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Abstract

Quantifying productivity is a conditio sine qua non for empirical analysis in a number of research
fields. The identification of the measure that best fits with the specific goals of the analysis, as well
as being data-driven, is currently complicated by the fact that an array of methodologies is available.
This paper provides economic researchers with an up-to-date overview of issues and relevant solutions
associated with this choice. Methods of productivity measurement are surveyed and classified according
to three main criteria: i) macro/micro; ii) frontier/non-frontier; iii) deterministic/econometric.

Keywords: productivity measurement, TFP, Solow residual, endogeneity, simultaneity, selection bias,
Stochastic Frontier Analysis, DEA, Growth accounting,, GMM, Olley-Pakes, firm heterogeneity, price
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1 Introduction

Quantifying productivity is a conditio sine qua non for empirical analysis in a number of research fields.
What is usually needed is a measure of output differences which is not explained by different input choices
and occurs, instead, through marginal product increases. This “quantity”, usually referred to as Total Factor
Productivity (henceforth TFP), is the essence of the economic notion of productivity. To put it formally,
what the economists have in mind when they talk about productivity is a production function of the type

Yit = Ait F (Xit) (1.1)

relating the output (Y) of a generic unit (firm/industry/country) i at time t to a (1xL) vector of inputs X
and the term A saying how much output a given unit is able to produce from a certain amount of inputs,
given the technological level. The state of technology, embodied by the function F (·), is given and common
to all i’s. Hence, the TFP index at time t is the ratio of produced output and total inputs employed:

TFPit ≡ Ait =
Yit

F (Xit)
(1.2)

∗Contacts: m.delgatto@unich.it, adriana.diliberto@gmail.com, petragli@unina.it.
The first two authors acknowledge financial support from the European Community under the FP7 SSH Project “Intangible
Assets and Regional Economic Growth”grant n. 216813.
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The idea is quite simple, but giving it an operational content is not an easy task. An array of methodolo-
gies is available, and researchers have to make a choice that, even when the estimation is only propaedeutical
to the main analysis, it is likely to represent most of the story of an article.

This paper aims at contributing to this choice by reviewing most of the available methodologies for
productivity estimation, which we classify according to different criteria. In Figure 1, we distinguish between
deterministic methodologies, whose output is a “calculated”measure of TFP, and econometric, providing us
with “estimated”productivity levels and/or growth rates. Within these, we discriminate between Frontier
and Non-Frontier Approach.

However, the first distinction one should keep in mind when approaching this field is between method-
ologies used in macro studies, that is methods concerned with aggregate (countries/regions/industry) pro-
ductivity and methodologies used in micro studies, aimed at measuring individual (firm/plant) productivity.
Thus, in Figure 1 we also indicate if a specific technique has been applied to macro or micro data sets, or to
both. Although in principle one would expect some form of aggregation of the latter to exactly reproduce
the former, as we will discuss in section 2, this is not the case. Thus, it is not surprising that the two strands
of literature develop along different lanes and are rather difficult to compare.
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Figure 1: Surveyed methodologies

Aggregate studies are mainly concerned with identifying the role of TFP on growth dynamics, the main
goal consisting of explaining the still wide differences in economic performance across countries. This liter-
ature started with the Solow growth theory, in which the pattern of productivity growth essentially mirrors
that of the so called technological progress (i.e. Solow residual). This approach goes under the name of
Growth accounting and it has been the first deterministic methodology proposed to estimate TFP and has
been used to estimate TFP at both aggregate and sectoral levels. The first evidence dates back to the
fifties (Abramovitz, 1956; Solow, 1957) and, despite its age, still represents one of the most popular ways to
estimate TFP. New methodologies have been suggested to improve traditional Solow residual estimates. In
particular, a recent extension of the growth accounting methodology is the level of development accounting
decomposition (Klenow and Rodriguez Clare, 1997; Hall and Jones, 1999; Caselli, 2005). This methodology
has the advantage to produce estimates of TFP levels instead of their growth rates as in traditional growth
accounting. The focus on TFP levels instead of rates of change is particularly important in growth models
where technology transfers represent the main engine for growth and convergence (Parente and Prescott,
1994; Benhabib and Spiegel, 1994 and 2005).

Among macro studies, we also describe alternative parametric methods to estimate TFP: the so called
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growth regressions. Like growth accounting, these are extensions of the standard Solow growth model.
However, unlike the former, they use a model-based approach, as its main contribution is to identify a
structural equation to estimate TFP levels from aggregate data (Islam, 1995; Caselli et al. 1996). Therefore,
with respect to the Growth Accounting approach, the advantage of growth regressions is that TFP is not
estimated as a residual from a calibration exercise and we do not need to trust specific functional form
assumptions.

Frontier models are applied to both aggregate and individual data. They differ from the Non-Frontier
models for the assumption that observed production units do not fully utilize their existing technology.
In the presence of inefficiency, productivity measurement is affected and so it will be productivity change,
unless inefficiency does not vary over time. Since in many contexts it is relevant to provide evidence on
the contribution of efficiency change to productivity change, a main advantage of these models is that they
allow for the presence of time varying technical inefficiency in production. The main reason leading to the
adoption of frontier models is then their capability to disentangle two main sources of productivity growth:
technological change and technical efficiency change. Technological progress is assumed to push the frontier
of potential production upward, while efficiency change reflects the capability of productive units to improve
production with a set of given inputs and available technology. An advantage of frontier models is that they
can provide useful information to the policy maker for the design of productivity-enhancing policies. For
instance, if the main source of a productivity slowdown is detected to be technological regress, this would
suggest orienting policies towards measures that induce technological innovation. We will focus on the key
features of both deterministic and econometric branches of this field of research based on Data Envelopment
Analysis (DEA) and Stochastic Frontier Analysis (SFA) respectively. DEA and SFA will be reviewed within
other deterministic and econometric methodologies respectively.

DEA (Farrell, 1957; Charnes et al., 1978) can be seen as an attempt to overcome some of the specific
weaknesses of the growth accounting approach: a particular functional form for technology, particular as-
sumptions on market structure, the hypothesis that markets are perfect. The basic idea of this approach
consists of enveloping the data (the observed input-output combinations) in order to obtain an approximation
of the production frontier (or “best-practice” frontier) and using this to identify the contribution of tech-
nological change, technological catch-up, and inputs accumulation to productivity growth. SFA also starts
by assuming that firms can not produce using the most efficient possible way but, differently from DEA,
accommodate for shortfall from potential output due to random shocks beyond the control of producers. In
order to describe the main departures of SFA from other econometric approaches to the estimation of TFP
growth, our survey will first focus on the estimation of technical inefficiency in a cross-sectional framework
and then on the SFA approach to the decomposition of TFP in a panel context proposed by Kumbhakar
(2000).

As for micro level studies, the interest in estimating firm-level productivity received early this century an
extra-kick from two simultaneous and related circumstances: the development of a theoretical literature in
which firms are assumed to be heterogeneous (and in which heterogeneity is thought of in terms of produc-
tivity), and the increasing availability of micro-level data. Recent developments in growth theory focused
on more sophisticated mechanisms describing the channels through which firms competition and selection
affect innovation incentives (Aghion et al., 1999) or where the organisation of firms and production should
be different in industries that are closer to the world technology frontier (Acemoglu et al., 2006). However,
the main focus of this strand of literature is on the relationship between the productivity distribution of
firms and the integration process (Melitz, 2003; Bernard et al., 2003; Melitz and Ottaviano, 2008; Bernard
et al. 2007; Chaney, 2008). Related to this, the empirical literature is of course interested in understanding
firm-level differences in performance, as well as in studying the determinants of these differences (see e.g.
Clerides et al., 1998; Bernard and Jensen, 1999; Aw et al., 2003; Pavcnik, 2002; Bernard et al., 2006; Roberts
and Tybout, 1997; Syverson, 2004; Del Gatto et al., 2008). To deal with these questions, methods providing a
measure of productivity in “levels” are needed. Studies in this field usually rely on semi-parametric methods,
based on proxy variables. These methods are conceived for keeping into account the main problems associ-
ated with estimating productivity at the firm level, namely: simultaneity, selectivity, and price-dispersion.
Apart from the selection bias, these problems are not specific to the micro context, but, in such context,
several methods have been developed to cope with them. The key points of these (semi-parametric) methods
are i) the identification of a proxy variable, which is function of the observed (by the firm) TFP, and ii) the
definition of the conditions under which this function can be inverted in order to express TFP as a function
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of the proxy variable itself. For example, Levinsohn and Petrin (2003) suggest using intermediate goods as
a function of TFP and capital. This function is invertible provided that, with given capital, the utilization
of intermediate goods increases with the growth in TFP. Olley and Pakes (1996) suggest using investment
instead. Although this idea of recovering TFP by the traces it leaves in the (observed) behavior of the firm
is the main novelty of this approach, the implied “invertibility conditions” can represent a weakness, as it
has to hold for all firms, regardless of their size and market position.

The described methodologies can be regarded as the main blocks of methods for productivity estimation.
However, they do not exhaust the array of available techniques.1 In particular, it is worth noting that most
methods2 surveyed in this paper require data on inputs and output. This not only causes the problems
discussed in section 5.2, when the reference market structure is imperfect competition, but it is troublesome
also in a perfectly competitive framework and at the aggregate level. Expressing the amount of inputs in
physical terms is in fact not straightforward. Opportune deflators are always needed, and evaluating the
stock of capital used in production becomes very data demanding if one opts for the perpetual inventory
method. Although this might not be decisive if the focus is on a single country, when one aims at comparing
productivity across sectors and/or countries, data on inputs and output must be comparable, and this is
usually not the case. It is well known that cross-country heterogeneities in the quality of data are quite
large, and this is particularly true for data on capital. An alternative approach has been developed in
order to overcome these shortcomings. The idea is that trade flows, via comparative advantages, embody
cross-country differences in sectoral productivity. To the extent in which this information can be drawn out,
productivity levels, this time comparable across countries and sectors, can be easily obtained. Finicelli et
al. (2008) apply this reasoning to the probabilistic ricardian framework of the Eaton and Kortum (2002)
model, while Fadinger and Fleiss (2008) move in a monopolistic competition framework. For its nature of
model-based analysis, a detailed description of this line of research is very space-demanding. Since these
promising techniques are still under the evaluation of the scientific community, we will leave them out of the
analysis.

The following exposition is articulated as follows. Sections 2 and 3 open with a general discussion of
macro versus micro and frontier versus non frontier issues. Section 4 describes deterministic methodologies to
estimate TFP, namely Growth Accounting (section 4.1), Index numbers (section 4.2) and DEA (section 4.3).
All these methodologies are applied in both macro and micro contexts. Section 5 is devoted to the econometric
estimation strategies. Section 5.1 describes the techniques with macro datasets. Section 5.2 describes the
estimation strategies for micro studies: Proxy-variables methods (5.2.1) and methods correcting for price
dispersion under imperfect competition (section 5.2.2). Section 5.3 describes SFA. Section 6 concludes.

2 Macro vs micro TFP measures

Attention is increasingly growing away from the study of TFP at the aggregate and industry level of detail,
towards the firm/plant level. This recent shift in focus may be explained by different factors. First of
all, data availability and computing power have improved. Furthermore, from the theoretical point of
view there has been a shift from competitive to non-competitive models of analysis. In growth theory,
models of endogenous growth focus on increasing returns to scale, non-competitive markets, externalities,
creative destruction processes together with the idea that innovation (and, thus, productivity) is not “manna
from heaven” but it is best seen as an endogenous part of the economic development. In particular, early
shumpeterian growth models (Aghion and Howitt, 1992) argue that monopoly rent induces firms to innovate
and thus positively affects productivity while further developments focused on more sophisticated mechanism
describing the channels through which firms competition and selection affect innovation incentives (Aghion
et al., 1999) or where the organisation of firms and production should be different in industries that are
closer to the world technology frontier (Acemoglu et al., 2006). On the other hand, new trade models in
which firms are modeled as heterogenous in terms productivity (Melitz, 2003; Bernard et al., 2003; Melitz
and Ottaviano, 2008; Bernard, Redding and Schott, 2007; Chaney, 2008) focus on the relationship between

1Van Biesebroeck (2007) provides a description of several methods dealt with in this survey, focusing on their robustness to:
i) measurement error in inputs; ii) mis-specifications in the deterministic portion of the production technology; iii) erroneous
assumptions on the evolution of unobserved productivity. Concerning Frontier models in particular, a recent and up-to-date
review is provided by Fried et al. (2008).

2The only exception is represented by the growth regression approach where data inputs are not required.
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the TFP distribution of firms and the integration process. Many of these hypothesis and mechanisms can
be only investigated at the micro level.

Despite their growing importance, micro studies results may be sometimes difficult to generalise. Because
of data availability, these studies usually investigate productivity patterns for a single economy or across
groups of developed economies only, while they do not investigate TFP dynamics at global level. Therefore,
one should be very cautious in extending the results obtained from a sample of one or few industrialized
economies to, for example, less developed economies. Even for developed countries, datasets are often
not comprehensive and lack information for important sectors of the economy as most studies focus on
comparisons of the production functions of manufacturing industries. This may be misleading in cross-
section comparisons since, as stressed by Caselli (2005), even data on the agricultural sector show large
within sector TFP differences across countries and this helps to explain the observed large GDP differences
in these economies. Macro and micro approaches can thus be considered as complementary as they ask
different questions and produce different pieces of information.

In principle, the relationship between aggregate, industry and firm/plant level estimated productivity
should include a mutually consistent measure of productivity at each level of analysis (see Hulten, 2001).
In practice, things are not as obvious as it may seem. As discussed above, provided that one is able to
estimate the productivity level of all the firms in a given industry, one would expect industry TFP and,
then, aggregate TFP measures to result from some form of aggregation of each level of the hierarchy. And
vice versa. In a top down analysis, we should be able to decompose aggregate TFP at industrial and then
firm level. However, how to aggregate (bottom up) or, conversely, decompose TFP depends on many factors.
For example, a well known problem when one needs to aggregate TFP from sectors to the whole economy
is that aggregate studies assume that GDP is produced by a single sector and this implies that the role of
inter-industry flows, that is, of intermediate goods, cancels out.3

But similar problems can be found at other level of the hierarchy. How to aggregate TFP from firm/plant
to industry analysis depends, for instance, on the purposes of the analysis. In general, let us start with the
following Cobb-Douglas specification of (1.1):

Yit = Ait

N∏
n=1

(Xn,it)
βn (2.1)

where Xn,it is the amount of input n (with n = 1, .., N) used, and βn is the relevant production coefficient.
Equation (2.1), which assumes implicitly Hicks neutral technical change, expresses firm i’s output at time
t as a function of a bundle of N inputs times the TFP component Ait. At the level of the single firm,
Ait encapsulates (Griliches and Mairesse, 1995) unmeasured components such as R&D stocks and other
intangibles, technology levels and marginal efficiency, input quality and effort.

In order to go from the firm to the industry, the simplest form of aggregation one can conceive is the
sum. In this case, aggregate TFP turns out to be

AZt =
∑
i

witAit =
∑
i Yit∑

i

[∏N
n=1 (Xn,it)

βn
] (2.2)

where the weights wit represent firm’s input share with respect to industry’s total inputs (
∏N
n=1(Xn,it)

βn∑
i[
∏N
n=1(Xn,it)

βn ] ).

