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Abstract
In this paper we introduce a weighted Z-estimator for moment condition models in
the presence of auxiliaty information on the unknown distribution of the data under
the assumption of weak dependence. The resulting weighted estimator is shown to
be consistent and asymptotically normal. Its small sample properties are checked via
Monte Catlo experiments.
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1 Introduction

In this paper we introduce a weighted Z-estimator for moment condition models in the
presence of auxiliary information under weak dependence!. The weights are estimated by
means of generalized empirical likelihood (GEL) from the available auxiliary information
expressed in terms of moment functions. The proposed estimator is motivated by the fact
that in applied research it is often possible to retrieve some auxiliary information about
the otherwise unknown distribution of the data (the population mean, or the median, for
example, or other features related to the shape of the distribution) and incorporate it in
the estimation algorithm. One of the most appealing features of the proposed estimator is
that it is able to combine a theoretically appealing estimator (the GEL estimator) within
a simple estimation setting. In theory, our estimator may be very demanding as it requires
both the estimation of the weights and the optimization program associated to the Z-
estimator. However, as shown by Bravo (2008, see also Zhang, 1995), it is possible to
keep the two parts separated, where the first part is a maximization problem of a globally
concave function, and the second part is a standard optimization problem that could be
carried out by means of conventional software. In order to take into account the presence
of weak dependence we use a blockwise approach (see among others Kitamura, 1997).
The contribution of this paper is twofold. First, we show that the proposed estimator is
v/n-consistent and asymptotically normal, then we show that the weighted Z-estimator is
more efficient than its unweighted counterpart. Second, we provide Monte Carlo evidence
on the performance of the weighted Z-estimator against an unweighted estimator; we also
show that in finite samples the weighted estimator improves an asymptotically equivalent
GMM estimator. This paper is meant to be an extension to the weak dependence case

of some results of Bravo (2008) and it is related to an earlier paper of Qian and Schmidt

'Van der Vaart (2007, p. 41) defines a Z-estimator, for example, as the root of the first derivative of
a certain criterion function (Z stands for zero). Under this definition, the estimator that derives from the
first order conditions of a GMM criterion function could be thought as a Z-estimator.



(1999, QS hereafter) and to a more recent paper by Smith (2004). The latter proposes a
one-step estimator where both the initial moment conditions and the auxiliary information
are included into the GEL criterion function?. This type of approach has nice theoretical
properties but it requires in general the solution of a saddle point problem, which could be
computationally burdensome. The paper of QS suggests including the auxiliary information
into a GMM setting. As Smith’s estimator also QS’s is asymptotically equivalent to ours.
However, it is well known that GMM could perform very poorly in finite samples (e.g.
Altonji and Segal, 1996), and it is reasonable to think that also QS’s estimator inherits
such finite sample features. In our simulation study we show that the efficient Z-estimator
tends to improve the GMM estimator in the majority of the cases we consider.

Before concluding this section let us briefly mention some papers that are related to
what we propose here. First of all, it is interesting to notice that, at least to our knowledge,
most of the literature that deals with this type of problems has neglected the possibility
having weakly dependent data (to our knowledge only the paper by Smith (2004) assumes
strong mixing). A series of papers by Imbens and coauthors investigates the use of auxiliary
information in the case of microeconometric models (see Hellerstein and Imbens, 1999,
Imbens and Lancaster, 1994, Imbens, 1992). Hellerstein and Imbens (1999) for example
estimate a wage regression by means of weighted least squares. The set of weights they use
is based on Census data and estimated via empirical likelihood. The EL weights shift the
distribution of the primary sample towards the distribution of the Census data. When the
population values of the Census distribution are of greater interest such effect is desirable
(Hellerstein and Imbens, 1999). Imbens and Lancaster (1994) use macro data as auxiliary
information in the context of a GMM estimator. As in the case of QS our estimator may
apply to rational expectation models, where the forecast error is correlated with another

observable variable, which embeds the auxiliary information. In the statistical literature,

2In Smith (2004), the weak dependence properties of the data are taken into account by means of
kernels.



similar results are for example related to the work of Kuk and Mak (1989) in the context of
median estimation or to Chen and Qin (1993), who also exploit EL probabilities to carry
the auxiliary information.

The rest of the paper is organized as follows. In Sections 2 and 3 we outline the estima-
tor and the main asymptotic results. In Section 4 we describe the finite sample properties
of three specifications of our Z-estimator against two competing estimators, namely an un-
weighted Z-estimator and an asymptotically equivalent GMM estimator. Section 5 contains

some concluding remarks. Proofs and figures are relegated to the appendix.

