

��1
.

In our case G (�0) =
�
M (�0)

0 ; 00
�0
, where the presence of the zeros depends on the

fact that the portion of the moment vector that carries the auxiliary information is in-

dependent of the estimand parameter vector. The matrix 
 (�0) is a 2 � 2 block ma-

trix, whose elements on the main diagonal are S (�0) and �, and the o¤ diagonal en-

try is the covariance matrix B (�0). After some simple algebra the result follows, and

V� =
�
G (�0)

0
 (�0)
�1G (�0)

��1
:5 A further method that is similar to ours is due to

Smith (2004), and consists of estimating the parameters, given the augmented vector of

moments in (5), by means of (smoothed) GEL. Such procedure consists of augmenting the

GEL criterion function by the vector of auxiliary moments and simultaneously compute

the an estimate of the parameters of interest.6

3 Asymptotic Theory

The following theorems establish consistency and asymptotic normality of the Z-estimator

with auxiliary information. Proofs follow some results of Pakes and Pollard (1989), Pakes

5The result in Qian and Schmidt (1999) is slightly di¤erent, since the initial vector of moments, m in
our notation, is overidenti�ed.

6Smith (2004) assumes that the auxiliary set of moments also depends on �, while in our case it does
not. The �nal result is di¤erent since the asymptotic variance includes extra terms that involve the �rst
derivatives of the auxiliary moments. However, the substance is essentially the same.
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and Linton (2001), Bravo (2008) and Crudu (2009, see also Bravo, 2009).

The following lemma establishes consistency and asymptotic normality of the BGEL

estimator of the Lagrange multiplier in (4).

Lemma 1 Assume 1) fxtgt2Z is a strictly stationary strong mixing sequence, 2) E kftk
2(1+�)

for some small enough � > 0, � = E (ftf 0t) is positive de�nite, 3)R (�) = E (� (�
0ft)) has

a maximum for � = 0 and it is unique, 4) zero is in the interior of the convex set �n

and � (�) is concave and twice continuously di¤erentiable about zero and its jth derivative

�j (0) = �1, j = 1; 2, 5) R̂ (�)!p R (�) for all � 2 �n, then �̂ is consistent and normally

distributed p
n

M
�̂!d N

�
0;��1

�
Theorem 1 and Theorem 2 establish consistency and asymptotic Normality for the

e¢ cient Z-estimator �̂�.

Theorem 1 (Consistency of �̂�) Assume 1) B is a compact set, 2) 8� > 0 there exists

" (�) such that supk���0k>� km (�)k � " (�) > 0, 3) sup�2B km̂ (�)�m (�)k = op (1). Then,

if also the assumptions in Lemma 1 are satis�ed, �̂� !p �0:

Theorem 2 (Asymptotic Normality of �̂�) Assume �̂� is consistent; moreover, as-

sume 1) mt (�) being continuously di¤erentiable in a neighborhood of �0, N (�0; �), 2)

M (�0) = E (@mt (�0) =@�) is continuous and nonsingular, E
�
kmt (�0)k kftk

2� < 1, and
E sup�2N (�0;�) (k@mt (�) =@�k kftk) <1, 3)

p
nm̂ (�0)!d N (0; S (�0)). Then, if assump-

tions in Theorem 1 are satis�ed
p
n
�
�̂� � �0

�
! N (0; V�), where

V� =
�
M (�0)

0��1 �S (�0)�B (�0) ��1B (�0)0� (M (�0))
�1 ;

and B (�0) = E
P1

s=�1 (mt�s (�0) f
0
t).
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The following corollary is a direct result of Theorem 2. It states that an estimator of

the empirical distribution function based on the BGEL probabilities is more e¢ cient than

an estimator computed as �̂ (x) = 1
n

Pn
t=1 1 (xt � x).