However, this simple weighting scheme does not reproduce aggregate/industry estimates, as the latter
are commonly obtained as

At =
∑
i Yit∏N

n=1 (
∑
iXn,it)

βn
. (2.3)

The two measures coincide only if the aggregation is made by using as weights wit =
∏
n

(
Xn,it∑
iXn,it

)βn
,

whose sum, however, is not equal to one. Van Biesebroeck (2008) shows that a number of advantages is
associated with using this weighting scheme, but, as far as we know, there are no other applications of such
weighting scheme.

3A methodology to aggregate data from sectoral to country level TFP has been proposed by Domar (1961) and Hulten
(1978).

5



This simple exercise shows how the choice to start from either macro or micro data on input and output
leads to different notions of productivity. It is in fact evident that the economic meaning of AZt and At is
intrinsically different, the latter being the output per unit of input of the economy thought of as a single
“big firm”.

Thus, the choice about how to aggregate cannot be made irrespective of the objective of the analysis.
A decomposition of the aggregate productivity is particularly important with respect to disentangling the
contribution to the latter of firms of different size, market share, productivity, etc. In this respect, Olley
and Pakes (1996) suggest a decomposition of weighted aggregate productivity (wat) into two parts: the
unweighed aggregate productivity measure (āt) and the total covariance between a firm/plant’s share of the
industry output and its productivity:

wat =
∑
i

witait = āt +
∑
i

(wit − w̄t)(ait − āt) (2.4)

where the bar over a variable denotes the mean over all plants in a given year. The covariance term is
interesting because it represents the contribution to wat resulting from market shares and resource reshuffling
from less productive to more productive firms. Of course the choice of the weights is not indifferent. Olley
and Pakes (1996), and more recent studies such as Pavcnick (2002), use output shares, while Bartelsman
and Dhrymes (1998) use input shares. Van Biesebroeck (2008) shows that using output shares amplifies the
relative importance of the correlation term.

More complex specifications have been used to decompose productivity growth (see Foster et al. (2001)
for a review). In particular, Baily et al. (1996) suggest the following decomposition:

ȧt =
∑
i∈S

wit−1ȧit +
∑
i∈S

ẇit(ait −At−1) +
∑
i∈S

ẇitȧit (2.5)

+
∑
i∈N

wit(ȧit −At−1) +
∑
i∈X

wit−1(ȧit −At−1) (2.6)

where: wit is the industry (output or input) share of firm i at time t; S, N and X are the sets of surviving,
entering and exiting firms respectively; productivity is expressed in logs. According to this formulation,
the productivity change between two periods results from five components: i) within-firm growth, weighted
by initial output shares; ii) changing output shares weighted by the deviation of final firm productivity
and initial aggregate productivity; iii) firm TFP growth times plant share change; iv) weighted sum of the
difference between final TFP of entering firms and initial industry TFP; v) weighted sum of the difference
between initial TFP of exiting firms and initial industry TFP. Note that, apart from the first term, which is
the productivity change that would be caught by comparing two different estimations in levels, the other four
terms account for complications arising only in a dynamic context. Following Bartelsman and Doms (2000),
note how the contribution to aggregate productivity growth of continuing firms with an increasing share is
positive only if they start with a productivity level higher than the industry average. On the other hand,
entering (exiting) firms contribute only if they have lower (higher) productivity than the initial industry
average. As noted by Bartelsman and Doms (2000), this treatment of births and deaths ensures that the
contribution to the aggregate does not arise because the entering plants are larger than exiting plants, but
because of productivity differences.

In general, the links between the micro and macro levels of TFP analysis need to be further developed.
While this is considered (Hulten, 2001) “. . . one of the greatest challenges facing productivity analysis today”,
the empirical literature on productivity estimate is still evolving rapidly in both directions.

3 Frontier vs non-frontier TFP measures

Traditional Non-Frontier methodologies shared the common assumption and interpretation that production
is always fully efficient: the observed output — either produced by firms/plants or by regions/countries —
equates the potential level of production at each moment in time. The formulation originally introduced
by Solow (1957), who provided the original analysis of the growth accounting approach (to be discussed in
section 4.1), starts from eq. (1.2) (index i dropped) and assumes that TFP growth between time t and t+ 1
is evaluated using the following expression:
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TFPt+1

TFPt
=
At+1

At
(3.1)

In such derivation observed output is assumed to be equal to the frontier output and the implied measure
of TFP growth solely captures shifts in A, i.e. technological change (Grosskopf, 1993). However, such
an estimate will be biased in the presence of inefficiency. The recent aggregate Non-Frontier literature
on developing accounting and growth regressions focuses on explaining the wide differences in economic
performance across countries and produces estimates of TFP levels instead of growth rates. This framework
focuses on catching-up mechanisms where regions/countries’ output is not assumed to be equal to the frontier
output and thus, differently from the traditional approach, TFP estimates are interpreted as broad measures
of the efficiency with which regions/nations transform their factors of production into output (more on this
in sections 4.1 and 5.1), that is, they do not identify TFP with technology. Nevertheless, these studies do
not estimate separately the contribution of different sources of TFP change.

An alternative approach has been introduced by scholars within the Frontier approach to the measure-
ment of TFP: observed output and potential output might differ due to the presence of technical inefficiency
in productive processes of observed units. This implies the adoption of a new perspective with respect to
Non-Frontier methodologies, since estimated TFP will now explicitly result from a decomposition of pro-
ductivity growth in technological change and efficiency change. Technological progress is assumed to push
the frontier of potential production upward, while efficiency change will reflect the capability of productive
units to improve production with a set of given inputs and available technology. Assuming the presence of
technical inefficiency in productive processes leads to a discrepancy between observed output and maximum
feasible output:

Yt < At F (Xt) (3.2)

Yt+1 < At+1 F (Xt+1) (3.3)

The concept of distance function (Malmquist, 1953; Shephard, 1970) is introduced into the analysis in
order to bring observed output up to its efficient level. The output distance function D0

t is given by:

D0
t (Xt,Yt) = inf

{
θ :
(
Xt,

Yt

θ

)
∈ St

}
= (sup {θ : (Xt, θYt) ∈ St})−1 (3.4)

where St models the transformation of Xt ∈ RN+ inputs in Yt ∈ RM+ . The output distance function is hence
defined as the reciprocal of the maximum expansion in output vector — given available inputs — such that
production is still feasible, i.e., (Xt, θYt) ∈ St.

The definition of the distance function in (3.4) completely characterizes the technology. Indeed, the
following is true:

D0
t (Xt,Yt) ≤ 1 if and only if (Xt, θYt) ∈ St (3.5)

and the value taken by the distance function will be 1 if and only if production is technically efficient.
From the concept of distance function and (3.2)-(3.3), it follows that:

D0
t (Xt, Yt) =

Yt
AtF (Xt)

(3.6)

D0
t+1 (Xt+1, Yt+1) =

Yt+1

At+1F (Xt+1)
(3.7)

where, at each moment in time, in the presence of technical inefficiency, maximum potential output AtF (Xt)
will be equal to the observed output Yt corrected for the output distance function D0

t (Xt, Yt).
The TFP indexes at time t and t+ 1 will be given respectively by:

TFPt =
Yt

F (Xt)
= AtD

0
t (Xt, Yt) (3.8)

and
TFPt+1 =

Yt+1

F (Xt+1)
= At+1D

0
t+1 (Xt+1, Yt+1) (3.9)
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which yields the following expression for the TFP growth index between the two periods:

TFPt+1

TFPt
=
At+1

At

D0
t+1 (Xt+1, Yt+1)
D0
t (Xt, Yt)

(3.10)

that is, in the presence of technical inefficiency, TFP growth is due to technological progress (the first ratio
on the right hand side of (3.10)) and change in technical efficiency (the distance functions ratio). Hence,
the measure of TFP growth obtained in (3.10) will be equivalent to the one obtained following the growth
accounting approach in (3.1) only in the absence of inefficiency, i.e. only if TFP change can be explained
solely in terms of technological change. On the other hand, in the presence of inefficiency, measurements of
TFP growth based on Non-Frontier methods will lead to biased results.

As for the employed estimation techniques, applied works within the frontier approach — dealing with
both micro and macro settings — have adopted either deterministic linear programming techniques (DEA)
or the stochastic frontier approach (SFA). A less popular deterministic method is the Free Disposal Hull
(FDH) model proposed by Deprins, Simar and Tulkens (1984). FDH is a more flexible model with respect
to DEA as it only relies on the free disposability assumption of the production set, while DEA also assumes
convexity. However, although providing efficiency estimates within a more general framework, FDH has not
gained as much success as DEA in applied works.4

In coherence with the adopted deterministic/econometric classification criterion, we will focus on the key
features of the deterministic frontier approach to the measurement of efficiency and productivity in section
4.3, while we will provide a brief review of the SFA in section 5.3. The implementation of both techniques
suffers from limitations but has advantages. The main weakness of the first class of techniques is due to the
fact that they are solely based on input and output data and to their deterministic nature, which implies
that any discrepancy between actual and potential output is attributed to inefficiency. Any other feasible
sources of technical inefficiency, i.e., omitted variables, unobserved measurement errors and stochastic noise
are neglected, resulting in a possible upward bias of inefficiency scores.5 Furthermore, large datasets are
required, since the “best practice”frontier obtained with small samples may be too rough an approximation
of the real production frontier.6 On the other hand, DEA does not require the imposition of any functional
form for the technology set and allows technical change to vary across decision-making units. SFA is able to
distinguish between inefficiency and other possible causes of the discrepancy between observed and maximum
potential output. This is made possible by separating two components of the error term in the stochastic
production function and the distributional assumptions may significantly affect the results. Moreover, the
need to specify a functional form for the production frontier together with the assumption of a common
technical change across production units represent two important limitations.

A comprehensive comparison of advantages and limitations of DEA and SFA goes beyond the scope of our
survey, which is to underlie their main departures from Non-Frontier models. To the best of our knowledge,
two recently published volumes will provide the most recent and up-to-date reading to researchers interested
in frontier models, that is, Fried et al. (2008) and Daraio and Simar (2007). In particular, Greene (2008)
reviews the econometric approach to efficiency analysis. Daraio and Simar (2007, pp. 25-42) propose a
general taxonomy of frontier models (according to three criteria: specification of the functional form for the
production function, the presence of noise in the sample data and the type of data analyzed) and provide
an instructive picture of the latest methodological developments within non-parametric frontier approach.

4 Calculating TFP (deterministic methodologies)

4.1 Calculating TFP: growth accounting

Given its popularity and long-term existence, the growth accounting literature shows a plethora of extensions
and different results. This approach has been used to estimate TFP at both aggregate and sectoral level

4DEA and FDH models are described in detail and compared against each other by Daraio and Simar (2007).
5For most recent methodological advances in the field of statistical inference within non-parametric frontier models the

reader is referred to Daraio and Simar (2007).
6In particular, since the latter is likely to be above the former, this methodology may “read”as “technology regress”something

that is, in fact, an efficiency decline. Kumar and Russell (2002) found this result mainly for countries with low capital-labour
ratios.
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and applied to both within and across countries analysis. The more traditional growth accounting approach
focuses more on within rather than across country analysis and decomposes output growth into components
using time series data. The first evidence dates back to the fifties with early studies usually finding that
a very large fraction of output growth was due to TFP growth. In particular, using US data, Abramovitz
(1956) and Solow (1957) found that almost 90% of output growth was associated with TFP growth. Later
studies7 have modified the basic framework and usually find a smaller role of TFP to GDP growth. In this
section we provide a brief description of the standard methodology and its more recent developments.

Growth accounting measures TFP indirectly, as the residual component of GDP growth that cannot
be explained by the growth of the assumed inputs of production. Let us start the analysis from the stan-
dard Hicks neutral aggregate production function described by (1.1). Taking logs (lowercase letters) and
derivatives with respect to time (and dropping time dependence) eq. (1.1) becomes:

ẏ

y
=
ȧ

a
+

N∑
1

βn
ẋn
xn

(4.1)

where (ȧ/a) is the productivity, or TFP, growth rate and the βns are input social marginal products
(FXX/Y ). Thus, if we can compute the factor’s growth rates and their social marginal products, the
TFP growth rate would be easily calculated as a residual, or Solow residual (SR henceforth), from:

SR =
ȧ

a
=
ẏ

y
−

N∑
1

βn
ẋn
xn
. (4.2)

The rates of change of TFP represent the change in national income that is not explained by changes in
the level of inputs used. Assuming perfect competition and constant return to scale, eq. (4.2) becomes:

SR =
ȧ

a
=
ẏ

y
−

N∑
1

sn
ẋn
xn
. (4.3)

where sn = (wX/Y ) is the fraction of Y used to pay input n. Given the assumptions that
∑
n βn = 1, in

the Cobb-Douglas case these input shares are constant over time and correspond to the exponents in the
production function.

Overall, these assumptions imply that social marginal products can be measured by (observable) factor
prices and that to compute SR we only need to calculate the growth rates of output, inputs and, with only
L and K (labor and capital respectively) as inputs, the value of the share of physical capital. Estimation is
commonly carried out in the two inputs, and the estimate of sK is usually assumed equal to approximately
1/3, a value based on studies that directly calculate the share of physical capital in aggregate output from
national account for developed countries8 data by computing the remuneration of capital as a share of GDP.

Alternatively, the Solow residual can be measured from growth rates of factor prices, the residual of the
dual cost function, rather than from growth rates of factor quantities as in (4.3). This dual approach to
growth accounting has been firstly developed by Jorgenson and Griliches (1967). They show that using the
equality between output and factor incomes Y = rK + wL, the dual or price approach9 implies:

SR = sK

( ·
r

r

)
+ sL

( ·
w

w

)
(4.4)

A second contribution of Jorgenson and Griliches (1967) to growth accounting was to identify the impor-
tance of possible errors of aggregation. In general, in this framework, stocks of physical capital are usually
generated using the perpetual inventory method and this procedure has been accused to mismeasure actual
stocks of physical capital.10 Nevertheless, even assuming that the perpetual inventory method is appropriate,

7See Denison (1985), Maddison (1995), Klenow and Rodriguez-Clare (1997), Hall and Jones, 1999; Aiyar and Feyrer, 2002)
among the many others.

8For example, 1/3 is the value obtained with US time series data on the capital-share. See Caselli (2005).
9For the dual approach see Hsieh (1999).

10Pritchett (2000) stresses as measures of K-stocks are sensitive to different assumptions on the K depreciation rate. Further,
the assumptions made to calculate the initial capital stock K0 may be too restrictive, as they usually use the steady state
condition of the Solow growth model. While rich countries may approximately satisfy this condition, for poorer countries this
assumption is less plausible and this may thus cause their estimate on K0 to be too high.
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errors of aggregation arise when we fail to control for the different quality of factors in the data. In this
case, using (4.3) or (4.4) to calculate the Solow residual, unmeasured inputs quality improvements will end
up in SR,11 causing TFP estimates to be upward biased. Conversely, taking into account for differences in
the quality of inputs reduces the estimated contribution of TFP growth to output growth.

This problem is also strictly related to the error that arises in aggregating investment goods of different
vintages by simply adding together quantities of investment goods of each vintage. There is a long-running
debate on how to deal with embodied technological change when we calculate productivity measures that
has recently intensified due to the rapid development and impact of new technologies on capital and labour
markets.12 If the quality of investment goods, as measured by the marginal productivity of capital, is not
constant over all vintages, this procedure results in aggregation errors. The vintage capital bias in growth
accounting may be critical since technological progress tends to be embodied in new forms of capital and
different types of capital equipment have different R&D contents.13 As shown by Caselli and Wilson (2004)
this problem is particularly relevant when we compare SR estimates from different countries since there
are significant differences in terms of what kinds of capital equipment they use. An appropriate index of
capital services may be constructed by treating each vintage of investment goods as a separate commodity.
One obvious extension to the standard growth accounting framework is thus to include new and improved
measures of factors of productions since (1.1) may be easily modified to include differences in inputs quality.
As long as we have measures of each factor’s price (and thus each type of factor is weighted by its specific
income share) an extended version of (4.3) may correctly measures the TFP growth rate.