2 Z-Estimation and Generalized Empirical Likelihood

Let {z;} be an RE=-valued stationary process from an unknown distribution F', such that

the following standard strong mixing conditions are satisfied

a, (k) — 0, k— o0

where «, (k) = sup, g |[Pr(ANB)—Pr(A)Pr(B)|, A € F°, B € F°, and F1 =
o(z;:m' <i<m”). We also assume » - a, (k:)l_% < oo for some constant ¢ > 1.

Consider now set of differentiable functions,

such that m : Rfe x RLs — REmand m (8,) = 0. Moreover, 3, € int {B} and B C RLs,

and Lg is assumed to equal L,,. A Z-estimator for 3, say 3, satisfies the relationship

( )H — inf |/ (8)]| =0, (1)

BeB



where 7 (8) = = 37 my (B), my (8) = m (2, ), and ||-|| is the Euclidean norm of -. Fur-
thermore, we take into account the presence of weak dependence by means of a blockwise
approach. Let us assume that M and L are integers and M — oo as n — oo, M = o (y/n),
L =0 (M), and L < M. The estimator we propose treats the estimation of the proba-
bilities and of the parameter of interest separately, in order to reduce the computational
complexity and exploit the desirable small sample features of the blockwise GEL (BGEL)

estimator. Thus, the blockwise counterpart of (1) is

~

h(B)| =0 @)

h(3)] =it

and il (ﬁ) = % 2?21 hz (ﬂ)? hz (ﬂ) =h (Zia 6)7 and h (zh 5) = % Zj\il m (x(ifl)LJrja ﬂ)a where
i =1,...,band b = [”‘LM } + 1. Notice that b is the blockwise sample size, M indicates

how many observations are included in a block (i.e. the blocklength), and L denotes the
distance between the first observation of block i and the first observation of block i + 13.
This blockwise approach is a simple method to take into account the time series properties
of the data and it simply reduces to rearranging the data (or the associated moment
functions) in an appropriate way?.

Let us assume now that there exists some auxiliary information about the unknown
distribution of the data, shaped into a certain function f : R% — R/ that we can define

in terms of a moment condition model, independent of the unknown parameter

E(ft) =0

3As Kitamura (1997) pointed out, treating the data as if they were independent would cause the
estimator to be inefficient.

4The use of blocks does not require postulating a weighting function as in the case of kernel smoothing.
In addition, Kitamura (1997) pointed out that for L = 1 (the fully overlapping case) the blockwise
structure corresponds asymptotically to the Bartlett kernel and for other choices of L we have different
kernel structures (see also Politis and Romano, 1993).




for f; = f (z;). As for equation (2), we can define its blockwise counterpart as

M
z - Z x(z 1L+] (3)

At this stage, our problem is to find a suitable way to incorporate the auxiliary information
described in (3). In order to do that we follow Bravo (2008, see also Zhang, 1995). This
is, we estimate a set of probabilities by means of GEL, using the moment functions in (3).
The resulting probabilities are used to weight our initial Z-estimator (2), in order to obtain
a BGEL weighted Z-estimator.

The subsequent BGEL function is

@I»—l

S

where g; = g (2;) and p (v) is the so-called carrier function, concave in its domain, and nor-
malized to be p; (0) = p, (0) = —1, given that p; (v), j = 1,2 is the jth derivative (Newey
and Smith, 2004). For p(v) = log (1 —v), p(v) = —exp (v), and p (v) = — (1 +v)* /2 we
have the empirical likelihood case, the exponential tilting case, and the Euclidean likelihood
case respectively. They can be considered as special cases of the empirical Cressie-Read

family of discrepancies p (v) = — (1 +v)"™ /(1 +~) where 7 is a real number. Let

~

A = argmax R () (4)

AEA,

then the estimated probabilities are defined as

~/
) P1 (>\ gi)
T =

- Z?:l P1 <5\/9j> |

2



The resulting BGEL-weighted estimation functions are then defined as

where 7; is the BGEL estimator for the probability density function as described above.

Thus, the corresponding Z-estimator with auxiliary information, Bﬂ, implies

i ()

In Section 3 it will be shown that the estimator BW is consistent and asymptotically Normal,

o (B)H —0.