Corollary 1 Let � (x) = Pr (xt � x). If assumptions in Theorems 1 and 2, and assump-

tion 1 in Lemma 1 hold, then �̂� (z)!p � (x) and
p
n (�̂� (z)� � (x))!d N (0; �

2 � a0��1a),

where �̂� (x) is the BGEL version of �̂ (x) =
1
n

Pn
t=1 1 (xt � x), that is �̂� (z) =

Pb
i=1 �̂i1M (zi � z).

Proofs are in the appendix.

4 Monte Carlo Experiments

In this section we study the small sample features of our weighted Z-estimator. The main

objective of these experiments is to analyze the behaviour of such estimators in terms of

bias and mean square error (MSE) as n and the M vary.7 For convenience we only take

into account the case L = 1, and we consider the e¤ect of arbitrary values of M against

an optimal M . The optimal M is computed by means of the procedure suggested by

Politis and White (2004, see also Patton, Politis, and White, 2009).8 Let us consider the

estimation of a location parameter as in QS

yt = �0 + et

where �0 is a scalar, and it is assumed to be equal to 1, and et is a zero mean disturbance.

Thus, we want to �nd an estimate for �0 = E (yt). We also assume there exists a certain

random variable ut, that is known to have zero mean and it is correlated with et.

7The �gures actually present bias and MSE multiplied by their respective sample size.
8The optimal blocklength is the one for the circular bootstrap and it is computed using the R function

b.star in the np package (Hay�eld and Racine, 2008). Interestingly, the circular bootstrap is asymptoti-
cally equivalent to the block bootstrap with L = 1, i.e. the moving block bootstrap.
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We de�ne then the following equations:

yt = 1 + et

ut = �et +
p
1� �2�t:

We choose two speci�cations for the processes et and �t:

DGP1 : et = �et�1 + "
e
t ; �t = �"

�
t�1 + "

�
t

DGP2 : et = �1et�1 + �2et�2 + "
e
t ; �t = ��t�1 + "

�
t ;

where "it � N (0; 1), i = e; �. The parameters are � = :8, (�1; �2) = (:7; :2), � = :8

and � = :4. We compare the performance of various competing estimators for n =

16; 32; 64; 128; 256, and M taking values from 2 to 16.9 The optimal Ms are computed

for both yt and ut: My and Mu.10 In Table 1 we report the average optimal blocklengths

for the two DGPs.

DGP 1 DGP 2

n My Mu My Mu

16 2.7876 2.5156 2.7506 2.5102

32 5.0126 4.3648 5.5018 4.8820

64 7.9142 7.0892 9.5570 8.8986

128 11.5696 10.6400 15.1568 14.5900

256 16.0406 15.0726 22.3942 21.8780

Table 1: Optimal blocklengths

9Notice that the case n =M = 16 is not taken into consideration as it equivalent to M = 1.
10The blocklength and the number of resulting blocks could be di¤erent for the two series. In order

to overcome this issue, the data are wrapped around a circle and extra observations are used from the
beginning of the series in order to have the same number of blocks (similar procedures are suggested in
Davison and Hinkley, 1997, pp. 396-397).
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We compute an estimate for �0 in �ve di¤erent ways. The �rst is a simple sample mean

�̂ = �y =
1

n

nX
t=1

yt:

The second is an e¢ cient two step GMM estimator with two moment conditions

�̂ = argmin
�
ĝ (�)0 
̂

�
��
��1

ĝ (�)

where ĝ (�) = 1
n

Pn
t=1

�
yt � �; ut

�0
. The matrix of weights 
̂

�
��
�
is a Newey-West

matrix evaluated at a certain consistent estimator of �, ��. The remaining three estimators

are weighted averages based on GEL estimators, i.e. the EL, the ET and the EU estimator,