Another and more recent extension of the growth accounting methodology is the level of development
accounting decomposition.14 In particular, like growth accounting, development accounting tries to quantify
a decomposition of output into inputs contribution and productivity, where the latter is calculated as a
residual. This methodology has the advantage of producing estimates of TFP levels instead of estimating
their growth rates. Hall and Jones (1999) stress that the focus on TFP levels instead of growth rates
has important implications as, theoretically, many growth models imply that differences in levels are the
interesting differences to explain and, empirically, cross-country differences in growth rates have often been
estimated as mostly transitory. We develop further this issue below in section 5.1. Moreover, levels analysis
should capture the differences in long-run economic performances that are relevant to welfare as measured
by the consumption of goods and services.

This framework introduces a production function augmented by human capital with Harrod neutral
technology.15 For each country/region i we may write:

Yi = Kα
i (AiHi)

1−α (4.5)

where H is the stock of human capital-augmented labour. The latter may be calculated by Hi = eφ(Ei)Li
where L is row labour and φ(E) represents the efficiency of a unit of labour with E years of schooling
attendance relative to one with no schooling. Further, φ(0) = 0 and φ

′
(E) corresponds to the return to

education estimated in a standard individual Mincerian wage equation.16 A benefit of this framework is that
there exists a vast empirical literature offering countries estimates of returns to schooling that can be used

11More precisely, “Quality change in this sense occurs whenever the rates of growth of quantities within each separate group
are not identical. For example, if high quality items grow faster than items of low quality, the rate of growth of the group is
biased downward relative to an index treating high and low quality items as separate commodities.”(Jorgenson and Griliches,
1967, p. 259).

12On this see Hercowitz (1998), Jorgenson (2005), Greenwood and Krusell (2007) and Oulton (2007).
13See Jorgenson (2005) on US and G7 countries and Jorgenson et al. (2007). These studies focus on the role of information

technology as the possible driving force behind the acceleration of productivity growth that began in the 1990s.
14It has been proposed by Hall and Jones (1999) and Klenow-Rodriguez Clare (2001) among others. Recently Aiyar and

Dalgaard (2005) have discussed on how to extend the dual approach to this level accounting methodology.
15In this case the production function is augmented by human capital. Mankiw et al. (1992) have been the first to use

the less restrictive case where Y = KαHβ (AL)1−α−β . In terms of equation (1.1), the Harrod-neutral technology implies

Y = F [A,K,L] = F̃ (K,AL) and g =
(
FLL
Y

)( ·
a
a

)
.

16In its standard form the Mincerian wage equation is defined by lnwi = X
′
iγ+φEi, where X is a set of demographic controls.

For more on this see Mincer (1974).
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for the calibration exercise.17 Equation (4.5) can then be rearranged as:

Yi
Li

= Ai

(
Ki

Yi

) α
(1−α)

(
Hi

Yi

)
(4.6)

In order to estimate Ai, that is, TFP’s levels, from eq. (4.6) we thus need data on output, labour,
educational attainments, physical capital, capital shares and returns to human capital.

Overall, the recent empirical literature on growth or development accounting estimates a smaller role
of efficiency to output growth with respect to early studies. Still, the contribution of efficiency is usually
estimated as highly significant and the consensus view in aggregate cross country data is that TFP is at least
as important as factors of productions to explain differences in economic performance across countries.18

Nevertheless, there are exceptions to this point of view. In particular, Young’s studies on East Asian
countries19 have been influential in claiming that GDP growth in is mostly explained by inputs accumulation
rather than TFP growth. More recently, using US and G7 countries data Jorgenson (2005) found the
contribution of inputs exceeds that of TFP, and similar results may be also found in Baier, Dwyer and
Tamura (2006).

As well as large consensus,20 growth accounting techniques have also received some criticism. The first
concerns the imposition of too many assumptions such as constant returns to scale and perfect competition.21

As shown by Hall (1988), relaxing the perfect competition assumption produces a difference between the

estimated Solow residual from (4.3),
∼
SR, and true productivity growth, SR. Defining y = Y

K and l = L
K ,

the Solow residual from eq. (4.3) may be rewritten as:

∆y = µθ∆l + SR (4.7)

where θ is the labour factor share µ = P
MC is the markup ratio, with MC the marginal cost, and P the

price level. Under perfect competition, P = MC and the Solow residual correspond to the true growth
rate of productivity, that is, may be correctly estimated from the usual formula SR = ∆y − θ∆l, where
∆y = (∆ log y), and ∆l = (∆ log l). Conversely, if firms have market power,22 the Solow residual estimated

by
∼
SR = ∆y − θ∆l will be different from the true growth rate of productivity.
Similar problems may be identified when we relax the assumption of constant returns to scale in the

production function. Increasing returns and spillovers may be represented by:

Yi = AKα
i K

βL1−α
i (4.8)

Equation (4.8) represents firm i production function that depends not only on private inputs, Ki and Li,
but also on aggregate capital stock K. If 0 < α < 1 and β > 0 this represents a production function with
CRS in the private inputs and positive spillovers. Assuming that in equilibrium each firm adopts the same
capital-labour ratio, aggregating across firms it can be shown that the economy-wide production function
can be written as:

Y = AKα+βL1−α (4.9)

Therefore, even in this case the estimated standard Solow residual
∼
SR would be biased upwards, as in the

previous case:
∼
SR = SR+ β

·
K

K
(4.10)

17For example, using survey evidence, Hall and Jones (1999) calculate H assuming that is piecewise linear with slope 0.13
forE ≤ 4, 010 for 4 < E ≤ 0.07 for E > 8.

18“A sentence commonly used to summarize the existing literature sounds something like differences in efficiency account for
at least 50% of differences in per capita income”(Caselli, 2005, p. 2).

19See, for example, Young (1995).
20“...we take a standard neoclassical approach....This is a natural benchmark. It ignores externalities from physical and

human capital. We believe there is little compelling evidence of such externalities...”(Hall and Jones, 1999, p. 89).
21Another disputed assumption of the growth accounting approach that we do not discuss here is the absence of factor

hoarding. For more on this, see Roeger (1995).
22And under constant returns to scale.
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where SR is the true growth rate of TFP. Standard growth accounting techniques have also been criticized
since they are not informative about casual relationships that connect the different inputs to growth. For
this reason, many regard them as an “ad hoc measure with little economic content”(Greenwood and Krusell,
2007, p. 1301). In particular, accounting decompositions may easily attribute to capital accumulation
something that should be attributed to technological progress and vice-versa. This is certainly true if
capital is endogenous and responds to technological progress or if improvements in educational attainment
have indirect effects on output through changes in labour force participation or R&D and, thus, on TFP
growth.23An alternative approach may be found in the “quantitative theory”. This calibration approach
defines the impulses affecting the economy but has the drawback of being significantly more burdensome
than growth accounting as requires a fully specified general equilibrium model (Greenwood and Krusell,
2007).

Finally, another drawback of traditional aggregate studies is that the role of the sectorial composition
of output is ruled out by assumption since, as said above, they assume GDP to be produced by a single
sector. Thus, it is usually difficult to disentangle how much of TFP differences across countries are due to
sectorial specialization rather than to other factors that make some countries less efficient than others. More
precisely, even assuming that within-sector productivity are identical, aggregate differences in TFP across
countries may be explained by cross-countries differences in the sectorial composition of the economy. Note
that these two hypotheses have different policy implications (Caselli, 2005). In fact, if TFP differences across
countries are due to differences in sectorial composition we should focus mainly on barriers to the mobility
of factors across sectors. Conversely, if sectorial composition does not contribute to explain TFP differences
we should focus, more broadly, on barriers to technology (or work practices) adoption across countries. The
aggregate approach usually focuses only on the latter.

In sum, even if nowadays there is a growing preference for econometric modelling of the factors causing
productivity change (Hulten, 2001), it is probably fair to say that TFP estimated as the Solow residual by
this aggregative deterministic approach“. . . . should be understood as a diagnostic tool, just as medical tests
can tell one whether or not he is suffering from a certain ailment, but cannot reveal the causes of it. This
does not make the test any the less useful”(Caselli, 2005).

4.2 Calculating TFP: Index Numbers issues

In this section we briefly describe the basic idea of these index numbers issues, borrowing from Van Biese-
broeck (2007) and Hulten (2001). The underlying concept is the same illustrated in section 4.1 for the SR.
As seen above, the Solow residual (SR) is in fact a measure of efficiency that uses a deterministic index
number approach with TFP computed directly from prices and quantities. The main indexes used to mea-
sure productivity are the Laspeyr’s, the Paasche, the Fisher and the Törnqvist. We only briefly describe the
latter, leaving a full description of these indexes to other surveys.24

In continuous time equation (4.3) is exact and this may represent a problem since data to estimate SR
are in discrete time. In order to avoid possible biases, it is thus necessary to find alternative discrete-time
approximations to (4.3). Consider equation (4.3) and replace sn with the average of current and lagged
factor shares ( sn,t+sn,t−1

2 ). The Törnqvist Index Numbers in this equation has been shown (Diewert, 1976)
to give an exact expression for the second term in (4.3), under the condition that the production function is
translog.

Index numbers are also used in the frontier approach described below. According to Caves et al. (1982b),
the Malmquist productivity index (4.17) (described in the following section) exactly equals the difference
between a Törnqvist output index and the corresponding input index with a scale factor to account for
non-constant returns to scale:

ȧ

a
=
ẏ

y
−

N∑
1

(
sn,t + sn,t−1

2

)
ẋn
xn
−

N∑
1

(
sn,t(1− βn,t) + sn,t−1βn,t−1

2

)
ẋn
xn
. (4.11)

23On this, see in particular Barro and Sala-i-Martin (2004) and Temple (2001).
24“The Laspeyr’s index is the value of period 1 output measured using period 0 prices divided by the value of period 0 output

measured using period 0 prices. The Paasche index measures the value of output in the two periods using period 1 prices. The
Fisher index is the average of the Laspeyre’s and Paasche indexes.”(Carlaw and Lipsey, 2003).
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That is, Caves et al. (1982b) show that the Törnqvist index has a more general validity and allows for
technical change that is not Hicks-neutral and variable returns to scale in production.

With micro data, the same is true for multilateral productivity comparisons (i.e. subscripts t and t + 1
can be replaced by i and j, denoting firms). In this case, as Törnqvist indices are not transitive, each firm
is compared with the average firm (the firm with average output and input shares):

ait − āt = (y − ȳt)−
N∑
1

(
sit + s̄t

2

)
(xn,it − x̄n,t) . (4.12)

Evidently, Index Numbers are straightforward to compute. The disadvantages associated with them are
those illustrated in section 4.1 for Growth Accounting. It is worth noting that, since the aggregation is exact
only if the production function is translog, the procedure cannot be regarded as “fully” non-parametric.
However, under different assumptions about the production function, the Törnqvist index above can still be
thought of as a “second order”approximation.

4.3 Calculating (and decomposing) TFP: DEA and the Malmquist index

Figure 2 provides the intuition for the use of distance functions in measuring efficiency and productivity, as
described in section 3.

Figure 2: The Malmquist Index

Since (Xt+1, Yt+1) > (Xt, Yt), productivity has increased over time. A Malmquist productivity index
quantifies productivity growth by taking technology at time t — St — as a benchmark and by comparing the
distances of (Xt+1, Yt+1) and (Xt, Yt) to St. Such distances can be measured either vertically or horizontally.
Indeed, as pointed out by Caves et al. (1982a), productivity differences over time may be interpreted in two
ways: as changes in maximum output conditional on a given level of inputs (output-oriented productivity
indexes) or as changes in minimum input requirements, conditional on a given level of output (input oriented
productivity indexes). Given the assumption one has made on the producer orientation, the ratio of these
two distances will provide the measure of productivity change. In the example of Figure 2 such a ratio is
greater than 1 both in the input and in the output oriented cases.
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The Malmquist productivity index introduced by Caves et al. (1982a) uses the two distance functions
defined above in (3.6) and (3.7) and the two following mixed period distance functions:

D0
t (Xt+1, Yt+1) =

Yt+1

AtF (Xt+1)
(4.13)

D0
t+1 (Xt, Yt) =

Yt
AtF (Xt)

(4.14)

On the basis of the above output distance functions, Caves et al. (1982a) define their output oriented
Malmquist productivity indexes for period t and t+ 1 as

M0
t (Xt, Yt,Xt+1, Yt+1) =

D0
t (Xt+1, Yt+1)
D0
t (Xt, Yt)

(4.15)

evaluated with respect to technology at time t; and

M0
t (Xt, Yt,Xt+1, Yt+1) =

D0
t+1 (Xt+1, Yt+1)
D0
t+1 (Xt, Yt)

(4.16)

evaluated with respect to technology at time t+ 1.
In order to avoid the subjective choice of the reference technology, an additional productivity index was

defined as the geometric mean of (4.15) and (4.16):25

M0
t (Xt, Yt,Xt+1, Yt+1) =

[
D0
t (Xt+1, Yt+1)
D0
t (Xt, Yt)

D0
t+1 (Xt+1, Yt+1)
D0
t+1 (Xt, Yt)

] 1
2

(4.17)

Starting from their seminal contribution, the literature following Caves et al. (1982a) has been dealing
with two main issues. From the theoretical point of view, research has been devoted to the definition
of possible decompositions of the Malmquist index. The aim is to measure the contribution of different
sources of productivity change, that is, technological change, efficiency change, scale economies and changes
occurred to the environment faced by producers. Secondly, the Malmquist index is a theoretical index based
on the definition of distance functions which in turn are defined on unknown technologies. Hence, scholars
have been dealing with empirical implementations aiming at approximating the Malmquist index (and its
components, as delivered in theoretical studies). We focus on the decomposition of the Malmquist index
which allows for decomposing productivity gains in technological progress and efficiency change and on its
empirical estimation based on DEA.

Färe et al. (1994a) provide the following decomposition of (4.17) under the assumption of CTRS:

M0c
t (Xt, Yt, Xt+1, Yt+1) =

D0c
t+1 (Xt+1, Yt+1)
D0c
t (Xt, Yt)

[
D0c
t (Xt+1, Yt+1)

D0c
t+1 (Xt+1, Yt+1)

D0c
t (Xt, Yt)

D0c
t+1 (Xt, Yt)

] 1
2

(4.18)

The first ratio on the right hand side of (4.18) represents the change in technical efficiency between period
t and period t+1, while the term in brackets measures the shift in technology between the two periods. M0c

greater than 1 indicates that productivity has risen between period t and t+ 1 and this can be explained in
terms of technical efficiency improvement and/or technological progress. A value of the index smaller than
1, will indicate a TFP slowdown between the two periods. It is important to notice that the two components
may move in opposite directions. For instance, if neither input (Xt = Xt+1) nor output (Yt = Yt+1) change
between the two periods, M0c will be equal to 1 and technical change and efficiency change will be reciprocal
but not necessarily both equal to 1.

The graphical example provided by Färe et al. (1994b) gives the key intuition of the decomposition of
the Malmquist index in (4.18).