‘ = inf
BeB

with asymptotic variance Vj:
Vs = (M(8)) " (S (Bo) = B (5o) 7B (8,)') (M (85)) "

where M (8) = E (0mq (8) /08'), B(8) = E3_2 o (mu—s (By) f7) , and S (By) and X7
are defined in Theorem 2 and Lemma 1. From the above expression it follows that the
estimator we propose is asymptotically more efficient than an estimator that does not
exploit the available auxiliary information, as its variance is (M (60)')71 S (By) (M (By)) ™
Clearly, the efficiency of the weighted estimator depends on the relevance of the auxiliary
information and, therefore, on the covariance between the original moment function m and
the vector of auxiliary moments f, B (/3): thus, the larger the covariance B (/3), the smaller
the resulting asymptotic variance V. It is also quite obvious that if the covariance is zero

B and (3, share the same variance.

An alternative approach is due to QS, and it consists of constructing a moment vector



that includes the extra moments

! () = mtfw | )

The above model is overidentified, since L,, + Lf > Lg, where Ly is the length of f; (notice
that we consider L,, = Lg) and the associated parameter vector may be estimated by
GMM. The resulting estimator is asymptotically equivalent to our weighted Z-estimator.
The standard asymptotic variance for the GMM estimator is (G (3,)’ Q2 (By) "G (ﬁo))_l.
In our case G (B,) = (M (60)',0’)/, where the presence of the zeros depends on the
fact that the portion of the moment vector that carries the auxiliary information is in-
dependent of the estimand parameter vector. The matrix €2 (5,) is a 2 x 2 block ma-
trix, whose elements on the main diagonal are S (f,) and ¥, and the off diagonal en-
try is the covariance matrix B (/3,). After some simple algebra the result follows, and
Vs = (G (60)’9(60)_1G(60))_1 2 A further method that is similar to ours is due to
Smith (2004), and consists of estimating the parameters, given the augmented vector of
moments in (5), by means of (smoothed) GEL. Such procedure consists of augmenting the
GEL criterion function by the vector of auxiliary moments and simultaneously compute

the an estimate of the parameters of interest.®

3 Asymptotic Theory

The following theorems establish consistency and asymptotic normality of the Z-estimator

with auxiliary information. Proofs follow some results of Pakes and Pollard (1989), Pakes

’The result in Qian and Schmidt (1999) is slightly different, since the initial vector of moments, m in
our notation, is overidentified.

6Smith (2004) assumes that the auxiliary set of moments also depends on 3, while in our case it does
not. The final result is different since the asymptotic variance includes extra terms that involve the first
derivatives of the auxiliary moments. However, the substance is essentially the same.



and Linton (2001), Bravo (2008) and Crudu (2009, see also Bravo, 2009).
The following lemma establishes consistency and asymptotic normality of the BGEL

estimator of the Lagrange multiplier in (4).

Lemma 1 Assume 1) {x,},., is a strictly stationary strong mizing sequence, 2) E || ftHQ(IM)

for some small enough n > 0, X = E (ff!) is positive definite, 3)R(\) = E (p (N fi)) has
a mazimum for X = 0 and it is unique, 4) zero is in the interior of the conver set A,
and p (v) is concave and twice continuously differentiable about zero and its jth derivative
p;(0)=~-1,j=1,2,5) R(\) —, R()) for all A € A,, then X is consistent and normally
distributed

%X —4 N (0,271

Theorem 1 and Theorem 2 establish consistency and asymptotic Normality for the

efficient Z-estimator /3.

Theorem 1 (Consistency of 3,) Assume 1) B is a compact set, 2) Y6 > 0 there exists
€ (0) such that supg_g =5 lm (B)|| = € (0) > 0, 3) supgeg [ (8) —m (B)|| = 0, (1). Then,

if also the assumptions in Lemma 1 are satisfied, B,, —p Bo-

Theorem 2 (Asymptotic Normality of BW) Assume B 18 consistent; moreover, as-

sume 1) my (B) being continuously differentiable in a neighborhood of By, N (B4,9), 2)
M (By) = E (0my (8,) /0B) is continuous and nonsingular, E (|/m: (8,)|| ||ft||2) < 00, and
Esupgens,.s) 10me (8) /08| | fill) < o0, 8) v/nin (By) —a N (0,5 (8y)). Then, if assump-

tions in Theorem 1 are satisfied \/n (B,r — ﬁo) — N (0,Vg), where
Vo= (M (Bo)) " (S (o) = B(Bo) S B (Bo)) (M ()"

and B (B,) = F ZZO:,OO (me—s (Bo) f7)-



The following corollary is a direct result of Theorem 2. It states that an estimator of
the empirical distribution function based on the BGEL probabilities is more efficient than

an estimator computed as fi (z) = = 37" | 1 (2 < z).