�̂ =
bX
i=1

�̂BGELi zi

where zi =
PM

j=1 y(i�1)L+j. Given the auxiliary information wi =
PM

j=1 u(i�1)L+j, the three

BGEL estimators for the probabilities are de�ned as

�̂ELi =
1

b
�
1 + �̂

EL
wi

�
�̂ETi =

exp
�
�̂
ET
wi

�
Pb

j=1 exp
�
�̂
ET
wj

�
�̂EUi =

1

b

�
1� �̂EU (wi � �w)

�

where �w = 1
b

Pb
i=1wi. �̂

EL
and �̂

ET
are computed numerically, while it is available a close

form solution for �̂
EU
. Each weighted estimator is computed for di¤erent values of M ,

where M goes from 2 to 16 and for an optimal M . The calculations are carried out in R

and are based on 5000 Monte Carlo repetitions.

12



The results of the simulations are summarized in the appendix. Figures 1 to 4 describe

the behaviour of the weighted estimators as the blocklength changes compared to those

estimators that are independent ofM , represented by the horizontal lines. In particular, the

thick horizontal lines denote the weighted estimators based on My and Mu and, therefore,

denoted as OptEL, OptET , and OptEU . In several cases the sample mean is too far apart

from the other estimators and it is not included in the graphs. Figures 5 to 8 describe

the behaviour of all estimators as the sample size increases. Particularly when the sample

size is small, the choice of M has a considerable impact on bias and MSE. For the latter

(Figures 3 and 4), we see that the MSE tends to grow withM , while as n increases the slope

of the curves corresponding to the EL and ET estimators becomes smaller and collapses

to OptEL and OptET . On the other hand, the EU-based estimator is upward-sloping also

for n = 256. In Figure 5 we see that the bias does not change much for the weighted

estimators and for the GMM estimator. For DGP 2 the bias varies substantially for the

EL-based estimator. The bias of the ET-based estimator, however, is less sensitive to

the choice of M , while the EU-based estimator has a quite persistent negative bias and

tends to behave as the GMM estimator. Given the appropriate di¤erence in scale, Figures

7 and 8 describe the same picture: the e¤ect of an arbitrary choice of M could have a

large impact on the MSE in small samples. Such an e¤ect is more prominent for the EL

case and the EU case. For the latter it persists also for larger values of n. Overall the EL

estimator and the ET estimator that use an optimal blocklength have smaller MSE than

GMM. Apart from small values of n, the EU estimator that uses an optimal blocklength

is very similar to the GMM estimator. The MSE for the sample mean is the largest in the

panel and tends to grow with the sample size.
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5 Conclusion

In this paper we propose a two step procedure for Z-estimators in the presence of weakly

dependent data and auxiliary information based on the estimation of BGEL probabilities.

This procedure is attractive from di¤erent points of view. First of all, the computation

of the BGEL probabilities is very simple, as it contemplates only the convex part of the

BGEL problem (this is, the estimation of the Lagrange multiplier �). Moreover, whenever

the Z-estimator is asymptotically equivalent to a GMM estimator (QS), it does not entail

the well-known small sample e¤ects that a¤ect GMM estimators (see for example Altonji

and Segal, 1996). Our asymptotic results state that the resulting Z-estimator is consistent

and Normally distributed. The resulting variance depends on the relevance of the auxiliary

information. In addition, we demonstrate that the estimator of a distribution based on

the BGEL weights enjoys the same favourable features of the abovementioned Z-estimator.

Furthermore, by means of Monte Carlo experiments, we describe how to apply our ap-

proach to a standard time series problem. The laboratory we set is a location parameter

estimation problem, similar to what is described in QS (see also Zhang, 1995). We compare

three BGEL weighted estimators against a simple sample mean and an augmented GMM

estimator, and we analyze their behaviour for di¤erent values of M and n. We argue that

an appropriate choice of M is crucial in particular when the sample is small; because of

that we advocate the use of data driven procedures for the selection of the blocklength (see

Politis and White, 2004). The simulation results suggest that, in general, weighted esti-

mators (in particular those based on ET) combined with an optimal blocklength improve

over the competing estimators.
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6 Appendix: Proofs and Figures