In Figure 3, St and St+1 represent the production frontiers at time t and t+1 respectively. In this simple
graphical example, the level of production observed at time t is not efficient. Indeed, observed output Y = a

25Notice that the Malmquist index does not require price information and assumptions on the structure of the technology
and the behavior of producers as the Fisher and Törnqvist indexes do.
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Figure 3: The Decomposition of the Malmquist Index

is below the frontier and maximum potential output is given by Y = b. According to the definition in (3.6),
the output distance function is defined by the ratio 0a/0b < 1. Since St ⊂ St+1, a technical advance has
taken place between time t and t+ 1. However, observed production at time t+ 1 (Y = d) is still technically
inefficient and the output distance function in the new period is equal to 0d/0f < 1.

Given the two distance functions 0a/0b and 0d/0f and recalling the decomposition of the Malmquist
productivity index in (4.18), we can define the ratio:

0d/0f
0a/0b

= efficiency change (4.19)

which for values greater than one will indicate that production is closer to its efficient level in period t + 1
than in period t, i.e. an efficiency improvement occurred between the two periods. From Figure 3, we can
also derive the graphical counterparts of the two mixed output distance functions in (4.13) and (4.14), which
are necessary to obtain the decomposed Malmquist index of our example:

D0
t (Xt+1, Yt+1) =

Yt+1

AtF (Xt+1)
=

0d
0e

(4.20)

D0
t+1 (Xt, Yt) =

Yt
At+1F (Xt)

=
0a
0c

(4.21)

where the ratio in (4.20) represents the highest proportional change in output requirements to make (Xt+1, Yt+1)
feasible in relation to the technology at time t. On the other hand, the ratio defined in (4.21) indicates the
highest proportional change in output requirements to make (Xt, Yt) feasible in relation to the technology
at time t+ 1.

Finally, the Malmquist productivity index can be expressed as:

M0c
t (Xt, Yt, Xt+1, Yt+1) =

0d
0f
/

0a
0b

[
0d/0e
0d/0f

0a/0b
0a/0c

]1/2
=

0d
0f
/

0a
0b

[
0f
0e

0c
0b

]1/2
(4.22)

Moving to the empirical implementation of the Malmquist index — in the general case of multiple outputs
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— the following CRTS frontier technology is constructed from the data using DEA:

St =

{
(Xt,Yt) : Y mt ≤

K∑
k=1

zk,tY
m
k,t;

K∑
k=1

zk,tX
n
k,t ≤ Xn

t ; zk,t ≥ 0

}
(4.23)

with k = 1, ..K production units using n = 1, ..., N inputs Xk,t to produce m = 1, ..,M outputs at each t,
and the terms zk,t stand for weights on each unit of production. The assumption of CRTS can be relaxed
by imposing the restriction

∑K
k=1 zk,t ≤ 1, which will give the case of variable returns to scale (VRTS).

In order to calculate the Malmquist productivity index for each producer at each time t, the distance
functions similar to those illustrated in (3.6), (3.7), (4.13) and (4.14) have to be evaluated. The distance
function in (3.6) is evaluated by solving the following linear programming problem for each producer k′:[

D0
t (Xk′,t,Yk′,t)

]−1
= max θk′ (4.24)

subject to
K∑
k=1

zk,tY
m
k,t ≥ θk′Y mk′,t (4.25)

K∑
k=1

zk,tX
n
k,t ≤ Xn

k′,t (4.26)

zk,t ≥ 0 (4.27)

The evaluation of D0
t+1(Xt+1,Yt+1) will imply solving a linear programming problem such as the one

in (4.24)-(4.27), transposing subscripts t with t + 1. The mixed distance function in (4.13) is obtained by
solving the following problem: [

D0
t (Xk′,t+1,Yk′,t+1)

]−1
= max θk′ (4.28)

subject to
K∑
k=1

zmY mk,t ≥ θk′Y mk′,t+1 (4.29)

K∑
k=1

zk,tX
n
k,t ≤ Xn

k′,t+1 (4.30)

zk,t ≥ 0 (4.31)

The solution to the linear programming problem in (4.28)-(4.31) with subscripts t and t+ 1 transposed
will give D0

t+1(Xt,Yt).26

5 Estimating TFP (econometric methodologies)

5.1 Estimating TFP from macro data: growth regressions

The growth regressions approach27 originates from the vast empirical literature on growth and convergence
that has started in the mid-eighties with the resurgence of the endogenous growth literature. This debate
is strictly related to the question of whether TFP convergence is taking place and under what conditions.
Indeed, as Bernard and Jones (1996) put it, one of the main controversies in the empirical growth literature
is to identify “how much of the convergence that we observe is due to convergence in technology versus
convergence in capital-labour ratios” since convergence may be the result of three different mechanisms:

26The most widely used specialized computer software for the implementation of DEA models is DEAP 2.1 (Coelli, 1996).
Hollingsworth (2004) systematically reviews available DEA computer softwares, providing useful information on their advantages
and limitations.

27See Bosworth and Collins (2003) and Jorgenson (2005).
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convergence due to capital accumulation, convergence due to technology transfer (catch up), and convergence
due to both.

Unlike growth accounting methodologies this is a model-based approach to estimate TFP from aggregate
data that stem from the seminal Mankiw et al. (1992) contribution (hereafter MRW). One advantage of this
approach is that TFP is not estimated as a residual and TFP measures should then be purged from noise.
Secondly, this approach does not need to use data on the stocks of physical capital that, as said above, are
likely to be characterized by significant measurement error problems.

MRW analysis represents an extension of the standard Solow Swan model. Its main contribution is
to identify a structural equation to estimate the hypothesis of cross-countries conditional convergence that
states that if preferences, technology or other characteristics differ across countries, then in the long run there
should be convergence to the same per capita output growth rate. Countries, however, do not necessarily
converge towards the same capital-labor ratio and output per capita level.28

In MRW the production function is given by a Harrod neutral technology production function Y =
Kα(AL)1−α with 0 < α < 1, where AL is defined as “effectiveness of labour”. In this model the technology
(or disembodied productivity) is a public good that evolves exogenously: that is, the growth rate of the
technology frontier is constant and identified by g. Moreover, the depreciation of capital is proportional at
rate δ, while n represents the exogenous growth rate of the labour force. It is also assumed that the economy
invests a constant proportion of income, s and that the capital stock of an economy evolves according to:

·
∼
k = sf(

∼
k)− (n+ g + δ)

∼
k (5.1)

where
∼
k = K

AL and
∼
y = Y

AL . From the transitional dynamics of the Solow model and after standard
substitutions, a log-linear approximation of equation (5.1) around the steady state implies that:

ln
∼
y(t)− ln

∼
y(0) = (1− e−λτ )(ln

∼
y
∗
− ln

∼
y(0)) (5.2)

where
∼
y(0) denotes income per effective worker at some initial point of time and the asterisk denotes variables

at steady state. This equation indicates that when an economy starts from a level of income in efficiency
units lower than its steady state level

∼
y , we should observe a positive rate of growth of

∼
y with λ representing

the speed of adjustment towards
∼
y
∗
. The effect of diminishing returns implies that growth due to capital

accumulation vanishes in the long-run. If certain assumptions are satisfied, the process of (absolute) conver-
gence towards the long-run equilibrium may result in a tendency towards convergence in per capita income
levels among economies. MRW identify an explicit expression for the steady state of per capita income
where:

ln y∗ = lnA(0) + gt+
α

1− α
ln s− α

1− α
ln(n+ g + δ) (5.3)

precisely defines the steady state level of the log of income in per capita terms. In (5.3) the initial level of
TFP, A(0), is, together with the saving rate and (n + g + δ), a determinant of y∗. Thus, the convergence
equation (5.2) becomes:

GRyi = c+ byi(0)i +
α

1− α
ln si −

α

1− α
ln(ni + g + δ) + εi (5.4)

where GRyi is the growth rate of per capita (or per worker) GDP and b = (1 − e−λτ ) . In (5.4) A(0)
represents the unobservable TFP component that differs across countries through lnA(0)i = c + εi, where
c is a constant and country-specific factors are simply considered as part of the error term. Therefore, eq.
(5.4) may be conveniently estimated by OLS since differences in TFP levels across countries, εi, are assumed
to be a purely random phenomenon.

Islam (1995) firstly extends this framework by assuming productivity to vary non randomly across indi-
vidual economies and introduces the idea that the unobservable differences in TFP are correlated with other

28This is different from the so called absolute convergence hypothesis that implies that if a group of countries differs only by
their initial capital-labor ratios they will eventually converge to the same per capita output level.
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regressors and may be directly estimated applying suitable panel fixed effects methodologies to:

yit = βyit−1 +
2∑
j=1

γjxjit + ηt + µi + υit (5.5)

where this is the so called level-specification of eq.(5.4),29 υit is the transitory term that varies across
countries, and the remaining terms are:

x1
it = ln(sit) (5.6)

x2
it = ln(nit + g + δ) (5.7)

γ1 = (1− β)
α

1− α
(5.8)

γ2 = −(1− β)
α

1− α
(5.9)

µi = (1− β) lnA(0)i (5.10)

ηt = g(t2 − βt1) (5.11)

As before, in equation (5.5) the coefficient β = e−λτ enables to recover the speed of convergence parameter
λ, while τ = (t2 − t1), is the time span considered.30 It is also possible to estimate a restricted version of
the model imposing γ1 = −γ2:

yit = βyit−1 + ψxit + ηt + µi + υit (5.12)

where xit = ln(sit) − ln(nit + g + δ). In both (5.5) and (5.12), from µi it is possible to calculate A(0)i
which is considered a broad measures of the efficiency with which regions/nations transform their factors of
production into output as this term should control for technology together with various unobservable factors
like institutions or climate. Productivity measures can thus be computed through:

TFPi = Â(0)i = exp
(

µ̂i

1− β̂

)
(5.13)

Different methodologies have been proposed to estimate µ̂i and β̂ from eq. (5.5) and there is no agreement
on which estimator suits the case better. In the next section we will describe the main characteristics of
these methodologies and discuss arguments for and against the proposed estimators. As we shall see, apart
from one, most fixed effects estimators usually transform data in order to eliminate µi from eq. (5.5). In
this case, estimates of individual intercepts and, through equation (5.13), of TFPi, may be recovered by:

µ̂i = ȳ − β̂ȳit−1 −
2∑
j=1

γ̂j x̄jit (5.14)

where the overbar refers to time averages. This approach to TFP estimates has been criticized since
equation (5.5) rules out the hypothesis of technological catching-up assuming instead that differences in
TFP are constant and that all economies grow at the same technological rate, g, whatever their initial level
of technological knowledge. Conversely, catching-up may be described as a process where the growth rate of
technology is proportional to the current gap between the world technology frontier and the technology level
currently adopted in an economy. In this case, during the transition, lagging economies would grow faster
than g and the technology gap between the leader and a given follower should decrease.

29Differently from eq.(5.4) in this specification the dependent variable is the logarithm of the level of per capita GDP and
β = b− 1 where, b is the coefficient of the lagged dependent variable in (5.4).

30Most studies use a five year time span to control for the business cycle.

18



However, if the time dimension of the panel is sufficiently long, equation (5.5) can be separately estimated
for different subperiods. This would enable the researcher to obtain estimates of cross-country TFP levels
at different points in time and test for the presence of technological convergence comparing the distribution
of TFP values obtained over different periods. An important feature of this methodology is that catching
up is tested separately from the test for the presence of convergence due to capital accumulation detected
by β̂. Finally, this methodology may be considered as a first step towards the analysis of the determinants
of TFP dynamics.31

5.1.1 TFP estimates and dynamic panel data problems.

In section 5.2 we describe how and why the use of panel data estimators has been proposed in the micro
data framework. Unfortunately, this description does not work for aggregate data analysis since there are
significant differences in terms of the estimation strategy between the macro and the micro framework. First
of all, in aggregate datasets individual units are countries or regions so that we cannot consider observations
to be randomly drawn from a large population as in firms samples.

Secondly, unlike in the previous case, aggregate empirical analysis typically uses panels characterized by
a relatively small N and a reasonably sized T sometimes called time series cross-section (TSCS) dataset and
this implies significant differences between the micro and the macro approach with respect to the asymptotic
properties of fixed effects estimators. In particular, in a typical micro panel T is usually short and assumed as
fixed, and this implies that the within group (WG) estimator is a consistent estimator only when regressors
are strictly exogenous. This is not the case for TSCS panels since unlike the firm/plant level approach,
with TSCS datasets the asymptotic analysis must be considered in the time series dimension of the data,
while N (the number of countries) may be considered as fixed. Amemiya (1967) showed that, when the
relevant asymptotic is in the direction of T →∞, the WG estimator of a dynamic panel such as (5.5) is in
fact consistent and asymptotically equivalent to Maximum Likelihood. Empirical studies of the aggregate
approach exploit this result.

However, while it is true that LSDV-WG estimator is consistent for macro panels, small sample problems
may still badly affect these estimates. The finite sample properties of various methodologies for dynamic
panel data models as in (5.5) need certainly to be further investigated but, as we shall see, some results by
Monte Carlo simulations are already present and used by researchers.

In the previous section we have seen that to estimate cross-country productivity we are directly interested
in β̂, the AR(1) variable coefficient, and the estimated individual intercepts µ̂i. Since we need our fixed effect
estimates to calculate TFP from (5.5), the Least Square with Dummy Variable (LSDV) estimator represents
an obvious choice. The LSDV and the WG estimators have the same characteristics and produce exactly
the same parameters and standard error estimates. For this reason we will sometimes refer to LSDV-WG
estimates without discriminating between the two methodologies. Nevertheless, differently from WG, LSDV
includes a dummy variable for each cross-sectional observation along with the explanatory variables, and is
based on the direct OLS estimation of equation (5.5). Excluding the time dummies and assuming that x is
exogenous it can be shown that the LSDV model of (5.5) can be written as:

y = Wδ + (Inιt)µ+ ε (5.15)

where W =
[
y−1

...X
]

is the data matrix that includes the lagged dependent variable, δ =
[
β, γ

′
]

is a vector

of coefficients and (Inιt)µ is an expression for unit-level heterogeneity across all time periods. In fact, from
(5.5) individual’s observations can be rewritten by stacking the T periods for every country in column vectors
as:

yi =

 yi1
...
yiT

, y−1
i =

 yi0
...

yiT−1

, Xi =

 x
′

i1
...
x
′

iT

, εi =

 εi1
...
εiT

, ιT =

 1
...
1


31On this see Islam (2003) and Di Liberto et al. (2008).
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and for each country in the panel we may write:

yi = βy−1 +Xiγ + µiιt + εi (5.16)

Vectors for all i = 1, 2, ...., N individuals are defined by:

y =

 y1
...
yN


NTx1

, y−1 =


y
(−1)
1
...

y
(−1)
N


NTx1

, X =

 x
′

i1
...

x
′

iN


NTxk

, ε =

 εi1
...
εiN


NTx1

, µ =

 µ1

...
µN


Nx1

The LSDV estimator is not usually introduced in micro data analysis since applying OLS to (5.15) with
a large number of cross-sectional observations may result in too many parameters to estimate. In this case
the within group (WG) transformation is preferable.