Corollary 1 Let i (x) = Pr(z; < x). If assumptions in Theorems 1 and 2, and assump-
tion 1 in Lemma 1 hold, then i (2) —, p(z) and \/n (i, (2) — p(z)) —a N (0,0% — 'S ta),

where fi,. (x) is the BGEL version of it (x) = + > | 1 (z, < ), that is fi, (z) = Zle il (2 < 2).

Proofs are in the appendix.

4 Monte Carlo Experiments

In this section we study the small sample features of our weighted Z-estimator. The main
objective of these experiments is to analyze the behaviour of such estimators in terms of
bias and mean square error (MSE) as n and the M vary.” For convenience we only take
into account the case L = 1, and we consider the effect of arbitrary values of M against
an optimal M. The optimal M is computed by means of the procedure suggested by
Politis and White (2004, see also Patton, Politis, and White, 2009).® Let us consider the

estimation of a location parameter as in QS

Y = Bo + €

where [3, is a scalar, and it is assumed to be equal to 1, and e, is a zero mean disturbance.
Thus, we want to find an estimate for 5, = F (y;). We also assume there exists a certain

random variable wu;, that is known to have zero mean and it is correlated with e;.

"The figures actually present bias and MSE multiplied by their respective sample size.

8The optimal blocklength is the one for the circular bootstrap and it is computed using the R function
b.star in the np package (Hayfield and Racine, 2008). Interestingly, the circular bootstrap is asymptoti-
cally equivalent to the block bootstrap with L = 1, i.e. the moving block bootstrap.

10



We define then the following equations:

Yy = l+e

u = pe;++/1— pn,.

We choose two specifications for the processes e; and 7;:

DGP1 : e, =ae;q+ei,n, =0 | +ef

DGP2 : e, = aie; 1+ agep o +5,m, = 0n,_ 1 + &/,

where ¢ ~ N (0,1), i = e,n. The parameters are o = .8, (ay, ) = (.7,.2), p = .8
and 0 = .4. We compare the performance of various competing estimators for n =
16, 32,64, 128,256, and M taking values from 2 to 16. The optimal Ms are computed
for both vy, and w,;: M, and M,.'" In Table 1 we report the average optimal blocklengths
for the two DGPs.

DGP 1 DGP 2
n M, M, M, M,
16 2.7876  2.5156  2.7506  2.5102
32 5.0126  4.3648  5.5018  4.8820
64 7.9142 7.0892  9.5570  8.8986
128 11.5696 10.6400 15.1568 14.5900
256  16.0406 15.0726 22.3942 21.8780

Table 1: Optimal blocklengths

9Notice that the case n = M = 16 is not taken into consideration as it equivalent to M = 1.

10The blocklength and the number of resulting blocks could be different for the two series. In order
to overcome this issue, the data are wrapped around a circle and extra observations are used from the
beginning of the series in order to have the same number of blocks (similar procedures are suggested in
Davison and Hinkley, 1997, pp. 396-397).

11



We compute an estimate for 3, in five different ways. The first is a simple sample mean

=y=- Zyt

The second is an efficient two step GMM estimator with two moment conditions

~

B = argmin (5)' O (B a(8)

/
where g (8) = 130, ( y— B, w > . The matrix of weights (B) is a Newey-West
matrix evaluated at a certain consistent estimator of 3, 8. The remaining three estimators

are weighted averages based on GEL estimators, i.e. the EL, the ET and the EU estimator,

S

2 : ABGEL

where z; = Zj\il Y(i-1)L+;- Given the auxiliary information w; = Z;\il U(i—1)L+j, the three

BGEL estimators for the probabilities are defined as

1
(137
exp (S\ETwZ)

Zb L €Xp ()\Eij>

FEU %(1-&”(@%—@))

_ b JEL L ET . e .
where w = % Yiqwi. A and A are computed numerically, while it is available a close

«EU
form solution for A . FEach weighted estimator is computed for different values of M,
where M goes from 2 to 16 and for an optimal M. The calculations are carried out in R

and are based on 5000 Monte Carlo repetitions.