In what follows we present the proofs of the theorems presented in Section 3 and some

auxiliary results. In addition, we use the following notation: !p and !d denote con-

vergence in probability and convergence in distribution; C is a generic positive constant;

CS and T denote Cauchy-Schwarz inequality and triangular inequality respectively; k�k

is the Euclidean norm of �. The sums
P

i and
P

j substitute
Pb

i=1 and
Pb

j=1, while
P

t

substitutes
Pn

t=1. The CLT is meant to be a CLT for strong mixing sequences (see e.g.

Ibragimov and Linnik, 1971) and CMT is the continuous mapping theorem.
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Proof of Lemma 1. Consider again

R̂ (�) =
1

b

X
i

� (�0gi) :

Notice that R̂ (�) is concave through � (�). Moreover, assumptions 2 to 4 match assumptions

(i)-(iii) from Theorem 2.7 of Newey and McFadden (1994). Then, consistency of �̂ follows.

Consider now a mean value expansion of the �rst order conditions of the BGEL criterion

function,

0 =
@R̂
�
�̂
�

@�
=
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X
i

�1

�
_�
0
gi

�
gi

= ��g +
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0
gi

�
gig

0
i

!
�̂

M

where �g =
P

i gi=b. Since �̂ is consistent and



 _�


 � 


�̂


, we have that �1 � _�0gi� =

�1 + op (1). Thus, multiplying by
p
n

0 = �
p
n�g � �̂

p
n
�̂

M
� op (1) �̂

p
n
�̂

M

where �̂ =M
P

i gig
0
i=b. Notice that �̂

p
n �̂
M
= Op (1); therefore, by rearranging

p
n
�̂

M
= ��̂�1

p
n�g + op (1) : (6)

Finally, by applying CLT to
p
n�g and Slutsky theorem, the result follows.

Proof of Theorem 1 (Consistency of �̂�). Let us compute a mean value expansion

of

�̂i =
�1

�
�̂
0
gi

�
P

j �1

�
�̂
0
gj

�

18



about � = 0, where �̂ is a consistent estimator for �:
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From results of Lemma 1 we obtain

�̂i =
1

b
+
1

b

�
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0
gi + op (1)

�
(7)

and

�̂i =
1

b
(1 + op (1)) : (8)

From Lemma 1 in Crudu (2009) we have ĥ� (�) = m̂ (�) + Op (M=n). Then, by adding

and subtracting ĥ�
�
�̂�

�
and T




m��̂��


 � 
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+ 
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Moreover, by optimality of �̂� and sincem (�0) = 0, and by repeated application of Lemma

1 in Crudu (2009) and T
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By Assumption 3 sup�2B km (�)� m̂ (�)k = op (1); hence
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 � op (1) :
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Since m (�) is bounded away from zero for k� � �0k > � (assumption 2), it follows that

�̂� 2 k� � �0k < �. As � is arbitrary, �̂� !p �0:

Proof of Theorem 2 (Asymptotic Normality of �̂�). Let us consider
P
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where



 _� � �0


 � 


�̂� � �0


. Let us de�ne B̂ (�) =MP

i hi (�) g
0
i=b. Then, by appropri-

ate rescaling and (6)

0 =
p
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A3 = op (1)
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From assumption 3 and Lemma 1 in Crudu (2009)
p
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which implies, by CLT applied to
p
n�g, assumption 3 and CMT,
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Figure 1: Bias of the Z-estimator as M varies for DGP 1
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Figure 2: Bias of the Z-estimator as M varies for DGP 2
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Figure 3: MSE of the Z-estimator as M varies for DGP 1
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Figure 4: MSE of the Z-estimator as M varies for DGP2
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Figure 5: Bias of the Z-estimator as n varies for DGP 1
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Figure 6: Bias of the Z-estimator as n varies for DGP 2
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