Islam (1995) has been the first to exploit Amemiya (1967) results and provide cross-country aggregate
TFP levels estimates from (5.13) within the growth-convergence framework using LSDV-WG. In his study
Islam also compares the results obtained by LSDV-WG with that obtained using the Minimum Distance
(MD) estimator firstly proposed by Chamberlain (1982). This methodology assumes that individual effects
are correlated with the included exogenous variables as in:

µi = k0 + k1xi1 + k2xi2 + ...+ kTxiT + ζi (5.17)

and

yi0 = φ0 + φ1xi1 + ...+ φTxiT + ϕi (5.18)

That is, the fixed effect depends linearly on all leads and lags of the exogenous variable x, E [ζi|xi1...xiT ] =
0, and E [ϕi|xi1...xiT ] = 0. To apply the MD estimator on (5.12) Islam (1995) firstly need to replace µi by
(5.17) in eq. (5.16) and, secondly, replace by repeated substitutions the lagged dependent variable by its
initial value, yi0 defined by eq. (5.18). For example, assuming T = 3 we would then obtain the following
reduced-form equations:32

y1 = ψx1 + βy0 + µ+ υ1

y2 = βψx1 + ψx2 + β2y0 + (µ+ βµ) + (υ2 + βυ1) (5.19)
y3 = β2ψx1 + βψx2 + ψx3 + β3y0 + (µ+ βµ+ β2µ) + (υ3 + βυ2 + β2υ2)

In sum, Chamberlain suggests reducing the problem of estimating eq. (5.12), a single equation model
involving two-dimensions, into a one-dimensional problem of estimating a T -variate regression model with
cross-sectional data, that is combining all equations of a single individual into one system of equations. In
order to obtain Chamberlain’s MD estimator we must first obtain the unconstrained reduced-form coefficient
matrix. In our example this matrix would be defined by:

Π =

 ψ 0 0
βψ ψ 0
β2ψ βψ ψ

+

 β
β2

β3

φ
′
+

 1
1 + β

1 + β + β2

 k
′

(5.20)

Each element of the Π-matrix is a function of the structural-form coefficients that can be summarized
by a vector ϑ

′
= [β, ψ, k1, k2, k3, φ1, φ2, φ3].33 Islam (1995) suggests to follow Chamberlain and to impose

restrictions by using a minimum-distance (MD) estimator:

a
ϑ = arg min (vecΠ− g(ϑ))

′
H−1
N (vecΠ− g(ϑ)) (5.21)

where g(ϑ) is the vector value function mapping the elements of into vecΠ and
′
H−1
N is the weighting matrix.

Through (5.21) we may then recover
a
µiand

a
β and calculate cross-countries productivity from (5.13).

32For simplicity, we are suppressing the individual subscript i.
33We are ignoring the intercept term, k0 = φ0 = 0.
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The main criticism against the use of the Chamberlain’s estimator is that for consistency it needs to
assumes that x′ts are strictly exogenous. As stressed by Caselli et al. (1996) this may not be the case for
the convergence equation model. Hence, they suggest to use the Arellano and Bond (1991) estimator to
calculate µi from (5.5), re-writing such equation as:

ỹit = βỹit−1 +
M∑
j=1

γj x̃jit + µi + υit (5.22)

where ỹit = yit −
−
yt, and

−
yt =

∑
yit
N , while the M included variables are additional determinants of the

growth rate. The use of demeaned value of per capita output allows time specific constants (and business
cycle effects) to be eliminated. Model (5.22) assumes that:

E(µi) = 0, E(υit) = 0, E(υitµi) = 0, i = 1, ...., N ; t = 2, ..., T (5.23)

E(υitυis) = 0, i = 1, ...., N ; t 6= s (5.24)

As seen above, the idea of Arellano and Bond (1991) is to check for the presence of fixed effects by
taking data in first difference and then to use the instrumental variables technique to purge the correlation
between the dependent variable and its lag. Unlike other similar estimators34 Arellano and Bond (1991)
suggest exploiting all the orthogonality conditions existing between yit and the disturbances υit35 and thus
enhance efficiency. Therefore, in this context we have to apply the first-difference transformation in order to
eliminate individual effects and subsequently rearrange equation (5.22) to obtain:

∆ỹit = β∆ỹit−1 +
M∑
j=1

γj∆x̃jit + ∆υit (5.25)

Equation (5.25) cannot be estimated as it stands since E(∆
∼
y it∆υit) 6= 0; that is, the lagged dependent

variable is correlated with the error term through the contemporaneous terms in period t− 1 (or t− τ , with
τ = 5 as in the most studies in this literature). If we consider the simplest AR(1) model with fixed effects,
that is, excluding the M additional determinants from (5.22), under (5.23) and (5.24), the Arellano and
Bond (1991) estimator identifies (T − 1)(T − 2)/2 linear moment conditions such that:

E(
∼
y it−s∆υit) = 0 (5.26)

with t = 3, . . . , T and s ≥ 2, or E(Z
′

i∆υi) = 0, where:

Zi =


∼
y i1 0 0 . . . 0 . . . 0
0

∼
y i1

∼
y i2 . . . 0 . . . 0

. . . . . . . . . . .

0 0 0 . . .
∼
y i1 . . .

∼
y iT−2

 ; ∆υi =


∆υi3
∆υi4

...
∆υiT

 (5.27)

In other words, it is possible to use the lagged levels of y dated t − 2 and earlier as instruments. The
GMM estimator for β will be given by:

a
βAB =

∆
∼
y
′

−1ZW
−1
N Z

′
∆
∼
y

∆
∼
y
′

−1ZW
−1
N Z ′∆

∼
y−1

(5.28)

where
a
βAB is the GMM estimator of the difference equation with WN a weight matrix determining the

efficiency properties of the GMM estimator. With additional regressors the number of moment conditions
depends on the assumptions made on x’s. The consistency of this estimation procedure crucially depends

34As the Anderson-Hsiao who favour the use of ∆yit−2 or yit−2 as instruments.
35See Baltagi (2003).
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on the identifying assumption that lagged values of both income and other explanatory variables are valid
instruments in the growth regression.36 However, recent studies criticize the use of the GMM-Arellano and
Bond (henceforth GMM-AB) estimator in frameworks such as the standard growth-convergence analysis.
Blundell and Bond (1998) find that the GMM-AB estimator may perform poorly with datasets that use
either a small number of time periods or persistent time series, where these are typical features of aggregate
datasets. In particular, they show that when T is small, and a) the autoregressive parameter is close to one
or b) the variance of the individual effect is high relative to the variance of the transient shock, the lagged
levels of the series will tend to be only weakly correlated with subsequent first differences and the GMM-AB
estimator may produce downward biased estimates.

When there is evidence that lagged levels of the explanatory variables provide weak instruments for the
model in first difference as in equation (5.25), the inclusion of additional explanatory variables among
regressors and the inclusion of additional lags of these regressors among instruments may improve the
performance of this estimator. Therefore, Blundell and Bond (1998) suggest specifying a system of equations
in both first difference (as described above) and levels where the instruments of the levels equations are
the lagged first-differences of the series. In particular, Blundell and Bond (1998) suggest exploiting these
additional moment conditions:

E(µi∆yi2) = 0 (5.29)

Assumption (5.29) holds when the process is mean stationary, that is when:

yi1 =
µi

1− β
+ ηi (5.30)

with E(ηi) = 0 and E(ηiµi) = 0. Note that (5.29) implies the exclusion by assumption of the hypothesis
technological (or TFP) catching-up across countries. In fact, if the extent of efficiency growth is related to
initial efficiency (as in the catching up case), GDP growth rates (the first difference of log output) might be
correlated with the individual effect.

As before, in a simple AR(1) model with fixed effects (that is, excluding additional regressors), given
these assumptions it is possible to identify the following (T − 1)(T − 2)/2 moment conditions:

E(υit∆yt−1
i ) = 0, t = 3, ...., T (5.31)

or, using the matrix notation as in (5.32) E(Z
′

liυi) = 0 where:

Zli =


∆yi2 0 0 . . . 0 . . . 0

0 ∆yi2 ∆yi3 . . . 0 . . . 0
. . . . . . . . . . .
0 0 0 . . . ∆yi2 . . . ∆yiT−1

 ; υi =


υi3
υi4
...
υiT

 (5.32)

The system GMM (or GMM-SYS) methodology exploits the full set of linear moment conditions given
by (5.26) and (5.31): the GMM-SYS estimator for β will be thus given by:

a
βSY S =

q
′

−1ZSY SW
−1
N Z

′

SY Sq

q
′
−1ZSY SW

−1
N Z

′
SY Sq−1

(5.33)

with qi

(
∆y
′

i, y
′

i

)
and estimates used to calculate TFP levels.

Finally, to estimate TFP’s from (5.5) recent studies recommend the use of a methodology firstly suggested
by Kiviet (1995). To avoid the weak instruments problems described above, Kiviet (1995) advocates a more
direct approach to the problem of the finite sample bias in dynamic panels by estimating a small sample
correction to the LSDV-WG estimator.37 In particular, he shows that it is possible to take advantage of the
efficiency of the LSDV-WG method (with respect to other IV estimators) correcting the downward bias that

36Caselli at al. (1996) distinguish between stock variables and flow variables. The former, measured at the beginning of the
period, are assumed as predetermined variables, while the latter (usually measured as averages within the time span considered)
are not predetermined for υit but are assumed to be predetermined for υit+τ .

37This methodology does not produce analytical standard errors. The latter may be calculated with bootstrapping.
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characterizes
a
βLSDV−WG in the small sample estimates of (5.5). In particular, the LSDV-WG estimator for

the vector δ defined in (5.15) can be rewritten as:

δ =
(
W
′
BW

)−1

W ′By (5.34)

where Bt = It − 1
T ιtι

′

t and B = IN ⊗Bt. To calculate the Kiviet correction we need to substitute eq. (5.15)
in (5.34) and obtain:

E(
a
δ − δ) = E

(
W
′
BW

)−1

W ′B [Wδ + (Inιt)µ+ ε]− δ = E
(
W
′
BW

)−1

W ′Bε (5.35)

= E
(
W
′
BW

)−1

(W ′BWδ) + E
(
W
′
BW

)−1

W ′BWδ + (Inιt)µ+ E
(
W
′
BW

)−1

W ′Bε− δ

= E
(
W
′
BW

)−1

W ′Bε

∵ E(
(
W
′
BW

)−1

(W ′BWδ) = δ

∵ B(In ⊗ ιt)µ = 0

The main problem arising from the bias defined by eq. (5.35) is that W is stochastic since it contains
the lagged dependent variable term which is covariant with the contemporaneous LSDV error term. Thus,
to evaluate the expected value defined by eq.(5.35), Kiviet proposes to partition W into its stochastic and

non stochastic component:W =
−
W +

∼
W , with

−
W =

[
−
y

(−1)

: X
]

and
∼
W =

[
∼
y

(−1)
: 0
]
. Given this partition,

BW = B
−
W +B

∼
W . Kiviet (1995) shows that the stochastic component B

∼
W can be defined as:

B
∼
W = (IN ⊗BTC)

a
εq
′

(5.36)

where q = (1, 0, ..., 0)
′
, a (K + 1x1) vector, and:

C =



0 . . . . . 0
1 0 . . . . .
β 1 0 . . . .
β2 β 1 0 . . .
. . . . . . .
. . . . . . .

βT−2 . . . β 1 0


(5.37)

Finally, to calculate the bias Kiviet uses (5.36) and obtain:
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a
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2
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−
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3
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In sum, the Kiviet Correction may be described by the following three steps procedure:
1. Since the bias approximation depends on the unknown parameter β and σ2

υ, firstly estimate Eq.(5.22)
using a consistent estimator, such as Anderson-Hsiao or Arellano-Bond and calculate the bias.

2. Estimate the model by LSDV.
3. LSDV estimates may be corrected by subtracting the bias terms described by (5.38).

To sum up, all the estimators used to infer TFP levels from (5.5) have their pros and cons and the
answer to the question of “what is the best fixed effects estimator to estimate equation (5.5) and, thus,
TFP levels” in the aggregate convergence equation approach is not simple. What Kiviet wrote a few years
ago it is probably still true today: “As yet, no technique is available that has shown uniform superiority in
finite samples over a wide range of relevant situations as far as the true parameter values and the further
properties of the DGP are concerned” (Kiviet, 1995, p. 72). Overall, the existing Monte Carlo analysis that
compare the finite sample performance of these reviewed estimators conclude that for TSCS panels but with
a relatively small T (as we find in this specific literature) the Kiviet estimator seems more attractive than
other available estimators.38

5.2 Estimating TFP from micro data

The most common approach to (individual) TFP estimation includes a stochastic disturbance and expresses
(1.1) in logs (lowercase letters) as:

yit = ait + xitβ + eit (5.41)

In equation (5.41) ait is individual productivity, xit is a (1× L) vector of inputs, and β is the (L× 1)
vector of the elasticities of output with respect to each input. The error term eit is meant to capture mea-
surement errors and unobserved idiosyncratic shocks, due for instance to environmental or market changes,
which are “unanticipated”by the firm and thus uncorrelated with xit.

The value of ait can be recovered by estimating the vector β̂, computing the fitted value of firm i’s output
ŷit and deriving âit as the (exponential of the) difference between yit and ŷit (i.e. “Solow residual”).

However, standard OLS estimation of (5.41) could run in two orders of problems.39

The first problem stems from the fact that information on ait, although unknown to the econometrician,
is commonly used by the firm in its decision concerning the amount of inputs. This makes the error term
eit correlated with xit and the OLS-estimated β biased. In econometric parlance, ait is said to “transmit”to
the explanatory variables, hence the term “transmission bias”. Note that such bias cannot be removed by
assuming that the productivity component is not observed by the firm, since in any case one has to reckon
with the fact that the amount of inputs is jointly determined with yit, which is just an alternative way of
saying that the error term is correlated with the explanatory variables. Whether we want to look at this
correlation from the former or the latter point of view, yit and xit must be regarded as the solution of
a simultaneous-equations system. Thus, the problem is one of simultaneity. Although these two ways of
looking at simultaneity are equivalent with respect to the econometric stratagems to which one can resort,
it is worth noting how the former poses, more properly, a problem of “omitted variables”. This aspect is
stressed by the approach described in section 5.2.1.

The second problem originates from the fact that firms’ output, which is needed in order to estimate the
production function parameters, is commonly unavailable in physical terms. This forces the econometrician
to use a proxy that, in the vast majority of cases, consists of sales deflated by an industry-wide price index,
given that individual prices are themselves commonly not available. Such circumstance has no relevance
under perfect competition as all firms quote the same price. On the contrary, when markets are imperfectly
competitive, firm-level estimated productivity is likely to be misstated. Since the problem is caused by
omitting the individual price from the estimation, this problem is usually referred to as omitted price bias.40

38See Judson and Owen (1999), Bun and Carree (2005) and Everaert and Pozzi (2007).
39Direct estimation of equation (5.41) also suffers, to a greater or lesser extent, from multicollinearity, since input demand

functions tend to depend on one another, and heteroskedasticity, as the variance of the stochastic disturbance might differ
across firms. In this survey we are not concerned with these issues.

40The following exposition focuses on output price dispersion but (see Katayama et al., 2003) a similar problem of input price
dispersion affects the determination of xit.
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Simultaneity and price dispersion form the basis of the following examination. In particular, we are first
concerned with simultaneity (section 5.2.1), which affects the estimation both under perfect and imperfect
competition, then with price dispersion (section 5.2.2). An issue, the latter, that has to be addressed only if
imperfect competition is the framework of reference.