12



The results of the simulations are summarized in the appendix. Figures 1 to 4 describe
the behaviour of the weighted estimators as the blocklength changes compared to those
estimators that are independent of M, represented by the horizontal lines. In particular, the
thick horizontal lines denote the weighted estimators based on M, and M, and, therefore,
denoted as OptEL, OptET, and Opt EU. In several cases the sample mean is too far apart
from the other estimators and it is not included in the graphs. Figures 5 to 8 describe
the behaviour of all estimators as the sample size increases. Particularly when the sample
size is small, the choice of M has a considerable impact on bias and MSE. For the latter
(Figures 3 and 4), we see that the MSE tends to grow with M, while as n increases the slope
of the curves corresponding to the ELL and ET estimators becomes smaller and collapses
to OptEL and Opt ET. On the other hand, the EU-based estimator is upward-sloping also
for n = 256. In Figure 5 we see that the bias does not change much for the weighted
estimators and for the GMM estimator. For DGP 2 the bias varies substantially for the
EL-based estimator. The bias of the ET-based estimator, however, is less sensitive to
the choice of M, while the EU-based estimator has a quite persistent negative bias and
tends to behave as the GMM estimator. Given the appropriate difference in scale, Figures
7 and 8 describe the same picture: the effect of an arbitrary choice of M could have a
large impact on the MSE in small samples. Such an effect is more prominent for the EL
case and the EU case. For the latter it persists also for larger values of n. Overall the EL
estimator and the ET estimator that use an optimal blocklength have smaller MSE than
GMM. Apart from small values of n, the EU estimator that uses an optimal blocklength
is very similar to the GMM estimator. The MSE for the sample mean is the largest in the

panel and tends to grow with the sample size.

13



5 Conclusion

In this paper we propose a two step procedure for Z-estimators in the presence of weakly
dependent data and auxiliary information based on the estimation of BGEL probabilities.
This procedure is attractive from different points of view. First of all, the computation
of the BGEL probabilities is very simple, as it contemplates only the convex part of the
BGEL problem (this is, the estimation of the Lagrange multiplier A). Moreover, whenever
the Z-estimator is asymptotically equivalent to a GMM estimator (QS), it does not entail
the well-known small sample effects that affect GMM estimators (see for example Altonji
and Segal, 1996). Our asymptotic results state that the resulting Z-estimator is consistent
and Normally distributed. The resulting variance depends on the relevance of the auxiliary
information. In addition, we demonstrate that the estimator of a distribution based on
the BGEL weights enjoys the same favourable features of the abovementioned Z-estimator.
Furthermore, by means of Monte Carlo experiments, we describe how to apply our ap-
proach to a standard time series problem. The laboratory we set is a location parameter
estimation problem, similar to what is described in QS (see also Zhang, 1995). We compare
three BGEL weighted estimators against a simple sample mean and an augmented GMM
estimator, and we analyze their behaviour for different values of M and n. We argue that
an appropriate choice of M is crucial in particular when the sample is small; because of
that we advocate the use of data driven procedures for the selection of the blocklength (see
Politis and White, 2004). The simulation results suggest that, in general, weighted esti-
mators (in particular those based on ET) combined with an optimal blocklength improve

over the competing estimators.

14
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Appendix: Proofs and Figures

In what follows we present the proofs of the theorems presented in Section 3 and some

auxiliary results. In addition, we use the following notation: —, and —; denote con-

vergence in probability and convergence in distribution; C' is a generic positive constant;

CS and T denote Cauchy-Schwarz inequality and triangular inequality respectively; |||

is the Euclidean norm of -. The sums }_; and }_; substitute S | and Z?:p while ),

substitutes >, ;. The CLT is meant to be a CLT for strong mixing sequences (see e.g.

Ibragimov and Linnik, 1971) and CMT is the continuous mapping theorem.
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Proof of Lemma 1. Consider again
RN =13 p(Na)
b= v

Notice that R (\) is concave through p (-). Moreover, assumptions 2 to 4 match assumptions
(i)-(iii) from Theorem 2.7 of Newey and McFadden (1994). Then, consistency of A follows.
Consider now a mean value expansion of the first order conditions of the BGEL criterion

function,

O\

= —g+ <% Z P (Xgi) g¢g§> %

o= PO 1 i)

where g = ) .¢g;/b. Since )\ is consistent and H)\H < HS\H, we have that p, <}\/gi> =

—1+ 0, (1). Thus, multiplying by /n

LA .3
0= —vig — Vit~ o, () SV

where ¥ = M ", g;g./b. Notice that f]\/ﬁ% = O, (1); therefore, by rearranging

VIS = S W hg 4 0, (1), (6)