5.2.1 Dealing with simultaneity: proxy variables methodologies

Following Klette and Griliches (1996) in rewriting the estimating version of equation (5.41), the problem of
simultaneity can be summarized as follows:

ỹit = xitβ + uit (5.42)

where uit = ait + eit. The OLS estimator of β in (5.42) is, in matrix notation:

β̂ = (x′x)−1 x′ỹ (5.43)

where x is the (N × L) matrix of factor inputs (with N denoting the number of observations). Assuming
orthogonality in the error term eit, the probability limit of β̂ can be written as

plimN→∞(β̂) = β + plimN→∞

[
(x′x)−1 x′a

]
(5.44)

where a is the (N × 1) vector of individual productivities which are observed by the firm but not by the
econometrician.

The second term on the right hand side of equation (5.44) embodies the transmission bias. This can be
seen as the OLS estimator of vector ε in the auxiliary regression a = xε+ ua, where ua is an iid error term.
Accordingly, we can write:

plimN→∞(β̂) = β + ε (5.45)

so that in the limit firm estimated productivity evaluates to

plimN→∞(âit) = yit − xitplimN→∞(β̂) = ait − xitε

where xitε is the associated transmission bias.
The theoretical stratagems to which one can resort, in order to keep into account the presence of simul-

taneity, go along with the “anatomy”of the TFP component. Specifically, the unobserved (by the econome-
trician) TFP term in eq. (5.41) is both firm-specific (the i index), and time-varying (the t index). Traditional
cross-section analysis (Douglas, 1948) substitutes a constant for the unobserved TFP (ait → a), so that all
its variability is included in the error term and all the simultaneity bias passed on the estimates. With
plant/firm panels, a first step towards mitigating the simultaneity bias can be made by reducing ait to a
firm-specific (but time-invariant) unobserved effect (ait → ai). In this case, the TFP component is under-
stood as an unobservable effect in a fixed-effects estimation.41 However, while this approach takes account
of firm heterogeneity, it does not keep the temporal dimension into account. A way to keep also the latter
into consideration consists of identifying a (proxy) variable that reacts to the changes in the TFP observed
by the firm and is therefore a function of it. Insofar as this function proves to be invertible, its inverse can
be calculated and plugged in the estimating equation before proceeding to estimate the production function
parameters. Summing up, the idea behind this proxy-variable method consists of recovering the productivity
component by the traces it leaves in the observed behaviour of the firm. This approach, firstly proposed by
Olley and Pakes (1996) using investment as a proxy, has recently been extended by Levinsohn and Petrin
(2003) to the use of the intermediate inputs.

41Three considerations are in order, which make the FE approach not fully satisfactory. First, the within estimator uses only
the variation across time, thus leaving conspicuous part of the cross-sectional information unexploited. Second, the assumption
that the unobserved TFP is constant over time seems to be a too strong restriction. Third, the FE estimator is consistent
(Chamberlain, 1982) only provided that E(ëit | ẍi1, . . . , ẍit) = 0 ∀t = 1, . . . , T . By entailing that the error term in each time
period is uncorrelated with the explanatory variables in each time period (i.e. strict exogeneity), this condition implies that the
unobserved TFP not only does not vary over time, but also does not affect the present and future input choices. Such situation
of ”no delayed transmission” can be hardly the case in the presence of simultaneity.
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To illustrate how the current literature relies on proxy variable methods in order to take into account the
presence of simultaneity in the estimation process, it is convenient i) to make explicit the vector of inputs
by assuming two production factors, capital (k) and labour (l), whose production coefficients are referred to
as respectively βk and βl; ii) to hypothesize that individual productivity evolves according to a first-order
Markov process. (i) and (ii) imply, respectively, that:

yit = βkkit + βllit + ait + eit (5.46)

and
ait = E[ait | Ωit] = E[ait | ait−1] + uit (5.47)

where eit is the “untransmitted shock”, Ωit is the information set at time t, and uit denotes “innovation”in ait.

The Olley - Pakes (OP) method.
Olley and Pakes (1996) developed a two-stages estimation procedure. The identification of a proxy variable
for ait relies on several assumptions.

1. Proxy variable: investment reacts to the observed (by the firm) TFP according to iit = i(kit, ait).

2. Strict monotonicity: iit = i(·) is strictly monotonic in ait .

3. Scalar unobservable: ait is the only unobservable in iit = i(·).42

4. Dynamic implications of input choices: capital is a state variable, and is the only state variable. The
law of motion follows kit = k(kit−1, iit−1). Labour is a ’static input’ — i.e. labour demand at a given
point in time has no dynamic implications on future profits.

5. Timing of input choices: investment and capital (thorough investment) are both decided at time t− 1.
Labour is chosen in t, when firm productivity is observed. This entails that:

lit ∈ Ωt lit 3 Ωt−1

kit, iit ∈ Ωt kit, iit ∈ Ωt−1

Following this set of assumptions, investment and capital are orthogonal in t (E[iit|kit] = 0), and iit can
be inverted, yielding the following proxy for the unobserved TFP:

ait = h(iit, kit) (5.48)

The unobservable productivity is thus expressed as a function of observables. Substituting (5.48) in (5.46)
yields:

yit = βl lit + Φit(iit, kit) + eit (5.49)

where
Φit(iit, kit) = β0 + βk kit + h(iit, kit) (5.50)

Equation (5.49) is a “partially linear”model identifying βl. As the regressors are no longer correlated
with the error, βl can be estimated by approximating Φ by a third or fourth order polynomial Φ̃ in i and k
(i.e. FIRST STAGE).

However, βk is not identified at this stage. In order to yield a consistent estimation of the latter, we
have to introduce further structure into the model and use, in a second stage, the estimated coefficient of
labour (β̂l). To this aim, net from the output in equation (5.46) the estimated contribution of labour and
use equation (5.47)43

yit − β̂l lit = βkkit + E[ait|ait−1] + νit. (5.51)
42Under the Markovian specification above, firms’ investment functions can be proved to be strictly increasing in ait (see

Pakes, 1994).
43The OP procedure allows for more general assumptions on the evolution of ait. To see this, write equation (5.52) as

yit − β̂l lit = βkkit + g(Φ̃it−1 − βkkit−1) + eit.

where the function g(·) simply reduces to Φ̃it−1 − βkkit−1 under the random walk assumption (5.47).
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where νit = uit+ eit is a “composition of pure errors”. Given E[ait|ait−1] = ht−i(iit−1, kit−1) = Φit−1−β0−
βkkit−i, it follows that βk is identified by the following “net output”equation:

yit − β̂l lit = Φ̂it−1 + βk(kit − kit−1) + uit (5.52)

where, from (5.49)
Φ̂it−1 = yit−1 − β̂0 − β̂llit−1 − êit−1. (5.53)

Equation (5.52) can be estimated through non-linear least squares, needed in order to restrict βk to be
the same for kit and kit−1 (i.e. SECOND STAGE).44

Operationally, one can proceed by constraining the residual of the regression of (yit − β̂llit − βkkit) on
(Φ̂it−1 − βkkit−1) to be not above an arbitrarily low level, which can be seen as a moment in the residual
νit.45

Note how the whole set of assumptions above has been used in the procedure. In particular, all the
hypothesis except the last one (and in particular the orthogonality between contemporaneous levels of i and
k, implied by assumptions 1 and 4) are required for perfectly invert out ait. The assumption that kit is
decided before time t (the time in which productivity is observed), by requiring that E[uit|kit] = 0, is key
for identifying correctly the capital coefficient in the second stage. However, as l is chosen at t (assumption
5), exactly when firms’ productivity is observed, the labour coefficient cannot be identified in the first stage
without assuming that E[uit|lit] = 0. Under this condition, the information on firms’ investment decision in
t can be in fact used in the identification of βl to control for the productivity shock correlated with lit.

The OP method has several advantages over a within estimator. First of all, as pointed out by Levinsohn
and Petrin, it is “less costly”. OP leaves in fact more variance in the estimation, since it uses also the cross-
section information. Second, by looking a the investment decision as the solution of a dynamic optimisation
problem, OP introduces an explicit behavioural hypothesis in the estimation procedure. However, the key
hypothesis of orthogonality between k and u, with its requirement that observed productivity fully transmit
to the investment decision, might be considered too demanding.

Another crucial strength of OP is that, unlike the other methods that we will describe in this section, this
procedure provides a relatively easy solution to the potential selection bias associated with non-randomness
in plants dropping out (s.c. selectivity).46 The remedy consists of incorporating a fitted value for the
probability of exiting from the sample in the estimation of equation (5.52), which becomes

yit − β̂l lit = βkkit + g(Φ̂it−1 − kit−1, P̂ rt−1) + uit (5.54)

where P̂ rt−1 is estimated as the probit of a survival indicator variable on a polynomial in capital and in-
vestment, and g() is a high-order series expansion in the three arguments Φ̂it−1, kit−1, P̂ rt−1, including all
cross terms.

44Wooldridge (2005) suggests an alternative implementation in which the first and second stage are estimated simultaneously.
The procedure can be applied to all the proxy-variable methods described in this survey.

45In a GMM context, this can be expressed as:

Q(β∗k) = min
β∗
k

∑
i

Ti1∑
t=Ti0

ν̂itkit

where: Ti0 and Ti1 are, respectively, the first and last period in which firm i is observed; and

ν̂it = yit − β̂llit − β∗kkit − ̂E[ait | ait−1],

with
̂E[ait | ait−1] = Φ̂it−1 − βkkit−1

Equation (45) is the sample analogue to the moment E[uitkit] = 0, on which the whole second stage is based.
46A short-cut solution would consist of considering a balanced (sub-)sample. However, this solution is likely to result in

biased estimates according to the systematic differences between exiting and non-exiting firms in terms of production factors.
Consider (Arnold, 2005) for example the case in which plants with higher capital stock are less likely to drop out of the market
(and the sample) if affected by a negative shock. In the remaining sample, there will be a non-zero (say negative) correlation
between the realizations of the error term and the capital stocks. In this case, the estimated capital coefficient will suffer from
a downward bias.
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Two extensions of the OP are worth mentioning.
De Loecker (2007a) extends the OP framework by allowing market structure (factor markets, demand
conditions, exit barriers, etc.) to be different for exporting firms by introducing export into the underlying
structural model, so that firm’s decisions about how much to invest and whether to exit the market or not
depends on the export status (exporting versus non-exporting). This modified OP procedure is meant to
capture unobserved productivity shocks correlated with export status and to filter out differences in market
structures between domestic and exporting firms within a given industry.

Operationally, an export dummy is introduced in equation (5.47), which becomes

ait = he(iit, kit) (5.55)

where e denotes the presence of the export dummy. Under this condition, the first stage estimation now
includes the export dummy and all terms interacted with it. Apart from the interacted terms, this is
equivalent to introducing the export status as an input in the production function estimation. In particular,
the polynomial (5.50) has to be re-written as

Φe,it(iit, kit) = β0 + βk kit + he(iit, kit) (5.56)

entailing the following second stage estimating equation:47

yit − β̂l lit = Φ̂e,it−1 + βk(kit − kit−1) + uit (5.57)

where, Φ̂e,it−1 is defined as in (5.53), with the only difference of the export status dummy. We refer to
Appendix B of De Loecker (2007a) for a discussion of the direction of the bias associated with not controlling
for the export status. However, note that, compared to the standard OP approach, the labour coefficient is
expected to be lower, while the direction of the bias in the capital coefficient cannot be identified univocally.

In the last stage of the estimation procedure suggested by De Loecker (2007a), one is implicitly assuming
that the export status only affects the average of the future productivity distribution, entailing that the
learning by exporting effects are not firm-specific. Moreover, these effects are time-invariant (i.e. every
year, exporting raises output, conditioned on labor and capital, by the coefficient estimated on the export
dummy).

Van Biesebroeck (2005) removes this limit by adopting a similar setup in which, however, lagged
export status is introduced as a state variable. In particular, in addition to the standard OP procedure,
firms have a further state variable Ext−1 and a further control variable, ∆Ext−1 = Ext − Ext−1. The
estimation procedure is as in OP - De Loecker (2007a), with the only difference that the policy function for
investment becomes iit = i(kit, ait, exit−1).48 This extension is of particular interest, because the estimated
coefficient of the export variable is informative about the presence or absence of learning by doing effects.
Van Biesebroeck (2005), for example, finds significative evidence in favor of the presence of such effects.

The Levinsohn - Petrin (LP) method.
Levinsohn and Petrin (2003) rely on intermediate inputs as a proxy variable for ait, rather than on invest-
ment. The identification of this proxy relies on the following assumptions.

1. Proxy variable: intermediates react to the observed (by the firm) TFP according to the demand
function mit = m(ait, kit).

2. Strict monotonicity: mit = m(·) is strictly monotonic in ait.

47If one is controlling for the selection bias, also the survival equation will have to include the export dummy and all terms
interacted with the export dummy, and the second stage estimating equation will be given by:

yit − β̂l lit = βkkit + g(Φ̂e,it−1 − kit−1, P̂ re,t−1) + uit

where P̂ re,t−1 is estimated as the probit of a survival indicator variable on a polynomial in capital and investment, and g() is

a high-order series expansion in the three arguments Φ̂e,it−1, kit−1, P̂ re,t−1, including all cross terms.
48If one is controlling for the selection bias, also the the survival equation has to be changed, as it is now a function of both

current and past export status.
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3. Scalar unobservable: ait is the only unobservable in mit = m(·).

4. Dynamic implications of input choices: labour is a “static input”— i.e. input demand at a given point
in time has no dynamic implications on future profits.49

5. Timing of input choices: capital is decided at time t − 1, labour and intermediates are chosen in t,
when firm productivity is observed. Formally:

lit,mit ∈ Ωt lit,mit 3 Ωt−1

kit ∈ Ωt kit ∈ Ωt−1

Let us start describing the LP method by including the intermediates demand function (mit) in equation
(5.41):50

yit = ait + βk kit + βl lit + γmit + eit . (5.58)

In (5.58) mit = m(ait, kit) replaces OP’s investment function in order to generate, once inverted (the invert-
ibility condition is, as before, that, conditional on capital, intermediate inputs demand is increasing in a),
the proxy:

ait = h(mit, kit) (5.59)

which, plugged into (5.58), yields:
yit = βl lit + Φit(mit, kit) + eit (5.60)

where
Φit(mit, kit) = β0 + βk kit + γmit + h(mit, kit) (5.61)

As before, only βl is identified at this stage and, as before, βk can be estimated in a second stage. In addition,
also γ has to be identified in the second stage.

Proceeding as in OP, we end up with:

yit − β̂l lit = Φ̂it−1 + βk(kit − kit−1) + νit (5.62)

with Φ̂it−1 = yit−1 − β̂0 − β̂llit−1.
However, differently from OP, νit = uit + eit is no longer a “composition of pure errors”. Intermediates

are in fact correlated with the error term, as they react to the innovation uit. Thus, OLS provide inconsistent
estimation. Owing to this, (β̂k, γ̂) this time are obtained by minimising the following GMM criterion function

Q(β∗k , γ
∗) = min

(β∗k ,γ
∗)

∑
h

(∑
i

Ti1∑
t=Ti0

ν̂itZiht

)2

, (5.63)

where: h indexes the elements of Zt = (kt,mt−1); i indexes firms; Ti0, Ti1 are, respectively, the first and last
period in which firm i is observed; and

ν̂it = yit − β̂llit − β∗kkit − γ∗mit − ̂E[ait | ait−1]. (5.64)

According to (5.64), in order to proceed with the minimisation of (5.63), we need to know β∗k , γ∗, and
̂E[ait | ait−1] (β̂l is known from the first stage).51

49This is not a necessary condition. Labour could be allowed to have dynamic implications, but in this case lt−1 should be
included in the intermediate input demand function.

50In the following description we largely borrow from Levinsohn et al. (2003), a pdf posted on the authors’ web page,
supplementing the STATA package “levpet”.

51The vector
E[(eit + uit) | Zt],

at the base of the moment conditions, results from two assumptions (which in turn represent the conditions under which
intermediate input can be thought of as a “perfect proxy”for ait). The first one is that period t’s capital is determined by
the investment decisions in the previous period, so that it does not respond to the productivity innovation (eit) in the current
period:

E [(νit) | kit] = 0

The second assumption is that last period’s intermediate input choice is uncorrelated with the innovation in the current period:

E [(νit) | mit−1] = 0.
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We can start from calculating the following residuals:

yit − βllit = Φ̂it (5.65)

then, ait can be obtained using any candidate values β∗l and γ∗ in the following equation:

âit = Φ̂it − β∗kkit − γ∗mit. (5.66)

Using these values, we are able to obtain a consistent approximation to ̂E[ait | ait−1] from

̂E[ait | ait−1] = δ0 + δ1ait−1 + δ2a
2
it−1 + δ3a

3
it−1 + εit (5.67)

Finally, given β̂lit, β∗k , γ∗, and ̂E[ait | ait−1], the solution of problem (5.63) provides the estimation of capital
(β̂k) and intermediate input (γ̂) coefficients.

Compared to OP, the LP procedure has two important advantages. The first one is theoretical. As
recognised by Levinsohn and Petrin themselves, LP provides “a better link between the estimation strategy
and the economic theory, primary because intermediate inputs are not typically state variables”. The sec-
ond advantage stems from a practical problem: balance sheet data are often characterised by a high degree
of zero-investment reports. Thus, a conspicuous number of observations fall out of the estimation. This
might have strong implications on the estimates. First, through the (im)possibility to invert the investment
function, in order to obtain equation (5.47). Second, through the fact that, if the presence of those zeros is
due to adjustment costs, the exclusion of the relevant observations leads to significant truncation bias. By
contrast, zero-reports for intermediate inputs are rare.

The Ackerberg - Caves - Frazer (ACF) correction.
Ackerberg et al (2006) criticize both OP and LP, claiming that the produced estimates would suffer from
collinearity, arising in the first stage of the estimation procedure. The reason is easy to show. Consider the
first stage estimating equation

yit = βl lit + Φit(·) + eit (5.68)

in which Φit(·) is given by equations (5.50) for OP and (5.61) for LP. For βl to be correctly identified, the
labour demand lit has to vary independently of Φ. Now, the underlying model suggests both, since the most
obvious hypothesis one can have in mind on the data generating process for labour demand is for it to be, in
both cases, a function of capital and productivity lit = f(ait, kit). However, once substituted for ait, by using
respectively (5.48) and (5.59), one remains with lit = f(h(iit, kit), kit) in OP and lit = f(h(mit, kit), kit) in
LP. Thus, labour demand is only a function of capital plus the variable chosen as proxy (that is: investment,
in OP, or intermediates, in LP), entailing that the labour coefficient cannot be identified in the first stage, as
one cannot simultaneously estimate a fully non-parametric function of two variables (i, k in OP and m, k in
LP) along with a coefficient on a variable (l) that is only a function of those same variables. ACF provide us
with an alternative, consisting of a slight modification to the OP/LP timing of input decisions. In particular,
the ACF correction has to do with the timing of input choices (hypothesis 5).

Assume that firms’ input decision proceed with the following timing. In particular, assume that

1. Proxy variable: intermediates react to the observed (by the firm) TFP according to the demand
function mit = m(ait, kit, lit).

2. Strict monotonicity: mit = m(·) is strictly monotonic in ait.

3. Scalar unobservable: ait is the only unobservable in mit = m(·).

4. Timing of input choices: labour is decided at time t − b, with (0 < b < 1), capital is chosen at t − 1,
the intermediate input is chosen at t, when firm productivity is observed. Formally:

kit ∈ Ωt−b kit ∈ Ωt−1

lit ∈ Ωt−b lit 3 Ωt−1

mit 3 Ωt−b mit 3 Ωt−1
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Note how, differently from OP and LP, in which labour is a ”perfectly variable” input decided at the
time production takes place, the above timing of input decisions implies that labour is a “less variable”input
than intermediates, as labour is chosen one subperiod before productivity is observed.

Note also that we are no longer assuming that labour demand has no dynamic implications on future
profits (i.e. assumption 4 in OP and LP).

Moreover, suppose that ait still evolves according to a first order markov process between these subperiods,
namely:

ait = E[ait | Ωit−b] = E[ait | ait−b] + uit

ait−b = E[ait−b | Ωit−1] = E[ait−b | ait−1] + uit−b

Under these hypothesis one is unable to identify the labour coefficient in the first stage, but it is still
possible to use the first stage in order to net output of the untransmitted shock eit. In particular, as
before, the intermediate demand function can replace, once inverted, the productivity term in the production
function, yielding:

yit = Φit(mit, kit, lit) + eit (5.69)

where
Φit(mit, kit, lit) = β0 + βk kit + βllit + h(mit, kit, lit) (5.70)

Once Φ̂ is obtained, one can proceed as before, with the difference that now both βl and βk have to be
recovered in the second stage. Thus, two moment conditions have to be used. However, given the new
timing assumption, we know that labour in t − 1 is uncorrelated with unobserved productivity in t, hence
E[uit|lit−1] = 0. This, together with E[uit|kit] = 0, gives rise to the following GMM criterion function:

Q(β∗k , β
∗
l ) = min

(β∗k ,β
∗
l )

∑
h

∑
i

Ti1∑
t=Ti0

ûitZiht, (5.71)

where: h indexes the elements of Zt = (kt, lt−1); i indexes firms; Ti0, Ti1 are, respectively, the first and last
period in which firm i is observed.

Operationally, start from calculating the residuals

âit = Φ̂it − βkkit − βllit. (5.72)

for any given candidate to (β∗k , β
∗
l ) ∀t. Then recover the implied residuals uit’s by non-parametrically

regressing ait on ait−1 (plus a constant term), and proceed by minimising (5.71).
Two considerations are in order.
First, a key feature of the ACF procedure is that it leaves the door open to any generalization of the

production function in which all inputs are not perfectly variable. Whenever the demand of one or more
inputs does not belong to the information set Φt (input demand is assumed to be decided before time t, which
is the period in which productivity is observed), a set of moment conditions of the type E

(
uit ·

(
kit

Zht−1

))
= 0

can be formed, with Zht−1 representing the vector of inputs decided before time t.
Second, we illustrated the ACF correction using intermediates as a proxy (this follows the preference of

the authors). However, the same approach can be applied to OP. In this case, the moment conditions are
the same but the procedure becomes inconsistent with the generalization above, as other inputs than labour
cannot be admitted to have dynamic effects through entering either the investment or labour decision, as
this makes the inversion problematic. Hence, the assumption on the dynamic implications of input choices
(assumption 4 in OP and LP) has to be maintained.

5.2.2 Dealing with the Omitted Price Bias: a Price-Dispersion-Corrected (PDC) measure

As mentioned above, when markets are imperfectly competitive, firm sales deflated by an industry-wide price
index are no longer a correct proxy for firm’s output.

As in section 5.2.1 for the transmission bias, we can summarize the problem by rewriting the estimating
version of equation (5.41) as follows:

r̃it = xitβr + urit (5.73)

31



where urit = arit + erit and, due to data availability, physical output has been replaced by deflated sales
r̃it = rit−pt = yit+ qit, with rit indicating firm revenues and qit = pit−pt measuring the difference between
(the log of) the firm specific price pit and (the log of) the deflator pt. The OLS estimator of βr in matrix
notation is:

β̂r = (x′x)−1 x′r̃

where r̃ is the (N × 1) vector of deflated sales and x is the (N ×L) matrix of factor inputs (with N denoting
the number of observations). In the absence of simultaneity, mindful that r̃it = yit + qit, the probability
limit of β̂r can be written as:

plimN→∞(β̂r) = β + plimN→∞

[
(x′x)−1 x′q

]
(5.74)

where q is the (N × 1) vector of the differences between individual prices and the industry deflator, and we
assumed orthogonality in the error term erit . The second term on the right hand side is the omitted price
bias. This can be seen as the OLS estimator of vector ω in the auxiliary regressions q = xω + uq, where uq

is an orthogonal error term. Accordingly, we can write:

plimN→∞(β̂r) = β + ω (5.75)

so that, in the limit, estimated TFP evaluates to

plimN→∞(âit) = r̃it − xit plimN→∞(β̂r) = ait − xitω

where xitω is the associated omitted price bias.

The inconsistency of the estimator obtained from a production function regression such as (5.73) has been
analyzed by Klette and Griliches (1996), who show that using a common, industry-wide, sales deflator re-
sults in downward biased estimated returns to scale and, thus, in overstated firm productivity. Klette and
Griliches (1996) provide a remedy to this bias but in absence of simultaneity. Melitz (2000) shows that
there is a relatively simple way to obtain a consistent estimator for β by adapting the Klette and Griliches
approach to one of the Proxy-Variables frameworks described above. The resulting procedure (henceforth
PDC method) allows to keep both simultaneity and price dispersion into consideration.

To illustrate Melitz’s proposal, let us start by assuming that using Proxy-Variables enables us to purge
the estimates from the simultaneity bias, hence ε = 0. This assumption entails that under perfect compe-
tition the estimator built on the Proxy-Variables approach is consistent, as pit = pt implies ω = 0 so that
plimN→∞(β̂) = β and plimN→∞âit = ait.

Whenever pit 6= pt, the estimator is however affected by the omitted price bias, since ω 6= 0.
To solve this problem, let us reinterpret the Klette and Griliches (1996) approach by the light of the

contribution by Melitz (2000). To this aim, assume a generic CES demand function with common elasticity
of substitution σ among any two varieties

U = U

[ nt∑
i=1

Y ρit

] 1
ρ

, Z

 (5.76)

where nt denotes the number of firms (i.e. varieties), Z captures aggregate demand (i.e. preference) shifts,
and ρ = σ−1

σ . Assuming that U(·) is differentiable and quasi-concave, the inverse demand function faced by
each firm is (in logs):

yit =
pit − pt
1− ρ

+ ˜̄rt. (5.77)

In (5.77): pit and pt denote respectively (the log of) the price set by firm i at time t and the industry deflator
(i.e. average price index); ˜̄rt = [(rt − pt)− nt] denotes average firm deflated sales; rt indicates average sales
at time t. Using (5.77) and (5.41), the ratio of the firm price to the industry deflator can be expressed as

qit = pit − pt = (1− ρ) [˜̄rt − xitβ − ait] . (5.78)
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Equation (5.78) identifies the sources of the omitted price bias in a monopolistic competition framework.
In order to take advantage of this information, we can use equation (5.78) together with equation (5.73) to
purge deflated sales from the unobserved output:

r̃it = ρ yit + (1− ρ) ˜̄rt (5.79)

where yit is defined as in (5.41). Equation (5.79) is an estimable equation and, as we assumed the absence
of simultaneity, consistent estimates of β, no longer influenced by σ, can now be obtained through the OP
or LP procedure.

Two papers, De Loecker (2007b) and Del Gatto et al. (2008), have independently implemented this
correction into, respectively, the OP and the LP framework. Let us base the following exposition on Del
Gatto et al. (2008), with the understanding that the changes to the original procedures needed in the two
cases are indeed very similar.52

Relying on LP only requires a new invertibility condition, needed in order to express ait as a function of
intermediate inputs, as in equation (5.59). Under perfect competition this simply required intermediate input
use to be increasing in TFP conditional on capital. Melitz (2000) shows that, under monopolistic competition,
this ’monotonicity condition’ holds whenever more productive firms do not set disproportionately higher
markups than less productive firms.53 The PDC procedure suggested by equation (5.79) entails that, in
addition to the usual input vector, a further regressor, average firm deflated sales ˜̄r, takes now part of the
estimation in the first stage. It is worth noting that this procedure provides the estimated elasticity of
substitution σ̂ as a by-product.

Once β and ρ have been estimated under this specification (let us call β̂PDC the PDC estimated vector
of production coefficients), the PDC estimated productivity evaluates to:

âPDCit = −xitβ̂PDC +
1

σ̂ − 1
(˜̄rt − σ̂r̃it) . (5.80)

Since qit is now correctly identified, the estimated productivity in equation (5.80) can be intended as the
‘true’ productivity (i.e. âPDCit = ait).

To isolate the omitted price bias, note that neglecting price dispersion would imply that âLPit = r̃it −
xitβ̂LP = âPDCit − xitω. Hence, we have:

âLPit = ait −
1

2 (σ̂ − 1)
(rit − r̄t) (5.81)

where r̄t = rt − nt stands for industry average revenues and we have used the fact that âPDCit = ait and
xit(β̂PDC − β̂LP ) = xitω by (5.75). Hence, the ‘correction factor’ to be applied to the standard LP estimate
âLPit is an increasing function of a firm’s revenues relative to the industry average. This correction factor
is positive for above average firms and negative for below average ones. In other words, disregarding price
dispersion results in understating the productivity of firms that are more productive than the average and
overstating the productivity of firms that are less productive than the average.54 Moreover, the magnitude
of the bias depends on the estimated elasticity of substitution σ̂: the lower the elasticity of substitution
(i.e. the more differentiated the products), the larger the bias. Finally, if one were interested in average
productivity, correcting for the omitted price bias would be uninfluential, as the bias vanishes on average.
The same does not apply to the dispersion measures, which are crucially affected by the bias.

5.3 Estimating (and decomposing) TFP from macro or micro data: Stochastic
Frontiers Analysis

The econometric models reviewed so far in this section ignore the contribution of efficiency change to pro-
ductivity change. An alternative way of estimating TFP — in macro as well as micro contexts — is based

52Apart from the baseline approach, the only true difference between the two papers is that De Loecker (2007b) follows more
strictly the Melitz’s proposal by dealing explicitly with the presence of multi-product firms.

53Formally, this requires the elasticity of the markup with respect to productivity to be bounded above by ρ.
54This is consistent with the evidence reported by Foster et al. (2005), who have the rare chance of comparing, for several

industries, the estimated productivity outcomes resulting from either firm output or firm deflated sales. Although they find
that the two measures are highly correlated, they show that quantity-based productivity measures exhibit greater dispersion
than revenue-based ones.
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on stochastic frontier models. Originally proposed by Aigner et al. (1977), Meeusen and van den Broeck
(1977), and Battese and Corra (1977), the estimation of stochastic frontiers represents a well established
empirical tool, widely employed in the last three decades by scholars interested in efficiency analysis. On
the other hand, its application to the study of TFP growth represents a more recent advance. As in the
case of DEA, the existence of technical inefficiency (a discrepancy between observed and potential output)
is assumed. This assumption allows one to decompose productivity changes into two parts: the change in
technical efficiency (movements towards the frontier) and technical progress (the shift of the frontier over
time). In contrast to DEA, the analysis is pursued in a stochastic context.

Although many SFA studies estimate productivity change using either cost or profit functions exploiting
the duality theory, in order to make the discussion comparable with that of the econometric models reviewed
above, we confine the analysis to the case of production frontiers (primal approach). We first introduce a
simple cross section stochastic frontier model which gives the flavor of the departures of SFA from Non-
Frontier models and focuses on the estimation of technical inefficiency. Then, we describe the stochastic
frontier approach to the decomposition of TFP in a panel context proposed by Kumbhakar (2000).