A
M
Finally, by applying CLT to y/ng and Slutsky theorem, the result follows. m

Proof of Theorem 1 (Consistency of BW) Let us compute a mean value expansion

N
. P1 <)\ gi)
T =

CYm (X'gj)

of
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about A = 0, where )\ is a consistent estimator for A:

. ., , /
i = % . % l P2 (A gizlgél e <>\lgi> %Zj ,0? <A g§> 9; (X - 0)
szp1( g]) <szpl </\g]>>

_ 1 N 1 P2 <}\/gi> 5\,91‘ N <5\,gi) %Z] s <,'\/gj> j\lgj
PEEa () (i) )

From results of Lemma 1 we obtain

#i = % + % (X'gl- +o, (1)) (7)

and

s = % (1+0,(1)). (8)

From Lemma 1 in Crudu (2009) we have h, (8) = i (8) + O, (M/n). Then, by adding
and subtracting f (Bﬂ) and T

) = b 32) - e 32+ e )

Moreover, by optimality of 37T and since m () = 0, and by repeated application of Lemma

+

1 in Crudu (2009) and T

[ Gl < (B) = (34)

< sup () = ()] + 1+, (1)) sup 1 (8) = m ()] +0, (%) |

BeB

(140, (1)) [ (By) = m (By)| + O, <%>

By Assumption 3 supgcp [|m (3) — m (8)|| = 0, (1); hence

| (3:)

<o, (1).
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Since m (f) is bounded away from zero for || — ;|| > ¢ (assumption 2), it follows that
B, €lf = Boll < 6. As § is arbitrary, 5, —, 3,. ®
Proof of Theorem 2 (Asymptotic Normality of Bﬂ) Let us consider ) , 7;h; (Bﬂ> =

0, by replacing the probabilities with the expression in 7
1 N .
0= 5;(1+Agi+op<1)) ni (B.)

and mean value expand h; (Bﬂ) about 3, for B,r being consistent

0 = Z (1 + ;\/gi + 0, (1)> hi <B7r>

%

- S () (m " 0) i, ) - 0i ()

)

where

)B — BOH < ‘ B_— BOH. Let us define B () = MY~ hi(8)g./b. Then, by appropri-

ate rescaling and (6)

0 = \/ﬁﬁ (Bo) + B (Bo) 2—1\/59
1 oh; (5 N Oh: (B,) .
+ (gg—ag ) Rl Vi (B, = 50)
+op (1) \/ﬁil (Bw>
- Al + A2 + A3
where

Ay = /nh (Bo) + B (Bo) 2'/ng,

4y = (Z Ohi (B) 108+ X3 gidhs (3y) /%/b) Vi (Be = By) -
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Az = 0, (1) Vh (Bﬂ) .

From assumption 3 and Lemma 1 in Crudu (2009) v/nh (8,) —4 N (0,5 (8,)) and v/ng —4

N (0,3). Then, after simple calculations, we get A; —4 N (0, W), where

w = (1 —aggsr ) 000 P09 f
B (B,) by —SB(8,)

= S (50) - B (50) 7'B (50)/

Let us now focus attention on Ay. By Lemma 1 in Crudu (2009) and T

C Tl H o
T
x’%;gfh;g@ ) <o)

By CMT and assumption 3 \/ﬁiL (Bﬁ> is Normally distributed. Thus, its order of magni-
tude is O, (1) and Az = 0, (1). Finally,

M (B0) v/ (B, — ) = - ( I, —B (B> ) ( \/ﬁﬁf(_ﬁ” ) +0,(1)
ng

and

ﬁ(Bﬂ - /30) == (M(3y))" ( I, —B(B,) s ) ( Vith (3o ) + 0, (1)



which implies, by CLT applied to y/ng, assumption 3 and CMT,

~

Vit (B = 80) —a N (0. (M (8))) ™ (S (80) = B(Bo) S B (B,)) (M (8)) ")

Proof of Corollary 1. From results in Lemma 1 and Theorem 1 we have

fr®) = (a2 (14 8040,0)

~ —rx—1 M 1
= i () = Vng's m;%lM(%‘Sz)JFOp(%)

Then, by adding and subtracting x (z) and multiplying both sides by /n, we get

— 4N (0,0 —d'S7"a).

The result follows by CLT applied to v/n (j1, (2) — 1 (x)) and y/ng and Slutsky theorem.
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