Given I producers each using X ∈ RN+ inputs to produce a scalar output Y ∈ R+, a frontier production
model takes the following generic form:

Yi = f(Xi;β) exp(vi − ui) (5.82)

where β is the vector of unknown parameters to be estimated that characterize the structure of the technology,
f(Xi;β) defines a deterministic production frontier common to all I producers and the random error term
vi R 0 captures the effect of (producer-specific) external shocks on observed output Yi. The stochastic
production frontier f(Xi, β) exp(vi) defines maximum feasible output in an environment characterized by
the presence of either favorable or unfavorable events beyond the control of producers. The error term ui = 0
is introduced in the model in order to capture shortfall of Yi from f(Xi, β) exp(vi), i.e. technical inefficiency.

According to the output-oriented definition of technical efficiency (TE), we can write:

TEi =
Yi

f(Xi;β) exp(vi)
= exp(−ui) 6 1 (5.83)

that is, producer i achieves maximum feasible output if and only if TEi = 1, otherwise technical inefficiency
occurs and TEi < 1 measures the shortfall of Yi from maximum feasible output in an environment charac-
terized by the presence of noise. The log-linear version of (5.82) to be estimated with the ultimate objective
of obtaining an estimate of technical efficiency is:55

yi = α+ βxi + vi − ui (5.84)

Estimating technical efficiency defined in (5.83) requires the estimation of (5.84) in order to obtain
estimates of the technology parameters β and to separate estimates of vi and ui. In turn, this requires to
impose distributional and independence assumptions on the two error components. As Fried et al. (2008, p.
37) point out, the price to pay for obtaining separate estimates of the two error components in (5.84) is indeed
the imposition of distributional and independence assumptions in the estimated model. The conventional
assumption of vi ∼ N(0, σ2

v) holds in frontier models, while variants of them have been developed in order
to accommodate for alternative distributional assumptions on ui. In particular, Battese and Corra (1977)
assumed ui to follow a half-normal distribution — ui ∼ N+(0, σ2

u) — Meeusen and van den Broeck (1977)
an exponential one, while Aigner et al. (1977) considered both assumptions. Later, Stevenson (1980) and
Greene (1980a, 1980b) assumed ui to follow the more flexible truncated normal and gamma distributions
respectively. It is worth noting that the fact that the selection of a particular distribution for the ui term
is not grounded on an a-priori justification represents a common criticism to frontier models. Moreover,
either distributional assumption implies that the composed error ei = vi − ui in (5.84) is negatively skewed
which prevents from OLS estimation and makes it necessary MLE. OLS, as a matter of fact, neither provides
consistent estimates of all β nor is able to deliver an estimate of technical efficiency.

If the modal value of inefficiency is close to zero and relatively high efficiency is expected to be more
likely than relatively low efficiency, then the half-normal distributional assumption on ui will be appropriate,

55In general, frontier models are often referred to as “composed error models”for the presence of the composite error term
ei = vi − ui.
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and indeed it is the most widely used in empirical applications. Accordingly, model (5.84) is completed by
the following assumptions:56

(i) vi ∼ N(0, σ2
v);

(ii) ui ∼ N+(0, σ2
u);

(iii) ui and vi are distributed independently of each other and of the regressors.

Given these assumptions, is then possible to define the log-likelihood function to be maximized with
respect to parameters (β, σ2

v , σ
2
u) and to obtain consistent estimates of all parameters.57

Two alternative parameterisations of the log-likelihood function have been proposed by Aigner et al.
(1977) and Battese and Corra (1977). Aigner et al. (1977) express the log-likelihood function in terms of
the two parameters σ2 ≡ σ2

u + σ2
v and λ ≡ σu/σv. On the other hand, Battese and Corra (1977) provide

a parameterisation of the log-likelihood function in terms of the variance parameter γ ≡ σ2
u/σ

2. The latter
parameterisation of the log-likelihood function allows an easy way of testing the frontier model (5.84) vs
its Non-Frontier version (with no inefficiency effects). Indeed, the parameter γ takes values between 0 and
1, with γ = 0 (γ = 1) indicating that the deviations from the frontier are entirely due to statistical noise
(technical inefficiency). For details on the test of the null hypothesis that H0 : γ = 0 (no scope for the
frontier model), the reader is referred, for instance, to Coelli et al. (1998, pp. 190-192).58

Once one has obtained ML estimates of all parameters, technical efficiency has to be estimated for each
of the i’s observed production units. Jondrow et al. (1982) were the first to deliver a result. They noticed
that the definition of technical efficiency in (5.83) involves the unobservable technical inefficiency component
ui. This implies that “even if the true value of the parameter vector β was known, only the difference
ei = vi − ui could be observed”(Coelli et al., 1998, p. 190) and that the best prediction for ui is the
conditional expectation of ui, given the value of ei:

E[ui|ei] =
σλ

(1 + λ2)

[
φ(eiλ/σ)

Φ(−eiλ/σ)
− eiλ

σ

]
(5.85)

where ei = vi − ui, φ(·) is the density of the standard normal distribution, Φ(·) is the cumulative density
function, λ is defined as above and σ = (σ2

u + σ2
v)1/2.

Then, since 1− ui is a first-order approximation to the infinity series exp(−ui) = 1− ui + u2
i /2 + u3

i /3!..
they suggested to estimate technical efficiency defined in (5.83) as TEi = exp(−E[ui|ei]) = 1− E[ui|ei].59

Later, Battese and Coelli (1988) proposed the following alternative point estimator for technical efficiency:

E[exp(−ui)|ei] =
1− Φ[δ + (γei/δ)]

1− Φ(γei/δ)
exp[γei + (δ2/2)] (5.86)

where δ =
√
γ(1− γ)σ2 and γ is defined as above. Notice here that since exp(−E[ui|ei]) 6= E[exp(−ui)|ei],

(5.85) and (5.86) deliver different results. Furthermore, neither is a consistent estimate of technical efficiency,
since the variance of E[ui|ei] does not go to zero as the size of the cross section increases.

The above cross-sectional production frontier model has been extended to panel data under alternative
assumptions on the distribution of the inefficiency term as well as on its behavior over time. Pitt and
Lee (1981) specified a panel data version of (5.84) under the assumption of time-invariant half-normal
distributed inefficiency effects, while Kumbhakar (1987) and Battese and Coelli (1988) extended Pitt and
Lee’s model to the case of normal-truncated time invariant ui. Then, Schmidt and Sickles (1984) were the
first to use conventional panel data techniques in a frontier context. The work by Schmidt and Sickles
(1984) represents a contribution of particular importance within the frontier literature as it provides a
full picture of the advantages associated with the use of panel data versus cross-sectional data in frontier

56This model is known in the literature as the normal-half-normal model.
57See Greene (2008, pp. 189-190) for a discussion on the estimation tools available in computer software.
58Coelli et al. (1988) also provide useful operational information on hypothesis testing of alternative distributional assumptions

on ui and other mis-specification issues of model (5.84).
59Jondrow et al. (1982) also delivered the expected value of ui conditional on the composed error term under the exponential

distributional assumption.
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models. These advantages can be summarized as follows. First, cross-section models require the imposition
of the independence assumption between the ui’s and input variables,60 while panel data estimations do not.
Second, panel data frontier models deliver consistent estimates of the inefficiency term. Third, Schmidt and
Sickles (1984) observed that when panel data are available, there is no need for any distributional assumption
for the inefficiency effects and all the relevant technological parameters can be obtained by traditional panel
data estimation procedures, in both variants of fixed and random-effects.61

The assumption of time-invariant inefficiency effects it is not easy to justify in long-term panel data
as one would expect producers to observe past inefficient behavior and possibly correct for non price and
organizational inefficiency determinants. The first extension of the Schmidt and Sickles (1984) model which
accommodates for time-varying inefficiency effects was developed by Cornwell et al. (1990). Since then,
alternative specifications of time-varying technical inefficiency terms proposed in the literature have been
the following:

(i) Kumbhakar (1990) and Battese and Coelli (1992) assume that inefficiency evolves according to a
parametric function of time: uit = uiα(t). In both works, a non-linear specification is used. In
Kumbhakar (1990), technical inefficiency effects vary according to uit = ui[1 + exp(bt+ ct2)]−1, where
ui ∼ N+(0, σ2

u) and b and c are unknown parameters to be estimated. Battese and Coelli (1992)
assume uit = uiexp[−η(t− T )], where ui ∼ N+(µ, σ2

u) and η is unknown and to be estimated;

(ii) Lee and Schmidt (1993) assume uit = uidt, where dt are time effects represented by time dummies and
ui are either fixed or random producer-specific effects and no assumption is imposed on the temporal
pattern of inefficiency;

(iii) Cornwell et al. (1990) assume uit = a1i + a2it+ a3it
2.

Nishimizu and Page (1982) firstly worked out a decomposition of TFP change in order to obtain a measure
of the contribution of technical efficiency change assuming constant return to scale. Later, Kumbhakar
(2000) refined their decomposition of TFP change also accounting for time-varying scale effects and changes
of allocative inefficiency over time.

Following Kumbakhar (2000), the Solow residual defined in (4.3) attainable within frontier models can
be estimated and decomposed as follows. Consider the following production function:

Yit = f(Xit, t) exp(−uit) (5.87)

where i = 1, ..., N producers are observed over t = 1, ..., T years, Y , f(·) and exp(−uit) are interpreted
as above in this section and time is included as a regressor in the production function in order to capture
technical change. Omitting the i and t subscripts and totally differentiating lnY with respect to time:

d lnY
dt

=
d ln f(X, t)

dt
− ∂u

∂t
(5.88)

Totally differentiating ln f(X, t) with respect to time:62

d ln f(X, t)
dt

=
∂ ln f(X, t)

∂t
+
∑
j

∂f(X, t)
∂Xj

· dXj
dt

=
∂ ln f(X, t)

∂t
+
∑
j

εj · Ẋj (5.89)

and replacing (5.89) in (5.88) is then possible to obtain the following decompoition of output growth:

ẏ =
∂ ln f(X, t)

∂t
+
∑
j

εj · Ẋj −
∂u

∂t
(5.90)

Notice that equation (5.90) distinguishes three sources of output growth:
60“The independence assumption is essential to the MLE procedure”, Fried et al. (2008, p. 37).
61For surveys of panel data production frontier models see Kumbhakar and Lovell (2000) and Greene (2008).
62Notice that ∂ ln f(X, t)/∂ lnXj defines the output elasticity εj of input Xj at the frontier.
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(i) TC = ∂ ln f(X, t)/∂t⇒ exogenous Technical Change (TC). That is to say, given a certain inputs use,
if TC > 0 (TC < 0), exogenous TC shifts the production frontier upward (downward);

(ii) TEC = −∂u/∂t⇒ Technical Efficiency Change (TEC). TEC represents the rate at which an inefficient
producer moves towards the frontier (technical efficiency declines over time if TEC < 0);

(iii)
∑
j

εj · Ẋj ⇒ change in input use. It is worth noting that if input quantities do not change over time,

then ẏ = TC + TEC.

The decomposition of output growth defined in (5.90) can be replaced in the Solow residual defined in
equation (4.3):63

˙TFP = TC − ∂u

∂t
+
∑
j

(εj − sj)Ẋj (5.91)

Using the measure of return to scale RTS =
∑
j εj (i.e. the assumption of constant return to scale

holds only if RTS = 1) and defining λj = fjXj/
∑
k

fkXk = εj/
∑
k

εk = εj/RTS, where fj is the marginal

product of the jth input, equation (5.91) can be rewritten as follows:

˙TFP = TC − ∂u

∂t
+ (RTS − 1)

∑
j

λjẊj +
∑
j

(λj − Sj)Ẋj (5.92)

The first and second terms at the right-hand side of equation (5.92) are interpreted as above, while the
third and forth terms represent scale effects and price effects, respectively. The contribution of scale effects
to TFP change depends on both technology and on factor accumulation. In the case of constant return to
scale (RTS = 1), the third term at the right-hand side of equation (5.92) cancels out. On the other hand,
if RTS 6= 1, a share of TFP change can be potentially attributed to changes in the scale of production. For
instance, in the case of increasing return to scale, an increase in the amount of inputs contribute positively
to TFP change, while reducing the amount of inputs will cause a lower TFP change.64 The price effects
component reflects the contribution of changes in allocative efficiency to TFP change. Indeed, the forth term
at the right-hand side of equation (5.92) captures either deviations of input prices from the value of their
respective marginal products, or departure of the marginal rate of technical substitution from the ratio of
input prices.

Kumbhakar (2000) shows how to estimate the four components of TFP change in (5.92) in a translog
production frontier model under the two alternative (i) and (ii) assumptions on time-varying inefficiency
effects uit’s mentioned at page 36, using the following translog production function:

lnYit = a0 +
∑
j

aj lnXjit + att+
1
2

∑
j

∑
k

ajk lnXjit lnXkit +
1
2
attt

2 +
∑
j

ajt lnXjitt+ vit − uit (5.93)

The first variant of the model is based on the assumption that the temporal pattern of inefficiency is
described by uit = uiα(t). Given this, provided that vit ∼ i.i.d.N(0, σ2

v), ui ∼ i.i.d.N+(µ, σ2
u) and that

vit are independent of ui for any i and t, it is possible to derive the log-likelihood function for (5.93) and
to obtain ML estimators of the technological parameters, all the parameters in α(t), σ2

v , σ2
u and µ. Then,

estimates of uit can be obtained by using either (5.85) or (5.86). Finally, the four components of TFP change
for each producer at each point in time can be computed on the basis of the following estimates:

RTS =
∑
j

εj =
∑
j

(aj +
∑
k

ajk lnXk + ajtt)

λj = εj/RTS

63Notice that we have now J inputs.
64The inverse reasoning applies to the case of decreasing returns to scale.
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TC = at + attt+
∑
j

ajt lnXj (5.94)

∂uit
∂t

= ui
∂α(t)
∂t

In the second variant of model (5.93), inefficiency varies over time according to the expression uit = uidt
(see assumption (ii), page 36). This assumption implies the advantages over the first variant of the model
of not imposing any functional form for the temporal pattern of inefficiency. Further, the model can be
estimated by non-linear least squares without distributional assumptions on the v error term and — in a
fixed effect specification — the ui’s can be calculated from individual dummies. Once obtained all parameters,
technical inefficiency terms will be obtained from ûit = maxi{uidt} − uidt and technical efficiency change
will be defined by ûit− ûit−1. Finally, expressions (5.94) can be implemented for the calculation of all other
components of TFP change.

6 Conclusions

There is an extensive and still rapidly evolving literature on productivity estimates and an exhaustive
account of it is certainly beyond the scope of this paper. This survey reviews most of the available method-
ologies for productivity estimation and suggests a scheme to classify the different approaches used to es-
timate productivity. The first classification criterion discriminates between deterministic and econometric
estimation strategies while a second one discriminates between Frontier Approaches and Non-Frontier Ap-
proaches. Moreover, we identify if a specific methodology has been applied only to macro context (using
countries/regions or industry data), to micro (firms/plant) datasets or to both.

Recent trends in empirical analysis of TFP show a growing attention away from the study of TFP at
the aggregate and industry level of detail and towards the firm/plant level. Despite that, both macro and
micro TFP analysis are still investigated. The two strands of literature are developing along different lanes
and are rather difficult to compare. While firm analysis enables to investigate TFP patterns at a deeper
level controlling for non-competitive markets, increasing returns and heterogeneous firms issues, their results
may be hard to generalise, and aggregate analysis still plays an important role in cross-country comparative
analysis. In general, the links between the micro and macro levels of TFP analysis need to be further
developed and this may be considered as one of the main challenges currently facing this literature.
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